forked from neurodebian/spm8
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spm_PEB.m
372 lines (314 loc) · 11.2 KB
/
spm_PEB.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
function [C,P,F] = spm_PEB(y,P,OPT)
% parametric empirical Bayes (PEB) for hierarchical linear models
% FORMAT [C,P,F] = spm_PEB(y,P,OPT)
%
% y - (n x 1) response variable
%
% MODEL SPECIFICATION
%
% P{i}.X - (n x m) ith level design matrix i.e: constraints on <Eb{i - 1}>
% P{i}.C - {q}(n x n) ith level contraints on Cov{e{i}} = Cov{b{i - 1}}
%
% OPT - enforces positively constraints on the covariance hyperparameters
% by adopting a log-normal [flat] hyperprior. default = 0
%
% POSTERIOR OR CONDITIONAL ESTIMATES
%
% C{i}.E - (n x 1) conditional expectation E{b{i - 1}|y}
% C{i}.C - (n x n) conditional covariance Cov{b{i - 1}|y} = Cov{e{i}|y}
% C{i}.M - (n x n) ML estimate of Cov{b{i - 1}} = Cov{e{i}}
% C{i}.h - (q x 1) ith level ReML hyperparameters for covariance:
% Cov{e{i}} = P{i}.h(1)*P{i}.C{1} + ...
%
% LOG EVIDENCE
%
% F - [-ve] free energy F = log evidence = p(y|X,C)
%
% If P{i}.C is not a cell the covariance at that level is assumed to be kown
% and Cov{e{i}} = P{i}.C (i.e. the hyperparameter is fixed at 1)
%
% If P{n}.C is not a cell this is taken to indicate that a full Bayesian
% estimate is required where P{n}.X is the prior expectation and P{n}.C is
% the known prior covariance. For consistency, with PEB, this is implemented
% by setting b{n} = 1 through appropriate constraints at level {n + 1}.
%
% To implement non-hierarchical Bayes with priors on the parameters use
% a two level model setting the second level design matrix to zeros.
%__________________________________________________________________________
%
% Returns the moments of the posterior p.d.f. of the parameters of a
% hierarchical linear observation model under Gaussian assumptions
%
% y = X{1}*b{1} + e{1}
% b{1} = X{2}*b{2} + e{2}
% ...
%
% b{n - 1} = X{n}*b{n} + e{n}
%
% e{n} ~ N{0,Ce{n}}
%
% using Parametic Emprical Bayes (PEB)
%
% Ref: Dempster A.P., Rubin D.B. and Tsutakawa R.K. (1981) Estimation in
% covariance component models. J. Am. Stat. Assoc. 76;341-353
%__________________________________________________________________________
% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging
% Karl Friston
% $Id: spm_PEB.m 1143 2008-02-07 19:33:33Z spm $
% set default
%--------------------------------------------------------------------------
try
OPT;
catch
OPT = 0;
end
% number of levels (p)
%--------------------------------------------------------------------------
M = 32; % maximum number of iterations
p = length(P);
% check covariance constraints - assume i.i.d. errors conforming to X{i}
%--------------------------------------------------------------------------
for i = 1:p
if ~isfield(P{i},'C')
[n m] = size(P{i}.X);
if i == 1
P{i}.C = {speye(n,n)};
else
for j = 1:m
k = find(P{i}.X(:,j));
P{i}.C{j} = sparse(k,k,1,n,n);
end
end
end
end
% Construct augmented non-hierarchical model
%==========================================================================
% design matrix and indices
%--------------------------------------------------------------------------
I = {0};
J = {0};
K = {0};
XX = [];
X = 1;
for i = 1:p
% design matrix
%----------------------------------------------------------------------
X = X*P{i}.X;
XX = [XX X];
% indices for ith level parameters
%----------------------------------------------------------------------
[n m] = size(P{i}.X);
I{i} = [1:n] + I{end}(end);
J{i} = [1:m] + J{end}(end);
end
% augment design matrix and data
%--------------------------------------------------------------------------
n = size(XX,2);
XX = [XX; speye(n,n)];
y = [y; sparse(n,1)];
% last level constraints
%--------------------------------------------------------------------------
n = size(P{p}.X,2);
I{p + 1} = [1:n] + I{end}(end);
q = I{end}(end);
Cb = sparse(q,q);
if ~iscell(P{end}.C)
% Full Bayes: (i.e. Cov(b) = 0, <b> = 1)
%----------------------------------------------------------------------
y( I{end}) = sparse(1:n,1,1);
else
% Empirical Bayes: uniform priors (i.e. Cov(b) = Inf, <b> = 0)
%----------------------------------------------------------------------
Cb(I{end},I{end}) = sparse(1:n,1:n,exp(32));
end
% assemble augmented constraints Q: Cov{e} = Cb + h(i)*Q{i} + ...
