forked from google-research/kubric
-
Notifications
You must be signed in to change notification settings - Fork 0
/
worker.py
512 lines (435 loc) · 17.1 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
# Copyright 2023 The Kubric Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Worker Script for generating scenes from the Semistatic-KLEVR dataset."""
# pylint: disable=logging-format-interpolation
import collections
import json
import logging
from typing import Dict, List, Optional, Tuple
import kubric as kb
import kubric.renderer.blender
import kubric.simulator.pybullet
import numpy as np
import tensorflow as tf
import bpy
# --- Some configuration values
# the region in which to place objects [(min), (max)]
# TODO(atagliasacchi): SPAWN_REGION should be specified by flags?
SPAWN_REGION = [(-4, -4, 0), (4, 4, 3)]
# the names of the KuBasic assets to use (WARNING: no "Suzanne" and "Sponge")
OBJECT_TYPES = [
"cube",
"cylinder",
"sphere",
"cone",
"torus",
"gear",
"torusknot",
"spot",
"teapot",
]
# the set of colors to sample from
COLORS = collections.OrderedDict({
"blue": kb.Color(42 / 255, 75 / 255, 215 / 255),
"brown": kb.Color(129 / 255, 74 / 255, 25 / 255),
"cyan": kb.Color(41 / 255, 208 / 255, 208 / 255),
"gray": kb.Color(87 / 255, 87 / 255, 87 / 255),
"green": kb.Color(29 / 255, 105 / 255, 20 / 255),
"purple": kb.Color(129 / 255, 38 / 255, 192 / 255),
"red": kb.Color(173 / 255, 35 / 255, 35 / 255),
"yellow": kb.Color(255 / 255, 238 / 255, 5 / 255),
})
# Valid options when choosing colors by flags.
COLOR_STRATEGIES = ["clevr", "uniform", "black", "gray", "white"]
# the sizes of objects to sample from
SIZES = {
"small": 0.7,
"large": 1.4,
}
# Valid options when choosing sizes by flags.
SIZE_STRATEGIES = ["clevr", "uniform", "const"]
# Percentage of frames that fall into the training split.
_TRAIN_TEST_RATIO = 0.7
def parse_flags():
"""ArgumentParser flags parsing."""
# --- CLI arguments
parser = kb.ArgumentParser()
# parser = argparse_flags.ArgumentParser()
parser.add_argument("--num_objects_static", type=int, default=5)
parser.add_argument("--num_objects_dynamic", type=int, default=3)
parser.add_argument(
"--object_types",
nargs="+",
default=["cube", "cylinder", "sphere", "torus", "gear"],
choices=["ALL"] + OBJECT_TYPES)
parser.add_argument(
"--object_colors", choices=COLOR_STRATEGIES, default="clevr")
parser.add_argument(
"--object_sizes", choices=SIZE_STRATEGIES, default="clevr")
parser.add_argument("--floor_color", choices=COLOR_STRATEGIES, default="gray")
parser.add_argument("--floor_friction", type=float, default=0.3)
parser.add_argument(
"--background_color", choices=COLOR_STRATEGIES, default="white")
parser.add_argument("--norender", action="store_true")
parser.add_argument(
"--assets_path", type=str, default="gs://kubric-public/assets/KuBasic.json")
parser.add_argument(
"--jitter", type=bool, default=False)
parser.set_defaults(
# Default is 1 for optical flow (unused here)
frame_start=1,
frame_end=301, # Controls number of rendered frames per scene.
frame_rate=12,
resolution=(256, 256),
)
return parser.parse_args()
def _sample_color(
strategy: str,
rng: np.random.RandomState,
) -> Tuple[Optional[str], kb.Color]:
"""Samples an object's color.
Args:
strategy: Sampling strategy.
rng: Source of randomness.
Returns:
color_label: Human-readable description of "color".
color: Kubric color for this object.
"""
# Note: If you add an option here, update COLOR_STRATEGIES as well.
if strategy in ["black", "gray", "white"]:
return strategy, kb.get_color(strategy)
elif strategy == "clevr":
color_label = rng.choice(list(COLORS.keys()))
return color_label, COLORS[color_label]
elif strategy == "uniform":
return None, kb.random_hue_color(rng=rng)
else:
raise ValueError(f"Unknown color sampling strategy {strategy}")
def _sample_sizes(
strategy: str,
rng: np.random.RandomState,
) -> Tuple[Optional[str], float]:
"""Samples an object's size.
