-
Notifications
You must be signed in to change notification settings - Fork 4
/
07-interest-risk.Rmd
76 lines (34 loc) · 1.96 KB
/
07-interest-risk.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Interest Rate Risk
**Durations**
- Macaulay duration: The present-value-weighted average time to the cash flows
$$D_{mac}(\delta)=\frac{\sum_tt\cdot CF_t\cdot v^t}{\sum_t CF_t\cdot v^t}=\frac{\sum_tt\cdot CF_t\cdot v^t}{P(\delta)}=-\frac{P'(\delta)}{P(\delta)}$$
- Modified duration: The sensitivity of price to change in the interest rate
$$D_{mod}\left(i^{(m)}\right)=-\frac{P'\left(i^{(m)}\right)}{P\left(i^{(m)}\right)}=\frac{D_{mac}}{1+i^{(m)}/m}$$
$$\lim_{m\rightarrow\infty} D_{mod}\left(i^{(m)}\right)=D_{mac}(\delta)$$
- Effective duration for interest-sensitive cash flows
$$D_{eff}=\frac{P(i+\Delta i)-P(i-\Delta i)}{2\times\Delta i\times P(i)}$$
- The relative price changes with (small) changes in the nominal interest rate
$$\frac{\Delta P}{P\left(i^{(m)}\right)} \approx -\Delta i^{(m)}\times D_{mod}\left(i^{(m)}\right)$$
**Convexity**
- Macaulay convexity
$$C_{mac}=\frac{P''(\delta)}{P(\delta)}=\frac{\sum_tt^2\cdot CF_t\cdot v^t}{P(\delta)}$$
- Modified convexity
$$C_{mod}=\frac{P''(i^{(m)})}{P(i^{(m)})}=\frac{\sum_{t}t(t+1)v^{t+2}CF_t}{P(i^{(m)})}$$
- Effective convexity
$$C_{eff}=\frac{P(i+\Delta i)+P(i-\Delta i)-2P}{(\Delta i)^2P}$$
- The relative price changes with (small) changes in the nominal interest rate
$$\frac{\Delta P}{P(i^{(m)})} \approx - D_{mod}(i^{(m)})\times\Delta i^{(m)}+\frac{1}{2}C_{mod}(i^{(m)})\times(\Delta i^{(m)})^2$$
- The duration and convexity of a portfolio
$$D=\sum_{k=1}^n \frac{P_k}{P}D_k$$
$$C=\sum_{k=1}^n \frac{P_k}{P}C_k$$
**Immunization**
- Definition: immunization is a process of protecting a financial organization from changes in interest rates.
- Conditions for *Redington immunization* protecting against small changes in interest rates:
1. $P_A=P_L$
2. $D_A=D_L$
3. $C_A>C_L$.
- *Full immunization* protecting against any changes in interest rates:
1. $P_A=P_L$
2. $D_A=D_L$
3. $T_L\in (T_{A_1},T_{A_2})$.
- Cash flow matching: solve a system of simultaneous equations.