-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathprocess.py
297 lines (279 loc) · 9.96 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 25 10:03:58 2016
@author: Sun
"""
import os
import shutil
import random
import numpy as np
from operator import itemgetter,attrgetter
import sys
'''
函数:renamedir()
函数功能:重命名文件夹,按一定顺序
输入参数:dir_path----包含子文件夹的路径
start ----开始序号
'''
def Renamedir(dir_path,start):
#print os.listdir(dir_path)
end = start
dirs = os.listdir(dir_path)
for dir_name in dirs:
old_name = dir_path + '/' + dir_name
new_name = "%s/%d"%(dir_path,end)
if old_name == new_name:
continue
else:
os.rename(old_name,new_name)
end += 1
print u'文件夹重命名结束,共处理%d个文件夹'%(end-start)
'''
函数:Rmovedir()
函数功能:删除文件夹中文件少于一定数量的文件夹
输入参数:dir_path----包含子文件夹的路径
num----阈值,将文件数量小于等于num的文件夹删掉
'''
def Rmovedir(dir_path,num):
dirs = os.listdir(dir_path)
start = len(dirs)
end = 0
for name in dirs:
dir_name = dir_path + '/' + name
count = len(os.listdir(dir_name))
#print count
if count<=num:
shutil.rmtree(dir_name)
end += 1
print u'删减前文件数量%d,删减后文件夹数量%d,共删减%d个文件夹'%(start,start-end,end)
'''
函数: Romvepath()
函数功能:删除一个imagelist中不存在的路径
输入参数:inputlist,outputlist
'''
def Rmovepath(inputlist,outlist):
fr_in = open(inputlist,'r')
fr_out = open(outlist,'w')
lines = fr_in.readlines()
start = len(lines)
end = 0
for line in lines:
curline = line.strip('\n')
if os.path.exists(curline):
fr_out.write(curline+'\n')
else:
end += 1
fr_in.close()
fr_out.close()
print u'Romvepath()已经完成,共删除%d路径,保留%d路径 '%(end,start-end)
'''
函数:Rmovepath_pair()
函数功能:成对删除文件中不存在的路径
输入参数:input1,input2,inlabel,output1,output2,outlabel
'''
def Rmovepath_pair(input1,input2,inlabel,output1,output2,outlabel):
fr_in1 = open(input1,'r')
fr_in2 = open(input2,'r')
fr_l = open(inlabel,'r')
fr_out1 = open(output1,'w')
fr_out2 = open(output2,'w')
fr_outl = open(outlabel,'w')
lines1 = fr_in1.readlines()
lines2 = fr_in2.readlines()
lines3 = fr_l.readlines()
start = len(lines1)
end = 0
for i in range(start):
curline = lines1[i].strip('\n')
if os.path.exists(curline):
fr_out1.write(curline+'\n')
fr_out2.write(lines2[i])
fr_outl.write(lines3[i])
else:
end += 1
fr_in1.close()
fr_in2.close()
fr_l.close()
fr_out1.close()
fr_out2.close()
fr_outl.close()
print u'Romvepath_path()已经完成,共删除%d路径,保留%d路径 '%(end,start-end)
'''
函数:TestPair()
函数功能:从数据库中挑选正负样本
输入参数:dir_path----存放图片库路径
class_num----类别数量
neg_num----负样本数
pos_num----正样本数
leftlist
rightlist
label
'''
def TestPair(dir_path,class_num,leftlist,rightlist,label,pos_num=3000,neg_num=3000):
left = open(leftlist,'w')
right = open(rightlist,'w')
label = open(label,'w')
dirs = os.listdir(dir_path)
#print dirs[23]
#第一步,产生负样本
print u'产生负样本'
for i in range(neg_num):
#随机选取两个不同的文件夹
sample1 = random.randint(0,class_num-1)
sample2 = random.randint(0,class_num-1)
while(sample1 == sample2):
sample2 = random.randint(0,class_num-1)
sub_dir1 = dir_path + '/' + dirs[sample1]
sub_dir2 = dir_path + '/' + dirs[sample2]
files1 = os.listdir(sub_dir1)
files2 = os.listdir(sub_dir2)
l1 = len(files1)
l2 = len(files2)
#随机选取两个文件
f1 = random.randint(0,l1-1)
f2 = random.randint(0,l2-1)
files1_path = sub_dir1 + '/' + files1[f1]
files2_path = sub_dir2 + '/' + files2[f2]
#print files1_path,files2_path
left.write(files1_path+'\n')
right.write(files2_path+'\n')
label.write('0'+'\n')
print i
#print 'l1:',l1,' l2:',l2
print u'产生正样本'
for i in range(pos_num):
sample = random.randint(0,class_num-1)
sub_dir = dir_path + '/' + dirs[sample]
files = os.listdir(sub_dir)
l = len(files)
if l == 0:
print sub_dir
print u'上面路径下没有文件'
sys.exit(0)
#选取正样本时有可能一个文件夹中只有一个文件
elif l == 1:
file_path = sub_dir + '/' + files[0]
left.write(file_path+'\n')
right.write(file_path+'\n')
label.write('1'+'\n')
print i
else:
file1 = random.randint(0,l-1)
file2 = random.randint(0,l-1)
while(file1 == file2):
file2 = random.randint(0,l-1)
file1_path = sub_dir + '/' + files[file1]
file2_path = sub_dir + '/' + files[file2]
left.write(file1_path+'\n')
right.write(file2_path+'\n')
label.write('1'+'\n')
print i
left.close()
right.close()
label.close()
'''
函数:Select_K_MaxMin()
函数功能:输出文件夹中图片数量最多或最小的前K个文件夹路径
输入参数:dir_path----图片库路径
model----选择最大还是最小默认
K----前K个
'''
'''
def Select_K_MaxMin(dir_path,k=1,model='All'):
if not os.path.exists(dir_path):
print u'路径不存在!'
