forked from GPrathap/motion_planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
task_10.py
46 lines (39 loc) · 1.52 KB
/
task_10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import linprog
def plot_line(slope, intercept):
axes = plt.gca()
x_vals = np.array(axes.get_xlim())
y_vals = intercept + slope * x_vals
start, end = axes.get_xlim()
axes.xaxis.set_ticks(np.arange(start, end, 0.5))
start, end = axes.get_ylim()
axes.yaxis.set_ticks(np.arange(start, end, 0.1))
plt.plot(x_vals, y_vals, '-')
plt.ylim((-0.8, 0.8))
plt.xlim((-5,5))
K = -1*np.array([[1.19, 7.88]])
A = np.array([[1.1, 2], [0, 0.95]])
B = np.array([[0], [0.0787]])
N = 20
for i in range(1, N):
constraints_set_upper = []
obj = np.dot(K[0], np.linalg.matrix_power(A+np.dot(B, K), i+1))
for j in range(0, i):
ex = np.linalg.matrix_power(A+np.dot(B, K), j)
index = np.dot(K, ex)[0]
constraints_set_upper.append(index)
constraints_set_upper = np.array(constraints_set_upper)
constraints_set_lower = -1.0*constraints_set_upper
constraints_set = np.vstack((constraints_set_upper, constraints_set_lower))
lhs_ineq_1 = np.ones((1,constraints_set_upper.shape[0]))
lhs_ineq_2 = np.ones((1,constraints_set_upper.shape[0]))
control_bound = np.transpose(np.hstack((lhs_ineq_1, lhs_ineq_2)))
opt = linprog(c=obj, A_ub=constraints_set, b_ub=control_bound
, bounds=[(None, None), (None, None)])
c = np.dot(opt.x, obj)
a_b = obj
plot_line((-1*a_b[0])/a_b[1], c/a_b[1])
plot_line((-1*a_b[0])/a_b[1], -c/a_b[1])
plt.grid(True)
plt.show()