forked from minxiyang/CS_578_Project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdaBoostedTree.py
234 lines (189 loc) · 5.81 KB
/
AdaBoostedTree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
from sklearn.base import clone
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import math
def ROC(model,x,y,w):
FPR=np.ones(0)
TPR=np.ones(0)
score=model.decision_function(x)
for threshold in np.linspace(min(score),max(score),50):
TP = FP = TN = FN = 0
for i in range(len(score)):
y_truth=y.iloc[i]
if score[i] > threshold:
if y_truth=='s':
TP+=w.iloc[i]
else:
FP+=w.iloc[i]
elif score[i] < threshold:
if y_truth=='s':
FN+=w.iloc[i]
else:
TN+=w.iloc[i]
FPR=np.append(FPR,FP/(TN+FP))
TPR=np.append(TPR,TP/(TP+FN))
AUC=-np.trapz(TPR,x=FPR)
print ("AUC is "+str(AUC))
return [AUC, FPR, TPR]
def find_AMS(FP,TP):
AMS=math.sqrt(2*((FP+TP+10)*math.log(1+TP/(FP+10))-TP))
return AMS
def find_threshold(model,x,y,w):
score=model.decision_function(x)
AMS=-1
t=-9999
TP_t = FP_t = TN_t = FN_t = 0
for threshold in np.linspace(min(score),max(score),50):
TP = FP = TN = FN = 0
for i in range(len(score)):
y_truth=y.iloc[i]
if score[i] > threshold:
if y_truth=='s':
TP+=w.iloc[i]
else:
FP+=w.iloc[i]
elif score[i] < threshold:
if y_truth=='s':
FN+=w.iloc[i]
else:
TN+=w.iloc[i]
if (find_AMS(FP,TP)>AMS):
AMS=find_AMS(FP,TP)
t=threshold
TN_t=TN
TP_t=TP
FN_t=FN
FP_t=FP
print ("threshold is "+str(t))
print ("AMS is " +str(AMS))
print ("TN = %s, TP = %s, FN = %s, FP = %s"%(TN_t,TP_t,FN_t,FP_t))
return t
# k-fold cross vaildation
def kfold(k,bdt,x,y,w):
n=len(x)
d=round(n/k)
k_fold_idx=[]
print ('start k-fold cross vaildation')
for i in range(k):
test_idx=range(d*i,d*(i+1))
train_idx=np.setdiff1d(range(0,n),test_idx)
k_fold_idx.append([train_idx,test_idx])
AUCs=[]
FPRs=[]
TPRs=[]
for i in range(k):
print ('run %s time k-fold' %str(i+1))
[train_idx,test_idx]=k_fold_idx[i]
x_fold=x.iloc[train_idx]
y_fold=y.iloc[train_idx]
w_fold=w[train_idx]
x_test_fold=x.iloc[test_idx]
y_test_fold=y.iloc[test_idx]
w_test_fold=w.iloc[test_idx]
model=clone(bdt)
model.fit(x_fold,y_fold,sample_weight=w_fold)
[AUC,FPR,TPR]=ROC(model,x_test_fold,y_test_fold,w_test_fold)
AUCs.append(AUC)
FPRs.append(FPR)
TPRs.append(TPR)
print ("k-fold result")
AUC_var=np.var(AUCs)
AUC_mean=sum(AUCs)/len(AUCs)
print('variance for AUC is '+str(AUC_var))
print('mean for AUC is '+str(AUC_mean))
return [AUC_mean,AUC_var,FPRs,TPRs]
if __name__=="__main__":
#load data
train_data = pd.read_csv("./data/trainingSet.csv")
train_data.loc[train_data['Label']=='s',['Weight']]= train_data.loc[train_data['Label']=='s',['Weight']]/123.02614
train_data = train_data.sample(frac=1)
test_data = pd.read_csv("./data/testingSet.csv")
x_train = train_data.drop(['EventId','Weight','Label'], axis=1)
