forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_363.java
60 lines (56 loc) · 2.12 KB
/
_363.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
package com.fishercoder.solutions;
import java.util.TreeSet;
/**
* 363. Max Sum of Rectangle No Larger Than K
*
* Given a non-empty 2D matrix matrix and an integer k,
* find the max sum of a rectangle in the matrix such that its sum is no larger than k.
Example:
Given matrix = [
[1, 0, 1],
[0, -2, 3]
]
k = 2
The answer is 2. Because the sum of rectangle [[0, 1], [-2, 3]] is 2 and 2 is the max number no larger than k (k = 2).
Note:
The rectangle inside the matrix must have an area > 0.
What if the number of rows is much larger than the number of columns?
*/
public class _363 {
public static class Solution1 {
/** reference: https://discuss.leetcode.com/topic/48854/java-binary-search-solution-time-complexity-min-m-n-2-max-m-n-log-max-m-n */
public int maxSumSubmatrix(int[][] matrix, int k) {
int row = matrix.length;
if (row == 0) {
return 0;
}
int col = matrix[0].length;
int m = Math.min(row, col);
int n = Math.max(row, col);
//indicating sum up in every row or every column
boolean colIsBig = col > row;
int res = Integer.MIN_VALUE;
for (int i = 0; i < m; i++) {
int[] array = new int[n];
// sum from row j to row i
for (int j = i; j >= 0; j--) {
int val = 0;
TreeSet<Integer> set = new TreeSet<>();
set.add(0);
//traverse every column/row and sum up
for (int p = 0; p < n; p++) {
array[p] = array[p] + (colIsBig ? matrix[j][p] : matrix[p][j]);
val = val + array[p];
//use TreeMap to binary search previous sum to get possible result
Integer subres = set.ceiling(val - k);
if (null != subres) {
res = Math.max(res, val - subres);
}
set.add(val);
}
}
}
return res;
}
}
}