Args:
strategy: Sampling strategy.
rng: Source of randomness.
Returns:
size_label: Human-readable description of "size".
size: Size multiplier. Use as object scale.
"""
if strategy == "clevr":
size_label = rng.choice(list(SIZES.keys()))
size = SIZES[size_label]
return size_label, size
elif strategy == "uniform":
return None, rng.uniform(0.7, 1.4)
elif strategy == "const":
return None, 1
else:
raise ValueError(f"Unknown size sampling strategy {strategy}")
def _get_scene_boundaries(
floor: kb.Cube,
spawn_region: List[Tuple[float, float, float]],
) -> Dict[str, List[int]]:
"""Constructs bounding box for all scene-varying content.
This bounding box ostensibly includes the objects themselves and their
shadows. Due to complexity, a guarantee on this cannot be made. The logic
here is best-effort.
Args:
floor: Cube representing the scene's floor. The cube is axis-aligned with
its top surface lying below all objects in the scene.
spawn_region: Lower and upper boundaries of a 3D axis-aligned box, inside
which all foreground objects are guaranteed to lie within.
Returns:
Dict with two entries, "min" and "max". These entries are 3-element lists
containing the lower and upper boundaries of a 3D axis-aligned bounding
box.
"""
spawn_min, spawn_max = np.asarray(spawn_region)
if not np.allclose(floor.aabbox[1][2], spawn_min[2]):
raise ValueError("Top of floor and bottom of bounding box be identical.")
# Define some amount of buffer volume to the scene's bounding box to
# encourage shadows on the floor to lie within the scene bounding box.
boundary_epsilon = 0.1
scene_min = spawn_min - boundary_epsilon
scene_max = spawn_max + boundary_epsilon
return {
"min": list(scene_min),
"max": list(scene_max),
}
def _get_floor_scale_position_kwargs(
spawn_region: List[Tuple[int, int, int]],
) -> Dict[str, Tuple[float, float, float]]:
"""Constructs scale, position of the cube representing the floor.
Cube's scale and position are chosen such that the cube's top surface lies
strictly inside of spawn_region.
Args:
spawn_region: Region of the floor.
Returns:
{'scale': <XYZ multipliers for [-1, 1] cube>,
'position': <XYZ center of floor cube>}
"""
spawn_min, spawn_max = np.array(spawn_region)
# Center of spawn position.
position = (spawn_max + spawn_min) / 2
# Set center of floor to be equal to bottom of spawn region.
position[-1] = spawn_min[-1]
# Default cube has coordinates [[-1, -1, -1], [1, 1, 1]], so default cube
# length is 2. So we scale floor by 2.
scale = (spawn_max - spawn_min) / 2
scale[-1] = 1e-8 # Floor height is minimal.
return dict(
position=tuple(position),
scale=tuple(scale),
)
def main(flags) -> None:
if "ALL" in flags.object_types:
objects_types = OBJECT_TYPES
else:
objects_types = flags.object_types
# --- Common setups & resources
kb.setup_logging(flags.logging_level)
kb.log_my_flags(flags)
scratch_dir, output_dir = kb.setup_directories(flags)
if flags.seed is None:
raise ValueError("You must specify --seed to proceed.")
seed = flags.seed
rng = np.random.RandomState(seed=seed)
scene = kb.Scene.from_flags(flags)
simulator = kubric.simulator.pybullet.PyBullet(scene, scratch_dir)
renderer = kubric.renderer.blender.Blender(
scene, scratch_dir,
adaptive_sampling=False) # Removes salt-and-pepper artifacts in shadows.
logging.info("Loading assets from %s", flags.assets_path)
kubasic = kb.AssetSource.from_manifest(flags.assets_path)
# --- Populate the scene
logging.info("Creating a large cube as the floor...")