else:
label=[]
fileNum=[]
dirs = os.listdir(dir_path)
for subdir in dirs:
sub_dir = dir_path + '/' + subdir
files = os.listdir(sub_dir)
fileNum.append(len(files))
if model=='Max':
for i in range(k):
Max_label = np.argmax(fileNum)
#print Max_label
label.append(Max_label)
dir_name = dir_path + '/' + dirs[Max_label]
print '图片数:%d, 文件夹路径:%s'%(fileNum[Max_label],dir_name)
del fileNum[Max_label]
if model=='Min':
for i in range(k):
Min_label = np.argmin(fileNum)
label.append(Min_label)
dir_name = dir_path + '/' + dirs[Min_label]
print '图片数:%d, 文件夹路径:%s'%(fileNum[Min_label],dir_name)
del fileNum[Min_label]
if model=='All':
print 'Max'
for i in range(k):
Max_label = np.argmax(fileNum)
label.append(Max_label)
dir_name = dir_path + '/' + dirs[Max_label]
print '图片数:%d, 文件夹路径:%s'%(fileNum[Max_label],dir_name)
del fileNum[Max_label]
print 'Min'
for i in range(k):
Min_label = np.argmin(fileNum)
label.append(Min_label)
dir_name = dir_path + '/' + dirs[Min_label]
print '图片数:%d, 文件夹路径:%s'%(fileNum[Min_label],dir_name)
del fileNum[Min_label]
'''
'''
函数:Select_K_MaxMin()
函数功能:输出文件夹中图片数量最多或最小的前K个文件夹路径
输入参数:dir_path----图片库路径
model----选择最大还是最小默认
K----前K个
'''
def Select_K_MaxMin(dir_path,k=1,model='All'):
if not os.path.exists(dir_path):
print u'路径不存在!'
else:
#label=[]
fileNum=[]
result=[]
dirs = os.listdir(dir_path)
for subdir in dirs:
sub_dir = dir_path + '/' + subdir
files = os.listdir(sub_dir)
fileNum.append(len(files))
result.append((len(files),sub_dir))
if model=='Max':
print 'Max'
Maxlist = sorted(result,key=itemgetter(0),reverse=True)
for i in range(k):
print '图片数:%d,文件夹路径:%s'%(Maxlist[i][0],Maxlist[i][1])
if model=='Min':
print 'Min'
Minlist = sorted(result,key=itemgetter(0))
for i in range(k):
print '图片数:%d,文件夹路径:%s'%(Minlist[i][0],Minlist[i][1])
if model=='All':
print 'Max'
Maxlist = sorted(result,key=itemgetter(0),reverse=True)
for i in range(k):
print '图片数:%d,文件夹路径:%s'%(Maxlist[i][0],Maxlist[i][1])
print 'Min'
Minlist = sorted(result,key=itemgetter(0))
for i in range(k):
print '图片数:%d,文件夹路径:%s'%(Minlist[i][0],Minlist[i][1])
if __name__=='__main__':
Rmovedir('E:/Face_data/FaceImages5',5)
Renamedir('E:/Face_data/FaceImages5',2001)
Renamedir('E:/Face_data/FaceImages5',0)
'''
Rmovepath_pair('D:/Documents/Downloads/DeepFace-master/FaceRecongnition/deepid/filelist_lfw/filelist_left.list',\
'D:/Documents/Downloads/DeepFace-master/FaceRecongnition/deepid/filelist_lfw/filelist_right.list',\
'D:/Documents/Downloads/DeepFace-master/FaceRecongnition/deepid/filelist_lfw/filelist_label.list',\
'D:/Documents/Downloads/DeepFace-master/FaceRecongnition/deepid/filelist_lfw/lfw_left.list',\
'D:/Documents/Downloads/DeepFace-master/FaceRecongnition/deepid/filelist_lfw/lfw_right.list',\
'D:/Documents/Downloads/DeepFace-master/FaceRecongnition/deepid/filelist_lfw/label.list')
'''
'''
TestPair('E:/Face_data/FaceImages4',541,'E:/Face_data/left_1.txt','E:/Face_data/right_1.txt',\
'E:/Face_data/label_1.txt')
'''
Select_K_MaxMin('E:/Face_data/FaceImages5',5,'All')