forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_169.java
86 lines (75 loc) · 2.17 KB
/
_169.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
package com.fishercoder.solutions;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
/**
* 169. Majority Element
Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋ times.
You may assume that the array is non-empty and the majority element always exist in the array.
Example 1:
Input: [3,2,3]
Output: 3
Example 2:
Input: [2,2,1,1,1,2,2]
Output: 2
*/
public class _169 {
public static class Solution1 {
/**Moore Voting Algorithm*/
public int majorityElement(int[] nums) {
int count = 1;
int majority = nums[0];
for (int i = 1; i < nums.length; i++) {
if (count == 0) {
count++;
majority = nums[i];
} else if (nums[i] == majority) {
count++;
} else {
count--;
}
}
return majority;
}
}
public static class Solution2 {
public int majorityElement(int[] nums) {
Map<Integer, Integer> map = new HashMap();
for (int i : nums) {
map.put(i, map.getOrDefault(i, 0) + 1);
if (map.get(i) > nums.length / 2) {
return i;
}
}
return -1;
}
}
public static class Solution3 {
//This is O(nlogn) time.
public int majorityElement(int[] nums) {
Arrays.sort(nums);
return nums[nums.length / 2];
}
}
public static class Solution4 {
//bit manipulation
public int majorityElement(int[] nums) {
int[] bit = new int[32];//because an integer is 32 bits, so we use an array of 32 long
for (int num : nums) {
for (int i = 0; i < 32; i++) {
if ((num >> (31 - i) & 1) == 1) {
bit[i]++;//this is to compute each number's ones frequency
}
}
}
int res = 0;
//this below for loop is to construct the majority element: since every bit of this element would have appeared more than n/2 times
for (int i = 0; i < 32; i++) {
bit[i] = bit[i] > nums.length / 2 ? 1
: 0;//we get rid of those that bits that are not part of the majority number
res += bit[i] * (1 << (31 - i));
}
return res;
}
}
}