forked from gouthampradhan/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNthMagicalNumber.java
79 lines (74 loc) · 2.48 KB
/
NthMagicalNumber.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
package math;
import java.math.BigInteger;
/**
* Created by gouthamvidyapradhan on 23/03/2019 A positive integer is magical if it is divisible by
* either A or B.
*
* <p>Return the N-th magical number. Since the answer may be very large, return it modulo 10^9 + 7.
*
* <p>Example 1:
*
* <p>Input: N = 1, A = 2, B = 3 Output: 2 Example 2:
*
* <p>Input: N = 4, A = 2, B = 3 Output: 6 Example 3:
*
* <p>Input: N = 5, A = 2, B = 4 Output: 10 Example 4:
*
* <p>Input: N = 3, A = 6, B = 4 Output: 8
*
* <p>Note:
*
* <p>1 <= N <= 10^9 2 <= A <= 40000 2 <= B <= 40000
*
* <p>Solution: O(log((2 ^ 64) - 1)) Lets take example of N = 5, A = 4 and B = 6 The multiple of A
* are 4, 8, 12, 16, 20, 24 . . . The multiple of B are 6, 12, 18, 24 . . .
*
* <p>Lets take a arbitrary number E = 21 and see if this fits the correct answer E / A = 5 E / B =
* 3 This means there are 5 + 3 = 8 numbers which are divisible by either A or B such as 4, 6, 8,
* 12, 12, 16, 18, 20 but we have double counted number 12 so we have to reduce 8 by 1 therefore
* there are 7 numbers. But, 7 is greater than required number N = 5 that means we have to search
* between 0 and E - 1. Thus we can binary search to arrive at the answer.
*
* <p>The number of common multiples such as 12 in the above example can be found by E / LCM(4, 6)
*/
public class NthMagicalNumber {
/**
* Main method
*
* @param args
*/
public static void main(String[] args) {
System.out.println(new NthMagicalNumber().nthMagicalNumber(3, 2, 4));
}
public int nthMagicalNumber(int N, int A, int B) {
final int CONST = 1000000007;
BigInteger bigInteger = new BigInteger(String.valueOf(A));
long aL = (long) A * B;
long lcm = aL / bigInteger.gcd(new BigInteger(String.valueOf(B))).longValue();
long l = 0, h = Long.MAX_VALUE;
while (l <= h) {
long m = l + (h - l) / 2;
int status = check(N, m, A, B, lcm);
if (status == 0) {
long modA = m % A;
long modB = m % B;
if (modA == 0 || modB == 0) return (int) (m % CONST);
else if (modA < modB) return (int) ((m - modA) % CONST);
else return (int) ((m - modB) % CONST);
} else if (status == -1) {
l = m + 1;
} else {
h = m - 1;
}
}
return 0;
}
private int check(int N, long num, int A, int B, long lcm) {
long sum = (num / A) + (num / B);
long common = num / lcm;
sum -= common;
if (sum == N) return 0;
else if (sum > N) return 1;
else return -1;
}
}