forked from nuannuanhcc/ps-mask_rcnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__init__.py
39 lines (37 loc) · 1.68 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from maskrcnn_benchmark.data import datasets
from .sysu import sysu_evaluation, sysu_evaluation_reid
from .prw import prw_evaluation, prw_evaluation_reid
from .coco import coco_evaluation
from .voc import voc_evaluation
from .cityscapes import abs_cityscapes_evaluation
def evaluate(dataset, predictions, output_folder, **kwargs):
"""evaluate dataset using different methods based on dataset type.
Args:
dataset: Dataset object
predictions(list[BoxList]): each item in the list represents the
prediction results for one image.
output_folder: output folder, to save evaluation files or results.
**kwargs: other args.
Returns:
evaluation result
"""
args = dict(
dataset=dataset, predictions=predictions, output_folder=output_folder, **kwargs
)
if isinstance(dataset, datasets.COCODataset):
return coco_evaluation(**args)
elif isinstance(dataset, datasets.PascalVOCDataset):
return voc_evaluation(**args)
elif isinstance(dataset, datasets.AbstractDataset):
return abs_cityscapes_evaluation(**args)
elif isinstance(dataset, datasets.SYSUDataset):
return sysu_evaluation(**args)
elif isinstance(dataset, datasets.PRWDataset):
return prw_evaluation(**args)
elif isinstance(dataset, (list, tuple)) and isinstance(dataset[0], datasets.SYSUDataset):
return sysu_evaluation_reid(**args)
elif isinstance(dataset, (list, tuple)) and isinstance(dataset[0], datasets.PRWDataset):
return prw_evaluation_reid(**args)
else:
dataset_name = dataset.__class__.__name__
raise NotImplementedError("Unsupported dataset type {}.".format(dataset_name))