# Create the "floor" of the scene. This is a large, flat cube of
# x_length=200, y_length=200 and z_length=2 centered at x=0, y=0, z=-1.
# This means that the floor's elevation is z + z_length/2 == -1 + 1 == 0.
_, floor_color = _sample_color(flags.floor_color, rng)
floor_material = kb.PrincipledBSDFMaterial(
color=floor_color, roughness=1., specular=0.)
floor = kb.Cube(
**_get_floor_scale_position_kwargs(SPAWN_REGION),
material=floor_material,
friction=flags.floor_friction,
static=True,
background=True)
scene.add(floor)
# Set background color.
_, background_color = _sample_color(flags.background_color, rng)
logging.info("Setting background color to %s...", background_color)
scene.background = background_color
logging.info("Adding several lights to the scene...")
sun = kb.DirectionalLight(
color=kb.get_color("white"),
shadow_softness=0.2,
intensity=3.,
position=(11.6608, -6.62799, 25.8232))
lamp_back = kb.RectAreaLight(
color=kb.get_color("white"),
intensity=50.,
position=(-1.1685, 2.64602, 5.81574))
lamp_key = kb.RectAreaLight(
color=kb.get_color(0xffedd0),
intensity=100.,
width=0.5,
height=0.5,
position=(6.44671, -2.90517, 4.2584))
lamp_fill = kb.RectAreaLight(
color=kb.get_color("#c2d0ff"),
intensity=30.,
width=0.5,
height=0.5,
position=(-4.67112, -4.0136, 3.01122))
lights = [sun, lamp_back, lamp_key, lamp_fill]
for light in lights:
light.look_at((0, 0, 0))
scene.add(light)
scene.ambient_illumination = kb.Color(0.05, 0.05, 0.05)
logging.info("Setting up the Camera...")
original_camera_position = (7.48113, -6.50764, 5.34367)
scene.camera = kb.PerspectiveCamera(
focal_length=35., sensor_width=32, position=original_camera_position)
scene.camera.look_at((0, 0, 0))
# TODO: Refactor this so that we can render both a "spherical view"
# and a "lattice view" through the scene.
# Render cameras at the same general distance from the origin, but at
# different positions.
#
# We will use spherical coordinates (r, theta, phi) to do this.
# x = r * cos(theta) * sin(phi)
# y = r * sin(theta) * sin(phi)
# z = r * cos(phi)
r = np.sqrt(sum(a * a for a in original_camera_position))
phi = np.arccos(original_camera_position[2] / r)
theta = np.arccos(original_camera_position[0] / (r * np.sin(phi)))
# At each frame, we will modify theta so that we move in a circle.
# At each given theta value, we will also render three values of phi so our
# data "matches" LLFF (i.e., we have motion in z as well as x and y).
num_frames_to_render = (scene.frame_end - scene.frame_start)
# TODO: Either parameterize this or turn it into a constant
# matching the style guide recommendation.
num_phi_values_per_theta = 4
def add_random_objects(num_objects, objects_types, rng):
"""Returns the list of created objects."""
logging.info(f"Randomly placing {num_objects} objects")
objects = list()
for _ in range(num_objects):
shape_name = rng.choice(objects_types)
_, size = _sample_sizes("const", rng)
_, color = _sample_color(flags.object_colors, rng)
segmentation_id_val = objects_types.index(shape_name) + 1
obj = kubasic.create(
asset_id=shape_name, scale=size, segmentation_id=segmentation_id_val)
material_name = "Rubber"
obj.material = kb.PrincipledBSDFMaterial(
color=color, metallic=0., ior=1.25, roughness=0.7, specular=0.33)
scene.add(obj)
obj.metadata = {
"shape": shape_name.lower(),
"size": size,
"material": material_name.lower(),
"color": color.rgb,
}
# Place object randomly within SPAWN_REGION
kb.move_until_no_overlap(
obj, simulator, spawn_region=SPAWN_REGION, rng=rng)
objects += [obj]
logging.info("Added object %s", obj)
return objects
# --- Place random objects (static in time)
add_random_objects(
flags.num_objects_static, objects_types=objects_types, rng=rng)
# --- Place dynamic objects (will change in time)
dyn_objects = add_random_objects(
flags.num_objects_dynamic, objects_types=[
"suzanne",
], rng=rng)
# --- if in jitter mode shake the monkeys instead
if flags.jitter:
for dyn_object in dyn_objects:
dyn_object.orig_position = dyn_object.position
# import pdb; pdb.set_trace();
# exit(0)
theta_change = (2 * np.pi) / (num_frames_to_render / num_phi_values_per_theta)
for frame in range(scene.frame_start, scene.frame_end + 1):
i = (frame - scene.frame_start)
