-
Notifications
You must be signed in to change notification settings - Fork 3
/
video_classifier.py
242 lines (230 loc) · 9.76 KB
/
video_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import sys
import numpy as np
import time
import cv2
from os import listdir
from os.path import isfile, join, isdir
import random
from sklearn.tree import DecisionTreeClassifier
from UCSDped1 import TestVideoFile
from sklearn.neighbors import KNeighborsClassifier
from model import VideoClassifier
import time
from sklearn.metrics import roc_curve, auc
from scipy.interpolate import interp1d
from scipy.optimize import brentq
def draw_str(dst, target, s):
x, y = target
cv2.putText(dst, s, (x+1, y+1), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv2.LINE_AA)
cv2.putText(dst, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv2.LINE_AA)
def passed_time(previous_time):
return round(time.time() - previous_time, 3)
def load_train_features(type):
x_train = []
y_train = []
features = [f for f in listdir('features/') if f.startswith("features_test_"+type)]
for feature in features:
file = open('features/' + feature, "r")
feature_text = file.read().split("\n")
for f in feature_text:
if f!= "":
feat_all = [float(feat) for feat in f.split(" ")[:-1]]
x_train.append(feat_all[:-1])
y_train.append(int(feat_all[-1]))
return x_train, np.array(y_train)
def compute_roc_EER(fpr, tpr):
roc_EER = []
cords = zip(fpr, tpr)
for item in cords:
item_fpr, item_tpr = item
if item_tpr + item_fpr == 1.0:
roc_EER.append((item_fpr, item_tpr))
assert(len(roc_EER) == 1.0)
return np.array(roc_EER)
class UCSDTest:
def __init__(self, path, n, detect_interval, type):
self.path = path
self.fgbg = cv2.bgsegm.createBackgroundSubtractorMOG()
self.n = n
self.detect_interval = detect_interval
# self.classifier = VideoClassifier()
self.clf = DecisionTreeClassifier(max_depth=5)
x, y = load_train_features(type)
self.clf.fit(x, y)
self.true_positive = 0.0
self.false_positive = 0.0
self.false_negative = 0.0
self.should_find = 0.0
self.total = 0.0
self.y = []
self.y_pred = []
def process_frame(self, bins, magnitude, fmask, tag_img, frame):
if np.count_nonzero(fmask) == 0:
return False
bin_count = np.zeros(9, np.uint8)
h,w = bins.shape
found_anomaly = False
features_j = []
tag_j = []
index_i_j = []
for i in range(0, h, self.n):
i_end = min(h, i+self.n)
if np.count_nonzero(fmask[i]) > 0:
for j in range(0, w, self.n):
j_end = min(w, j+self.n)
if np.count_nonzero(fmask[i:i_end, j:j_end]) > 0:
# Get the atom for bins
atom_bins = bins[i:i_end, j:j_end].flatten()
# Average magnitude
atom_mag = magnitude[i:i_end, j:j_end].flatten().mean()
atom_fmask = fmask[i:i_end, j:j_end].flatten()
# Count of foreground values
f_cnt = np.count_nonzero(atom_fmask)
f_cnt_2 = np.count_nonzero(fmask[i:i_end, j:j_end].flatten())
# Get the direction bins values
hs, _ = np.histogram(atom_bins, np.arange(10))
features = hs.tolist()
features.extend([f_cnt, f_cnt_2, atom_mag, i, i+self.n, j, j+self.n])
features_j.append(features)
# vector = np.array(features)
tag_atom = tag_img[i:i_end, j:j_end].flatten()
ones = np.count_nonzero(tag_atom)
# if ones > 20:
# tag = 1
# else:
# tag = 0
tag = 1
if ones < 50:
tag = 0
tag_j.append(tag)
index_i_j.append((i,j))
predicted = self.clf.predict(features_j, tag_j)
self.y_pred.extend(predicted)
self.y.extend(tag_j)
self.total += len(predicted)
# predicted = self.classifier.predict(features_j, tag_j)
# self.true_positive += true_positive
for index, pred in enumerate(predicted):
pred = pred.item()
i, j = index_i_j[index]
if pred == 1:
if tag_j[index] == 0:
self.false_positive += 1
else:
self.true_positive += 1
j_end = min(w, j+self.n)
i_end = min(h, i+self.n)
cv2.rectangle(frame, (j, i), (j_end, i_end), (255, 0, 0), 2)
found_anomaly = True
elif tag_j[index] == 1:
self.false_negative += 1
# if tag == 1:
# self.should_find += 1
# if predicted == tag and predicted == 1:
# self.correct += 1
# if predicted == 1:
# self.found += 1
return found_anomaly
