Skip to content

Latest commit

 

History

History
81 lines (76 loc) · 2.89 KB

README.md

File metadata and controls

81 lines (76 loc) · 2.89 KB

Path Planning from Satellite Images

Training Data

Two open access geospatial imaging datasets have been used to train the segmentation models:

  1. Massachusetts Roads Dataset
    • 1438 images with masks
    • 1500x1500 resolution
    • Urban terrain
  2. DeepGlobe Road Extraction Dataset
    • 6226 images with masks
    • 1024x1024 resolution
    • Semi-Urban & Rural terrain

Model Architecture

Two models have been used to train on respective datasets, imported from segmentation_models_pytorch:

  1. UNet
    • Encoder: ResNet-34 pretrained on imagenet
    • Activation : Sigmoid
    • Loss fn : DiceLoss , Optimizer : Adam(lr=4e-5)
    • Batch Size : 16, epochs : 6
    • Dataset : Massachusetts
  2. DeepLabV3+
    • Encoder : ResNet-50 pretrained on imagenet
    • Activation : Sigmoid
    • Loss fn : DiceLoss , Optimizer : Adam(lr=8e-5)
    • Batch Size : 4, epochs : 4
    • Dataset : DeepGlobe

Algorithms

  1. Image Processing
    • opening : erosion + dilation
    • closing : dilation + erosion
    • Skeletonize (scikit-image)
  2. Route Finding
    • BFS : considering adjacent pixels of same color as connected
    • Dijkstra : using [0.1*d + sum{(c1-c2)^2}] as weights of edges followed by pruning of redundant nodes
    • A* : using a heuristic that underestimates the distance to the goal

Workflow

Input

Input Satellite Image

Mask

Generate Road Mask

Map

Skeletonize Road Map

Route

Shortest Road Path

Image 1

Prune & Smoothen Path

Image 1

Find Shortest Path