w_train = train_data['Weight']
y_train = train_data['Label']
x_test = test_data.drop(['EventId','Weight','Label'], axis=1)
w_test = test_data['Weight']
y_test = test_data['Label']
# best: n_est=500 n_lay=4 lr=0.01 AUC=0.9154 AUC_var=6.2064e-06
# worst: n_est=100 n_lay=6 lr=1 AUC=0.8330 AUC_var=2.0413e-05
# define model
best_bdt=AdaBoostClassifier(DecisionTreeClassifier(max_depth=4),n_estimators=500,learning_rate=0.01)
#worst_bdt=AdaBoostClassifier(DecisionTreeClassifier(max_depth=6),n_estimators=100,learning_rate=1)
# fit
best_bdt.fit(x_train,y_train,sample_weight=w_train)
#worst_bdt.fit(x_train,y_train,sample_weight=w_train)
# prediction
[AUC_b, FPR_b, TPR_b]=ROC(best_bdt,x_test,y_test,w_test)
#[AUC_w, FPR_w, TPR_w]=ROC(worst_bdt,x_test,y_test,w_test)
threshold_b=find_threshold(best_bdt,x_train,y_train,w_train)
#threshold_w=find_threshold(worst_bdt,x_train,y_train,w_train)
# find AMS for testing set
score=best_bdt.decision_function(x_test)
TP = FP = TN = FN = 0
for i in range(len(score)):
y_truth=y_test.iloc[i]
if score[i] > threshold_b:
if y_truth=='s':
TP+=w_test.iloc[i]
else:
FP+=w_test.iloc[i]
elif score[i] < threshold_b:
if y_truth=='s':
FN+=w_test.iloc[i]
else:
TN+=w_test.iloc[i]
print ("confusion matrix for testing set")
print ("TN = %s, TP = %s, FN = %s, FP = %s"%(TN,TP,FN,FP))
AMS=find_AMS(TN,TP)
print("AMS = %s"%AMS )
# plot result
plt.xlabel("FP rate")
plt.ylabel("TP rate")
plt.plot(FPR_b,TPR_b)
plt.figtext(0.6,0.9,'AMS = '+str(AMS))
plt.figtext(0.1,0.9,'AUC = '+str(AUC_b))
plt.savefig("plots/AdaBoostTree/ROC_final.pdf")
plt.clf()
# accuracy versus number of the training sample
test_bdt=AdaBoostClassifier(DecisionTreeClassifier(max_depth=4),n_estimators=500,learning_rate=0.01)
accuracy=[]
n_sample=[]
for i in range(10):
sub_idx=range(i*3000,(i+1)*3000)
train_idx=range((i+1)*3000)
x_sub=x_train.iloc[sub_idx]
y_sub=y_train.iloc[sub_idx]
w_sub=w_train.iloc[sub_idx]
#test_bdt.fit(x_sub,y_sub,sample_weight=w_sub)
x_train_tot=x_train.iloc[train_idx]
y_train_tot=y_train.iloc[train_idx]
w_train_tot=w_train.iloc[train_idx]
test_bdt.fit(x_train_tot,y_train_tot,sample_weight=w_train_tot)
threshold=find_threshold(test_bdt,x_train_tot,y_train_tot,w_train_tot)
score=test_bdt.decision_function(x_test)
TP = FP = TN = FN = 0
for j in range(len(score)):
y_truth=y_test.iloc[j]
if score[j] > threshold:
if y_truth=='s':
TP+=w_test.iloc[j]
else:
FP+=w_test.iloc[j]
elif score[j] < threshold:
if y_truth=='s':
FN+=w_test.iloc[j]
else:
TN+=w_test.iloc[j]
acc=(TP+TN)/(TP+FP+TN+FN)
accuracy.append(acc)
n_sample.append((i+1)*3000)
print ("for step %s, the accuracy is %s"%(str(i),str(acc)))
plt.xlabel("number of samples")
plt.ylabel("accuracy")
plt.plot(n_sample,accuracy)
plt.savefig("plots/AdaBoostTree/accVsnSamples.pdf")
plt.clf()