%==========================================================================
if ~isfield(P{1},'Q')
% covariance contraints Q on Cov{e{i}} = Cov{b{i - 1}}
%----------------------------------------------------------------------
h = [];
Q = {};
for i = 1:p
% collect constraints on prior covariances - Cov{e{i}}
%------------------------------------------------------------------
if iscell(P{i}.C)
m = length(P{i}.C);
for j = 1:m
[u v s] = find(P{i}.C{j});
u = u + I{i}(1) - 1;
v = v + I{i}(1) - 1;
Q{end + 1} = sparse(u,v,s,q,q);
end
% indices for ith-level hyperparameters
%--------------------------------------------------------------
try
K{i} = [1:m] + K{end}(end);
catch
K{i} = [1:m];
end
else
% unless they are known - augment Cb
%--------------------------------------------------------------
[u v s] = find(P{i}.C + speye(length(P{i}.C))*1e-6);
u = u + I{i}(1) - 1;
v = v + I{i}(1) - 1;
Cb = Cb + sparse(u,v,s,q,q);
% indices for ith-level hyperparameters
%--------------------------------------------------------------
K{i} = [];
end
end
% note overlapping bases - requiring 2nd order M-Step derivatives
%----------------------------------------------------------------------
m = length(Q);
d = sparse(m,m);
for i = 1:m
XQX{i} = XX'*Q{i}*XX;
end
for i = 1:m
for j = i:m
o = nnz(XQX{i}*XQX{j});
d(i,j) = o;
d(j,i) = o;
end
end
% log-transform and save
%----------------------------------------------------------------------
h = zeros(m,1);
if OPT
hP = speye(m,m)/16;
else
hP = speye(m,m)/exp(16);
for i = 1:m
h(i) = any(diag(Q{i}));
end
end
P{1}.hP = hP;
P{1}.Cb = Cb;
P{1}.Q = Q;
P{1}.h = h;
P{1}.K = K;
P{1}.d = d;
end
hP = P{1}.hP;
Cb = P{1}.Cb;
Q = P{1}.Q;
h = P{1}.h;
K = P{1}.K;
d = P{1}.d;
% Iterative EM
%--------------------------------------------------------------------------
m = length(Q);
dFdh = zeros(m,1);
dFdhh = zeros(m,m);
for k = 1:M
% inv(Cov(e)) - iC(h)
%----------------------------------------------------------------------
Ce = Cb;
for i = 1:m
if OPT
Ce = Ce + Q{i}*exp(h(i));
else
Ce = Ce + Q{i}*h(i);
end
end
iC = spm_inv(Ce);
% E-step: conditional mean E{B|y} and covariance cov(B|y)
%======================================================================
iCX = iC*XX;
Cby = spm_inv(XX'*iCX);
B = Cby*(iCX'*y);
% M-step: ReML estimate of hyperparameters (if m > 0)
%======================================================================
if m == 0, break, end
% Gradient dF/dh (first derivatives)
%----------------------------------------------------------------------
Py = iC*(y - XX*B);
iCXC = iCX*Cby;
for i = 1:m
% dF/dh = -trace(dF/diC*iC*Q{i}*iC)
%------------------------------------------------------------------
PQ{i} = iC*Q{i} - iCXC*(iCX'*Q{i});
if OPT
PQ{i} = PQ{i}*exp(h(i));
end
dFdh(i) = -trace(PQ{i})/2 + y'*PQ{i}*Py/2;
end
% Expected curvature E{ddF/dhh} (second derivatives)
%----------------------------------------------------------------------
for i = 1:m
for j = i:m
if d(i,j)
% ddF/dhh = -trace{P*Q{i}*P*Q{j}}
%----------------------------------------------------------
dFdhh(i,j) = -sum(sum(PQ{i}.*PQ{j}'))/2;
dFdhh(j,i) = dFdhh(i,j);
end
end
end
% add hyperpriors
%----------------------------------------------------------------------
dFdhh = dFdhh - hP;
% Fisher scoring: update dh = -inv(ddF/dhh)*dF/dh
%----------------------------------------------------------------------
dh = -pinv(dFdhh)*dFdh;
h = h + dh;
% Convergence
%======================================================================
w = norm(dh,1);
% fprintf('%-30s: %i %30s%e\n',' PEB Iteration',k,'...',full(w));
% if dF < 0.01
%----------------------------------------------------------------------
if dFdh'*dh < 1e-2, break, end
% if dh^2 < 1e-8
%----------------------------------------------------------------------
if w < 1e-4, break, end
% if log-normal hyperpriors and h < exp(-16)
%----------------------------------------------------------------------
if OPT && h < -16, break, end
end
% place hyperparameters in P{1} and output structure for {n + 1}
%--------------------------------------------------------------------------
P{1}.h = h + exp(-32);
C{p + 1}.E = B(J{p});
C{p + 1}.M = Cb(I{end},I{end});
% recursive computation of conditional means E{b|y}
%--------------------------------------------------------------------------
for i = p:-1:2
C{i}.E = B(J{i - 1}) + P{i}.X*C{i + 1}.E;
end
% hyperpriors - precision
%--------------------------------------------------------------------------
if OPT
h = exp(h);
end
% conditional covariances Cov{b|y} and ReML esimtates of Ce{i) = Cb{i - 1}
%--------------------------------------------------------------------------
for i = 1:p
C{i + 1}.C = Cby(J{i},J{i});
C{i}.M = Ce(I{i},I{i});
C{i}.h = h(K{i});
end
% log evidence = ln p(y|X,C) = F = [-ve] free energy
%--------------------------------------------------------------------------
if nargout > 2
% condotional covariance of h
%----------------------------------------------------------------------
Ph = -dFdhh;
% log evidence = F
%----------------------------------------------------------------------
F = - Py'*Ce*Py/2 ...
- length(I{1})*log(2*pi)/2 ...
- spm_logdet(Ce)/2 ...
- spm_logdet(Ph)/2 ...
+ spm_logdet(hP)/2 ...
+ spm_logdet(Cby)/2;
end
% warning
%--------------------------------------------------------------------------
if k == M, warning('maximum number of iterations exceeded'), end
return
function [C] = spm_inv(C);
% inversion of sparse matrices
%__________________________________________________________________________
C = inv(C + speye(length(C))*exp(-32));