-
Notifications
You must be signed in to change notification settings - Fork 0
/
lightning.py
163 lines (138 loc) · 6.68 KB
/
lightning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import logging
import math
from collections import namedtuple
from typing import List, Tuple
import sentencepiece as spm
import torch
import torchaudio
from pytorch_lightning import LightningModule
from rnnt_decoder import Hypothesis, RNNTBeamSearch
from rnnt_prototype import conformer_rnnt_base
logger = logging.getLogger()
_expected_spm_vocab_size = 1023
Batch = namedtuple("Batch", ["features", "feature_lengths", "targets", "target_lengths"])
class WarmupLR(torch.optim.lr_scheduler._LRScheduler):
r"""Learning rate scheduler that performs linear warmup and exponential annealing.
Args:
optimizer (torch.optim.Optimizer): optimizer to use.
warmup_steps (int): number of scheduler steps for which to warm up learning rate.
force_anneal_step (int): scheduler step at which annealing of learning rate begins.
anneal_factor (float): factor to scale base learning rate by at each annealing step.
last_epoch (int, optional): The index of last epoch. (Default: -1)
verbose (bool, optional): If ``True``, prints a message to stdout for
each update. (Default: ``False``)
"""
def __init__(
self,
optimizer: torch.optim.Optimizer,
warmup_steps: int,
force_anneal_step: int,
anneal_factor: float,
last_epoch=-1,
verbose=False,
):
self.warmup_steps = warmup_steps
self.force_anneal_step = force_anneal_step
self.anneal_factor = anneal_factor
super().__init__(optimizer, last_epoch=last_epoch, verbose=verbose)
def get_lr(self):
if self._step_count < self.force_anneal_step:
return [(min(1.0, self._step_count / self.warmup_steps)) * base_lr for base_lr in self.base_lrs]
else:
scaling_factor = self.anneal_factor ** (self._step_count - self.force_anneal_step)
return [scaling_factor * base_lr for base_lr in self.base_lrs]
def post_process_hypos(
hypos: List[Hypothesis], sp_model: spm.SentencePieceProcessor
) -> List[Tuple[str, float, List[int], List[int]]]:
tokens_idx = 0
score_idx = 3
post_process_remove_list = [
sp_model.unk_id(),
sp_model.eos_id(),
sp_model.pad_id(),
]
filtered_hypo_tokens = [
[token_index for token_index in h[tokens_idx][1:] if token_index not in post_process_remove_list] for h in hypos
]
hypos_str = [sp_model.decode(s) for s in filtered_hypo_tokens]
hypos_ids = [h[tokens_idx][1:] for h in hypos]
hypos_score = [[math.exp(h[score_idx])] for h in hypos]
nbest_batch = list(zip(hypos_str, hypos_score, hypos_ids))
return nbest_batch
class ConformerRNNTModule(LightningModule):
def __init__(self, sp_model):
super().__init__()
self.sp_model = sp_model
spm_vocab_size = self.sp_model.get_piece_size()
assert spm_vocab_size == _expected_spm_vocab_size, (
"The model returned by conformer_rnnt_base expects a SentencePiece model of "
f"vocabulary size {_expected_spm_vocab_size}, but the given SentencePiece model has a vocabulary size "
f"of {spm_vocab_size}. Please provide a correctly configured SentencePiece model."
)
self.blank_idx = spm_vocab_size
# ``conformer_rnnt_base`` hardcodes a specific Conformer RNN-T configuration.
# For greater customizability, please refer to ``conformer_rnnt_model``.
self.model = conformer_rnnt_base()
self.loss = torchaudio.transforms.RNNTLoss(reduction="sum")
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=8e-4, betas=(0.9, 0.98), eps=1e-9)
self.warmup_lr_scheduler = WarmupLR(self.optimizer, 40, 120, 0.96)
def _step(self, batch, _, step_type):
if batch is None:
return None
prepended_targets = batch.targets.new_empty([batch.targets.size(0), batch.targets.size(1) + 1])
prepended_targets[:, 1:] = batch.targets
prepended_targets[:, 0] = self.blank_idx
prepended_target_lengths = batch.target_lengths + 1
output_slim, src_lengths_slim, _, _ = self.model(
batch.features,
batch.feature_lengths,
prepended_targets,
prepended_target_lengths,idx = 1
)
output, src_lengths, _, _ = self.model(
batch.features,
batch.feature_lengths,
prepended_targets,
prepended_target_lengths,idx = 1
)
loss_slim = self.loss(output_slim, batch.targets, src_lengths_slim, batch.target_lengths)
loss = self.loss(output, batch.targets, src_lengths, batch.target_lengths)
self.log(f"Losses/{step_type}_loss_slim", loss_slim, on_step=True, on_epoch=True)
self.log(f"Losses/{step_type}_loss", loss, on_step=True, on_epoch=True)
return loss + loss_slim
def configure_optimizers(self):
return (
[self.optimizer],
[{"scheduler": self.warmup_lr_scheduler, "interval": "epoch"}],
)
def forward(self, batch: Batch):
decoder = RNNTBeamSearch(self.model, self.blank_idx)
hypotheses = decoder(batch.features.to(self.device), batch.feature_lengths.to(self.device), 20,idx = 1)
return post_process_hypos(hypotheses, self.sp_model)[0][0]
def training_step(self, batch: Batch, batch_idx):
"""Custom training step.
By default, DDP does the following on each train step:
- For each GPU, compute loss and gradient on shard of training data.
- Sync and average gradients across all GPUs. The final gradient
is (sum of gradients across all GPUs) / N, where N is the world
size (total number of GPUs).
- Update parameters on each GPU.
Here, we do the following:
- For k-th GPU, compute loss and scale it by (N / B_total), where B_total is
the sum of batch sizes across all GPUs. Compute gradient from scaled loss.
- Sync and average gradients across all GPUs. The final gradient
is (sum of gradients across all GPUs) / B_total.
- Update parameters on each GPU.
Doing so allows us to account for the variability in batch sizes that
variable-length sequential data yield.
"""
loss = self._step(batch, batch_idx, "train")
batch_size = batch.features.size(0)
batch_sizes = self.all_gather(batch_size)
self.log("Gathered batch size", batch_sizes.sum(), on_step=True, on_epoch=True)
loss *= batch_sizes.size(0) / batch_sizes.sum() # world size / batch size
return loss
def validation_step(self, batch, batch_idx):
return self._step(batch, batch_idx, "val")
def test_step(self, batch, batch_idx):
return self._step(batch, batch_idx, "test")