def process_video(self, video_name, tag_video):
mag_threshold=1e-3
elements = 0
files = [f for f in listdir(self.path+video_name) if isfile(join(self.path+video_name, f))]
if '.DS_Store' in files:
files.remove('.DS_Store')
if '._.DS_Store' in files:
files.remove('._.DS_Store')
files_tag = [f for f in listdir(self.path+tag_video) if isfile(join(self.path+tag_video, f))]
if '.DS_Store' in files_tag:
files_tag.remove('.DS_Store')
if '._.DS_Store' in files_tag:
files_tag.remove('._.DS_Store')
files_tag.sort()
files.sort()
number_frame = 0
old_frame = None
mots = []
old_frame = cv2.imread(self.path + video_name + '001.tif', cv2.IMREAD_GRAYSCALE)
width = old_frame.shape[0]
height = old_frame.shape[1]
h, w = old_frame.shape[:2]
bins = np.zeros((h, w, self.detect_interval), np.uint8)
mag = np.zeros((h, w, self.detect_interval), np.float32)
fmask = np.zeros((h, w, self.detect_interval), np.uint8)
frames = np.zeros((h, w, self.detect_interval), np.uint8)
tag_img = np.zeros((h,w,self.n), np.uint8)
anomaly_detected = []
for tif in files:
movement = 0
frame = cv2.imread(self.path + video_name + tif, cv2.IMREAD_GRAYSCALE)
if number_frame % self.detect_interval == 0:
fmask = self.fgbg.apply(frame)
flow = cv2.calcOpticalFlowFarneback(old_frame, frame, None, 0.5, 3, 15, 3, 5, 1.2, 0)
tag_img = cv2.imread(self.path + tag_video + files_tag[number_frame] ,cv2.IMREAD_GRAYSCALE)
# Calculate direction and magnitude
height, width = flow.shape[:2]
fx, fy = flow[:,:,0], flow[:,:,1]
angle = ((np.arctan2(fy, fx+1) + 2*np.pi)*180)% 360
binno = np.ceil(angle/45)
magnitude = np.sqrt(fx*fx+fy*fy)
binno[magnitude < mag_threshold] = 0
bins = binno
mag = magnitude
# if number_frame % self.detect_interval == 0:
found_anomaly = self.process_frame(bins, mag, fmask, tag_img, frame)
if found_anomaly:
anomaly_detected.append(number_frame)
cv2.imshow('frame', frame)
number_frame += 1
old_frame = frame
k = cv2.waitKey(30) & 0xff
if k == 27:
break
cv2.destroyAllWindows()
return anomaly_detected
if __name__ == '__main__':
ucsdped = 'UCSDped1'
ucsd_test = UCSDTest('UCSD_Anomaly_Dataset.v1p2/'+ucsdped+'/Test/', 10, 5, ucsdped)
dir_test = [f for f in listdir('UCSD_Anomaly_Dataset.v1p2/'+ucsdped+'/Test/') if isdir(join('UCSD_Anomaly_Dataset.v1p2/'+ucsdped+'/Test/', f))]
dir_test.sort()
total_correct = 0.0
total_should_found = 0.0
total_found = 0.0
# dir_test = [dir_test[0]]
for directory in dir_test:
if not directory.endswith("gt"):
print(directory)
start_time = time.time()
anomaly_detected = ucsd_test.process_video(directory+'/', directory + '_gt/')
time_video = passed_time(start_time)
print(200.0/time_video, "frames per second")
total_found += len(anomaly_detected)
index_video = int(directory[-3:])
total_correct += len(set(anomaly_detected).intersection(TestVideoFile[index_video]))
total_should_found += len(TestVideoFile[index_video])
precision = total_correct/total_found
recall = total_correct/total_should_found
f1 = 2.0*precision*recall/(precision+recall)
print("Results frame wise:")
print("Precision: ", precision)
print("Recall: ", recall)
print("F1: ", f1)
print("Results pixel wise:")
pixel_true_positive = ucsd_test.true_positive
pixel_false_positive = ucsd_test.false_positive
pixel_false_negative = ucsd_test.false_negative
pixel_total = ucsd_test.total
fpr, tpr, threshold = roc_curve(ucsd_test.y, ucsd_test.y_pred, pos_label=1)
fnr = 1 - tpr
eer = brentq(lambda x : 1. - x - interp1d(fpr, tpr)(x), 0., 1.)
print("EER by pixel")
print(eer)
print("RD by pixel")
print(1-eer)
print("True positive: ", pixel_true_positive)
print("False positive: ", pixel_false_positive)
precision = pixel_true_positive/(pixel_true_positive + pixel_false_positive)
recall = pixel_true_positive/(pixel_true_positive + pixel_false_negative)
f1 = 2.0*precision*recall/(precision+recall)
print("Precision: ", precision)
print("Recall: ", recall)
print("F1: ", f1)