-
Notifications
You must be signed in to change notification settings - Fork 46
/
midi_tokenizer.py
430 lines (373 loc) · 14.3 KB
/
midi_tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import numpy as np
from numba import jit
import pretty_midi
import scipy.interpolate as interp
TOKEN_SPECIAL: int = 0
TOKEN_NOTE: int = 1
TOKEN_VELOCITY: int = 2
TOKEN_TIME: int = 3
DEFAULT_VELOCITY: int = 77
TIE: int = 2
EOS: int = 1
PAD: int = 0
def extrapolate_beat_times(beat_times, n_extend=1):
beat_times_function = interp.interp1d(
np.arange(beat_times.size),
beat_times,
bounds_error=False,
fill_value="extrapolate",
)
ext_beats = beat_times_function(
np.linspace(0, beat_times.size + n_extend - 1, beat_times.size + n_extend)
)
return ext_beats
@jit(nopython=True, cache=True)
def fast_tokenize(idx, token_type, n_special, n_note, n_velocity):
if token_type == TOKEN_TIME:
return n_special + n_note + n_velocity + idx
elif token_type == TOKEN_VELOCITY:
return n_special + n_note + idx
elif token_type == TOKEN_NOTE:
return n_special + idx
elif token_type == TOKEN_SPECIAL:
return idx
else:
return -1
@jit(nopython=True, cache=True)
def fast_detokenize(idx, n_special, n_note, n_velocity, time_idx_offset):
if idx >= n_special + n_note + n_velocity:
return (TOKEN_TIME, (idx - (n_special + n_note + n_velocity)) + time_idx_offset)
elif idx >= n_special + n_note:
return TOKEN_VELOCITY, idx - (n_special + n_note)
elif idx >= n_special:
return TOKEN_NOTE, idx - n_special
else:
return TOKEN_SPECIAL, idx
class MidiTokenizer:
def __init__(self, config) -> None:
self.config = config
def tokenize_note(self, idx, token_type):
rt = fast_tokenize(
idx,
token_type,
self.config.vocab_size.special,
self.config.vocab_size.note,
self.config.vocab_size.velocity,
)
if rt == -1:
raise ValueError(f"type {type} is not a predefined token type.")
else:
return rt
def notes_to_tokens(self, notes):
"""
notes : (onset idx, offset idx, pitch, velocity)
"""
max_time_idx = notes[:, :2].max()
times = [[] for i in range((max_time_idx + 1))]
for onset, offset, pitch, velocity in notes:
times[onset].append([pitch, velocity])
times[offset].append([pitch, 0])
tokens = []
current_velocity = 0
for i, time in enumerate(times):
if len(time) == 0:
continue
tokens.append(self.tokenize_note(i, TOKEN_TIME))
for pitch, velocity in time:
velocity = int(velocity > 0)
if current_velocity != velocity:
current_velocity = velocity
tokens.append(self.tokenize_note(velocity, TOKEN_VELOCITY))
tokens.append(self.tokenize_note(pitch, TOKEN_NOTE))
return np.array(tokens, dtype=int)
def detokenize(self, token, time_idx_offset):
type, value = fast_detokenize(
token,
n_special=self.config.vocab_size.special,
n_note=self.config.vocab_size.note,
n_velocity=self.config.vocab_size.velocity,
time_idx_offset=time_idx_offset,
)
if type != TOKEN_TIME:
value = int(value)
return [type, value]
def to_string(self, tokens, time_idx_offset=0):
nums = [
self.detokenize(token, time_idx_offset=time_idx_offset) for token in tokens
]
strings = []
for i in range(len(nums)):
type = nums[i][0]
value = nums[i][1]
if type == TOKEN_TIME:
type = "time"
elif type == TOKEN_SPECIAL:
if value == EOS:
value = "EOS"
elif value == PAD:
value = "PAD"
elif value == TIE:
value = "TIE"
else:
value = "Unknown Special"
elif type == TOKEN_NOTE:
type = "note"
elif type == TOKEN_VELOCITY:
type = "velocity"
strings.append((type, value))
return strings
def split_notes(self, notes, beatsteps, time_from, time_to):
"""
Assumptions
- notes are sorted by onset time
- beatsteps are sorted by time
"""
start_idx = np.searchsorted(beatsteps, time_from)
start_note = np.searchsorted(notes[:, 0], start_idx)
end_idx = np.searchsorted(beatsteps, time_to)
end_note = np.searchsorted(notes[:, 0], end_idx)
splited_notes = notes[start_note:end_note]
return splited_notes, (start_idx, end_idx, start_note, end_note)
def notes_to_relative_tokens(
self, notes, offset_idx, add_eos=False, add_composer=False, composer_value=None
):
"""
notes : (onset idx, offset idx, pitch, velocity)
"""
def _add_eos(tokens):
tokens = np.concatenate((tokens, np.array([EOS], dtype=tokens.dtype)))
return tokens
def _add_composer(tokens, composer_value):
tokens = np.concatenate(
(np.array([composer_value], dtype=tokens.dtype), tokens)
)
return tokens
if len(notes) == 0:
tokens = np.array([], dtype=int)
if add_eos:
tokens = _add_eos(tokens)
if add_composer:
tokens = _add_composer(tokens, composer_value=composer_value)
return tokens
max_time_idx = notes[:, :2].max()
