forked from gouthampradhan/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSwimInRisingWater.java
116 lines (107 loc) · 3.43 KB
/
SwimInRisingWater.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
package binary_search;
import java.util.HashSet;
import java.util.Objects;
import java.util.Set;
/**
* Created by gouthamvidyapradhan on 07/04/2019 On an N x N grid, each square grid[i][j] represents
* the elevation at that point (i,j).
*
* <p>Now rain starts to fall. At time t, the depth of the water everywhere is t. You can swim from
* a square to another 4-directionally adjacent square if and only if the elevation of both squares
* individually are at most t. You can swim infinite distance in zero time. Of course, you must stay
* within the boundaries of the grid during your swim.
*
* <p>You start at the top left square (0, 0). What is the least time until you can reach the bottom
* right square (N-1, N-1)?
*
* <p>Example 1:
*
* <p>Input: [[0,2],[1,3]] Output: 3 Explanation: At time 0, you are in grid location (0, 0). You
* cannot go anywhere else because 4-directionally adjacent neighbors have a higher elevation than t
* = 0.
*
* <p>You cannot reach point (1, 1) until time 3. When the depth of water is 3, we can swim anywhere
* inside the grid. Example 2:
*
* <p>Input: [[0,1,2,3,4],[24,23,22,21,5],[12,13,14,15,16],[11,17,18,19,20],[10,9,8,7,6]] Output: 16
* Explanation: 0 1 2 3 4 24 23 22 21 5 12 13 14 15 16 11 17 18 19 20 10 9 8 7 6
*
* <p>The final route is marked in bold. We need to wait until time 16 so that (0, 0) and (4, 4) are
* connected. Note:
*
* <p>2 <= N <= 50. grid[i][j] is a permutation of [0, ..., N*N - 1].
*
* <p>Solution: O(N ^ 2 x log N ^ 2) Binary search for the possible answers in the range [0 to N *
* N-1] and dfs through the grid to check if the destination is reachable
*/
public class SwimInRisingWater {
private final int[] R = {0, 0, 1, -1};
private final int[] C = {1, -1, 0, 0};
class Pair {
int r, c;
Pair(int r, int c) {
this.r = r;
this.c = c;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (!(o instanceof Pair)) return false;
Pair pair = (Pair) o;
return r == pair.r && c == pair.c;
}
@Override
public int hashCode() {
return Objects.hash(r, c);
}
}
/**
* Main method
*
* @param args
*/
public static void main(String[] args) {
int[][] grid = {
{0, 1, 2, 3, 4},
{24, 23, 22, 21, 5},
{12, 13, 14, 15, 16},
{11, 17, 18, 19, 20},
{10, 9, 8, 7, 6}
};
System.out.println(new SwimInRisingWater().swimInWater(grid));
}
public int swimInWater(int[][] grid) {
int l = 0, h = (grid.length * grid.length);
int ans = 0;
while (l <= h) {
int m = l + (h - l) / 2;
Set<Pair> done = new HashSet<>();
if (dfs(grid, 0, 0, done, m)) {
ans = m;
h = m - 1;
} else {
l = m + 1;
}
}
return ans;
}
private boolean dfs(int[][] grid, int r, int c, Set<Pair> done, int V) {
if (r == grid.length - 1 && c == grid[0].length - 1) return true;
done.add(new Pair(r, c));
for (int i = 0; i < 4; i++) {
int newR = r + R[i];
int newC = c + C[i];
if (newR >= 0 && newR < grid.length && newC >= 0 && newC < grid[0].length) {
int childH = Math.max(V, grid[newR][newC]);
int curH = Math.max(V, grid[r][c]);
if (curH == childH) {
Pair child = new Pair(newR, newC);
if (!done.contains(child)) {
if (dfs(grid, newR, newC, done, V)) return true;
}
}
}
}
return false;
}
}