theta_new = (i // num_phi_values_per_theta) * theta_change + theta
# These values of (x, y, z) will lie on the same sphere as the original
# camera.
x = r * np.cos(theta_new) * np.sin(phi)
y = r * np.sin(theta_new) * np.sin(phi)
z = r * np.cos(phi)
# To ensure have "roughly LLFF-style" data (multiple z values for the same
# x and y), we will also adjust z. The camera is no longer guaranteed to
# remain on the same sphere as the original camera.
z_shift_direction = (i % num_phi_values_per_theta) - 1
z = z + z_shift_direction * 1.2
scene.camera.position = (x, y, z)
scene.camera.look_at((0, 0, 0))
scene.camera.keyframe_insert("position", frame)
scene.camera.keyframe_insert("quaternion", frame)
# --- randomly change the position of the dynamic objects in each frame
for obj in dyn_objects:
# --- hide dynamic objects once every 30 frames (evaluation set)
if (i % 30) != 0:
if not flags.jitter:
kb.move_until_no_overlap(
obj, simulator, spawn_region=SPAWN_REGION, rng=rng)
else:
obj.position = obj.orig_position + .1*np.random.randn(3)
else:
random_dir = np.random.randn(3)
random_dir = random_dir / np.linalg.norm(random_dir)
large_offset = 10e3
position = (large_offset * random_dir).tolist()
obj.position = position
obj.keyframe_insert("position", frame)
# print(f"moved from {old_position} to {obj.position}")
# --- Rendering
logging.info(f'Saving {output_dir / "scene.blend"}')
renderer.save_state(output_dir / "scene.blend")
print(f"jitter mode? {flags.jitter}")
if flags.norender:
logging.warning("rendering not executed")
kb.done()
exit(0)
logging.info("Rendering the scene ...")
render_data = renderer.render()
# replace asset index (in scene.assets) with segmentation_id
render_data["segmentation"] = kb.adjust_segmentation_idxs(
render_data["segmentation"], scene.assets, scene.assets)
# export all rendered images / segmentations / depth / ... to output dir
kb.write_image_dict(render_data, output_dir)
# --- Metadata
logging.info("Collecting and storing metadata for each object.")
kb.write_pkl(
{
"metadata": kb.get_scene_metadata(scene, seed=seed),
"camera": kb.get_camera_info(scene.camera),
"instances": kb.get_instance_info(scene),
"background": {
"background_color": background_color,
"floor_color": floor_color.rgb,
"floor_friction": flags.floor_friction,
}
}, output_dir / "metadata.pkl")
# Save the scene camera in a JSON file.
scene_metadata = kb.get_scene_metadata(scene, seed=seed)
scene_camera = kb.get_camera_info(
scene.camera,
height=scene_metadata["resolution"][0],
width=scene_metadata["resolution"][1],
)
scene_camera["positions"] = scene_camera["positions"].tolist()
scene_camera["quaternions"] = scene_camera["quaternions"].tolist()
scene_camera["K"] = scene_camera["K"].tolist()
scene_camera["R"] = scene_camera["R"].tolist()
# Generate the train/test ids
train_ids, test_ids = _make_train_test_ids(rng, scene_metadata["num_frames"])
logging.info(
f"Split {num_frames_to_render} frames: {len(train_ids)} train frames, "
f"{len(test_ids)} test frames.")
metadata = {
"metadata": scene_metadata,
"camera": scene_camera,
"segmentation_labels": objects_types,
"scene_boundaries": _get_scene_boundaries(floor, SPAWN_REGION),
"split_ids": {
"train": train_ids,
"test": test_ids,
},
}
kb.write_json(metadata, output_dir / "metadata.json")
scene_gltf_file = str(scratch_dir / "scene.glb")
logging.info("Saving %s ", scene_gltf_file)
bpy.ops.export_scene.gltf(filepath=scene_gltf_file)
output_scene_gltf_file = str(output_dir / "scene.glb")
tf.io.gfile.copy(scene_gltf_file, output_scene_gltf_file, overwrite=True)
kb.done()
def _make_train_test_ids(
rng: np.random.RandomState,
num_frames: int,
) -> Tuple[List[int], List[int]]:
"""Randomly generate train / test ids."""
all_idx = rng.permutation(num_frames)
boundary = int(num_frames * _TRAIN_TEST_RATIO)
train_ids = all_idx[:boundary]
test_ids = all_idx[boundary:]
# np.int64 is not serializable by Json, so need to convert to int first.
return list(int(x) for x in train_ids), list(int(x) for x in test_ids)
if __name__ == "__main__":
main(flags=parse_flags())