forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_119.java
55 lines (48 loc) · 1.35 KB
/
_119.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
package com.fishercoder.solutions;
import java.util.ArrayList;
import java.util.List;
/**
* 119. Pascal's Triangle II
* Given an index k, return the kth row of the Pascal's triangle.
For example, given k = 3,
Return [1,3,3,1].
Note:
Could you optimize your algorithm to use only O(k) extra space?
*/
public class _119 {
public static class Solution1 {
public List<Integer> getRow(int rowIndex) {
if (rowIndex < 0) {
return new ArrayList();
}
List<List<Integer>> result = new ArrayList();
List<Integer> row = new ArrayList();
row.add(1);
result.add(row);
for (int i = 1; i <= rowIndex; i++) {
List<Integer> newRow = new ArrayList();
newRow.add(1);
List<Integer> lastRow = result.get(i - 1);
for (int j = 1; j < lastRow.size(); j++) {
newRow.add(lastRow.get(j - 1) + lastRow.get(j));
}
newRow.add(1);
result.add(newRow);
}
return result.get(result.size() - 1);
}
}
public static class Solution2 {
/** O(k) space */
public List<Integer> getRow(int rowIndex) {
List<Integer> row = new ArrayList<>();
for (int i = 0; i <= rowIndex; i++) {
row.add(0, 1);
for (int j = 1; j < row.size() - 1; j++) {
row.set(j, row.get(j) + row.get(j + 1));
}
}
return row;
}
}
}