# times[time_idx] = [[pitch, .. ], [pitch, 0], ..]
times = [[] for i in range((max_time_idx + 1 - offset_idx))]
for abs_onset, abs_offset, pitch, velocity in notes:
rel_onset = abs_onset - offset_idx
rel_offset = abs_offset - offset_idx
times[rel_onset].append([pitch, velocity])
times[rel_offset].append([pitch, 0])
# 여기서부터는 전부 시간 0(offset) 기준
tokens = []
current_velocity = 0
current_time_idx = 0
for rel_idx, time in enumerate(times):
if len(time) == 0:
continue
time_idx_shift = rel_idx - current_time_idx
current_time_idx = rel_idx
tokens.append(self.tokenize_note(time_idx_shift, TOKEN_TIME))
for pitch, velocity in time:
velocity = int(velocity > 0)
if current_velocity != velocity:
current_velocity = velocity
tokens.append(self.tokenize_note(velocity, TOKEN_VELOCITY))
tokens.append(self.tokenize_note(pitch, TOKEN_NOTE))
tokens = np.array(tokens, dtype=int)
if add_eos:
tokens = _add_eos(tokens)
if add_composer:
tokens = _add_composer(tokens, composer_value=composer_value)
return tokens
def relative_batch_tokens_to_midi(
self,
tokens,
beatstep,
beat_offset_idx=None,
bars_per_batch=None,
cutoff_time_idx=None,
):
"""
tokens : (batch, sequence)
beatstep : (times, )
"""
beat_offset_idx = 0 if beat_offset_idx is None else beat_offset_idx
notes = None
bars_per_batch = 2 if bars_per_batch is None else bars_per_batch
N = len(tokens)
for n in range(N):
_tokens = tokens[n]
_start_idx = beat_offset_idx + n * bars_per_batch * 4
_cutoff_time_idx = cutoff_time_idx + _start_idx
_notes = self.relative_tokens_to_notes(
_tokens,
start_idx=_start_idx,
cutoff_time_idx=_cutoff_time_idx,
)
# print(_notes, "\n-------")
if len(_notes) == 0:
pass
# print("_notes zero")
elif notes is None:
notes = _notes
else:
notes = np.concatenate((notes, _notes), axis=0)
if notes is None:
notes = []
midi = self.notes_to_midi(notes, beatstep, offset_sec=beatstep[beat_offset_idx])
return midi, notes
def relative_tokens_to_notes(self, tokens, start_idx, cutoff_time_idx=None):
# TODO remove legacy
# decoding 첫토큰이 편곡자인 경우
if tokens[0] >= sum(self.config.vocab_size.values()):
tokens = tokens[1:]
words = [self.detokenize(token, time_idx_offset=0) for token in tokens]
if hasattr(start_idx, "item"):
"""
if numpy or torch tensor
"""
start_idx = start_idx.item()
current_idx = start_idx
current_velocity = 0
note_onsets_ready = [None for i in range(self.config.vocab_size.note + 1)]
notes = []
for type, number in words:
if type == TOKEN_SPECIAL:
if number == EOS:
break
elif type == TOKEN_TIME:
current_idx += number
if cutoff_time_idx is not None:
current_idx = min(current_idx, cutoff_time_idx)
elif type == TOKEN_VELOCITY:
current_velocity = number
elif type == TOKEN_NOTE:
pitch = number
if current_velocity == 0:
# note_offset
if note_onsets_ready[pitch] is None:
# offset without onset
pass
else:
onset_idx = note_onsets_ready[pitch]
if onset_idx >= current_idx:
# No time shift after previous note_on
pass
else:
offset_idx = current_idx
notes.append(
[onset_idx, offset_idx, pitch, DEFAULT_VELOCITY]
)
note_onsets_ready[pitch] = None
else:
