-
Notifications
You must be signed in to change notification settings - Fork 81
/
modules.py
214 lines (173 loc) · 6.66 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import functools
import numpy as np
import torch
import torch.nn as nn
LEAKY_FACTOR = 0.2
MULT_FACTOR = 1
# TEST PASSED
class PixelUnShuffle(nn.Module):
"""
Inverse process of pytorch pixel shuffle module
"""
def __init__(self, down_scale):
"""
:param down_scale: int, down scale factor
"""
super(PixelUnShuffle, self).__init__()
if not isinstance(down_scale, int):
raise ValueError('Down scale factor must be a integer number')
self.down_scale = down_scale
def forward(self, input):
"""
:param input: tensor of shape (batch size, channels, height, width)
:return: tensor of shape(batch size, channels * down_scale * down_scale, height / down_scale, width / down_scale)
"""
b, c, h, w = input.size()
assert h % self.down_scale == 0
assert w % self.down_scale == 0
oc = c * self.down_scale ** 2
oh = int(h / self.down_scale)
ow = int(w / self.down_scale)
output_reshaped = input.reshape(b, c, oh, self.down_scale, ow, self.down_scale)
output = output_reshaped.permute(0, 1, 3, 5, 2, 4).reshape(b, oc, oh, ow)
return output
class DownsampleBlock(nn.Module):
def __init__(self, scale, input_channels, output_channels, ksize=1):
super(DownsampleBlock, self).__init__()
self.downsample = nn.Sequential(
PixelUnShuffle(scale),
nn.Conv2d(input_channels * (scale ** 2), output_channels, kernel_size=ksize, stride=1, padding=ksize//2)
)
def forward(self, input):
return self.downsample(input)
class UpsampleBlock(nn.Module):
def __init__(self, scale, input_channels, output_channels, ksize=1):
super(UpsampleBlock, self).__init__()
self.upsample = nn.Sequential(
nn.Conv2d(input_channels, output_channels * (scale ** 2), kernel_size=1, stride=1, padding=ksize//2),
nn.PixelShuffle(scale)
)
def forward(self, input):
return self.upsample(input)
class ResidualBlock(nn.Module):
def __init__(self, input_channels, channels, ksize=3,
use_instance_norm=False, affine=False):
super(ResidualBlock, self).__init__()
self.channels = channels
self.ksize = ksize
padding = self.ksize // 2
if use_instance_norm:
self.transform = nn.Sequential(
nn.ReflectionPad2d(padding),
nn.Conv2d(input_channels, channels, kernel_size=self.ksize, stride=1),
nn.InstanceNorm2d(channels, affine=affine),
nn.LeakyReLU(0.2),
nn.ReflectionPad2d(padding),
nn.Conv2d(channels, channels, kernel_size=self.ksize, stride=1),
nn.InstanceNorm2d(channels)
)
else:
self.transform = nn.Sequential(
nn.ReflectionPad2d(padding),
nn.Conv2d(input_channels, channels, kernel_size=self.ksize, stride=1),
nn.LeakyReLU(0.2),
nn.ReflectionPad2d(padding),
nn.Conv2d(channels, channels, kernel_size=self.ksize, stride=1),
)
def forward(self, input):
return input + self.transform(input) * MULT_FACTOR
class NormalizeBySum(nn.Module):
def forward(self, x):
return x / torch.sum(x, dim=1, keepdim=True).clamp(min=1e-7)
class MeanShift(nn.Conv2d):
def __init__(self, rgb_range, rgb_mean=(0.4488, 0.4371, 0.4040), rgb_std=(1.0, 1.0, 1.0), sign=-1):
super(MeanShift, self).__init__(3, 3, kernel_size=1)
std = torch.Tensor(rgb_std)
self.weight.data = torch.eye(3).view(3, 3, 1, 1) / std.view(3, 1, 1, 1)
self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean) / std
for p in self.parameters():
p.requires_grad = False
class DSN(nn.Module):
def __init__(self, k_size, input_channels=3, scale=4):
super(DSN, self).__init__()
self.k_size = k_size
self.sub_mean = MeanShift(1)
self.ds_1 = nn.Sequential(
nn.ReflectionPad2d(2),
nn.Conv2d(input_channels, 64, 5),
nn.LeakyReLU(LEAKY_FACTOR)
)
self.ds_2 = DownsampleBlock(2, 64, 128, ksize=1)
self.ds_4 = DownsampleBlock(2, 128, 128, ksize=1)
res_4 = list()
for idx in range(5):
res_4 += [ResidualBlock(128, 128)]
self.res_4 = nn.Sequential(*res_4)
self.ds_8 = DownsampleBlock(2, 128, 256)
self.kernels_trunk = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(256, 256, 3),
nn.ReLU(),
nn.ReflectionPad2d(1),
nn.Conv2d(256, 256, 3),
nn.ReLU(),
nn.ReflectionPad2d(1),
nn.Conv2d(256, 256, 3),
nn.ReLU(),
UpsampleBlock(8 // scale, 256, 256, ksize=1),
nn.ReflectionPad2d(1),
nn.Conv2d(256, 256, 3),
nn.ReLU()
)
self.kernels_weight = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(256, 256, 3),
nn.ReLU(),
nn.ReflectionPad2d(1),
nn.Conv2d(256, k_size ** 2, 3)
)
self.offsets_trunk = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(256, 256, 3),
nn.ReLU(),
nn.ReflectionPad2d(1),
nn.Conv2d(256, 256, 3),
nn.ReLU(),
nn.ReflectionPad2d(1),
nn.Conv2d(256, 256, 3),
nn.ReLU(),
UpsampleBlock(8 // scale, 256, 256, ksize=1),
nn.ReflectionPad2d(1),
nn.Conv2d(256, 256, 3),
nn.ReLU()
)
self.offsets_h_generation = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(256, 256, 3),
nn.ReLU(),
nn.ReflectionPad2d(1),
nn.Conv2d(256, k_size ** 2, 3),
nn.Tanh()
)
self.offsets_v_generation = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(256, 256, 3),
nn.ReLU(),
nn.ReflectionPad2d(1),
nn.Conv2d(256, k_size ** 2, 3),
nn.Tanh()
)
def forward(self, x):
x = self.sub_mean(x)
x = self.ds_1(x)
x = self.ds_2(x)
x = self.ds_4(x)
x = x + self.res_4(x)
x = self.ds_8(x)
kt = self.kernels_trunk(x)
k_weight = torch.clamp(self.kernels_weight(kt), min=1e-6, max=1)
kernels = k_weight / torch.sum(k_weight, dim=1, keepdim=True).clamp(min=1e-6)
ot = self.offsets_trunk(x)
offsets_h = self.offsets_h_generation(ot)
offsets_v = self.offsets_v_generation(ot)
return kernels, offsets_h, offsets_v