# note_on
if note_onsets_ready[pitch] is None:
note_onsets_ready[pitch] = current_idx
else:
# note-on already exists
onset_idx = note_onsets_ready[pitch]
if onset_idx >= current_idx:
# No time shift after previous note_on
pass
else:
offset_idx = current_idx
notes.append(
[onset_idx, offset_idx, pitch, DEFAULT_VELOCITY]
)
note_onsets_ready[pitch] = current_idx
else:
raise ValueError
for pitch, note_on in enumerate(note_onsets_ready):
# force offset if no offset for each pitch
if note_on is not None:
if cutoff_time_idx is None:
cutoff = note_on + 1
else:
cutoff = max(cutoff_time_idx, note_on + 1)
offset_idx = max(current_idx, cutoff)
notes.append([note_on, offset_idx, pitch, DEFAULT_VELOCITY])
if len(notes) == 0:
return []
else:
notes = np.array(notes)
note_order = notes[:, 0] * 128 + notes[:, 1]
notes = notes[note_order.argsort()]
return notes
def notes_to_midi(self, notes, beatstep, offset_sec=None):
new_pm = pretty_midi.PrettyMIDI(resolution=384, initial_tempo=120.0)
new_inst = pretty_midi.Instrument(program=0)
new_notes = []
if offset_sec is None:
offset_sec = 0.0
for onset_idx, offset_idx, pitch, velocity in notes:
new_note = pretty_midi.Note(
velocity=velocity,
pitch=pitch,
start=beatstep[onset_idx] - offset_sec,
end=beatstep[offset_idx] - offset_sec,
)
new_notes.append(new_note)
new_inst.notes = new_notes
new_pm.instruments.append(new_inst)
new_pm.remove_invalid_notes()
return new_pm
@jit(nopython=True, cache=False)
def fast_notes_to_relative_tokens(
notes, offset_idx, max_time_idx, n_special, n_note, n_velocity
):
"""
notes : (onset idx, offset idx, pitch, velocity)
"""
times_p = [np.array([], dtype=int) for i in range((max_time_idx + 1 - offset_idx))]
times_v = [np.array([], dtype=int) for i in range((max_time_idx + 1 - offset_idx))]
for abs_onset, abs_offset, pitch, velocity in notes:
rel_onset = abs_onset - offset_idx
rel_offset = abs_offset - offset_idx
times_p[rel_onset] = np.append(times_p[rel_onset], pitch)
times_v[rel_onset] = np.append(times_v[rel_onset], velocity)
times_p[rel_offset] = np.append(times_p[rel_offset], pitch)
times_v[rel_offset] = np.append(times_v[rel_offset], velocity)
# 여기서부터는 전부 시간 0(offset) 기준
tokens = []
current_velocity = np.array([0])
current_time_idx = np.array([0])
# range가 0일 수도 있으니까..
for i in range(len(times_p)):
rel_idx = i
notes_at_time = times_p[i]
if len(notes_at_time) == 0:
continue
time_idx_shift = rel_idx - current_time_idx[0]
current_time_idx[0] = rel_idx
token = fast_tokenize(
time_idx_shift,
TOKEN_TIME,
n_special=n_special,
n_note=n_note,
n_velocity=n_velocity,
)
tokens.append(token)
for j in range(len(notes_at_time)):
pitch = times_p[j]
velocity = times_v[j]
# for pitch, velocity in time:
velocity = int(velocity > 0)
if current_velocity[0] != velocity:
current_velocity[0] = velocity
token = fast_tokenize(
velocity,
TOKEN_VELOCITY,
n_special=n_special,
n_note=n_note,
n_velocity=n_velocity,
)
tokens.append(token)
token = fast_tokenize(
pitch,
TOKEN_NOTE,
n_special=n_special,
n_note=n_note,
n_velocity=n_velocity,
)
tokens.append(token)
return np.array(tokens)