-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathload_data.py
210 lines (170 loc) · 6.99 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# -*- coding: utf-8 -*-
import numpy as np
import torch
import pickle as pkl
import codecs
from collections import Counter
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm, trange
from gensim.models import KeyedVectors
def load_ft_embeds(word2index, embed_dim, pretrain_path):
#load embeddings
print('loading word embeddings...')
mn = 0
nm = 0
embedding_matrix = np.zeros((len(word2index), embed_dim))
f = codecs.open(pretrain_path, encoding='utf-8')
for line in tqdm(f):
values = line.rstrip().rsplit(' ')
word = values[0]
if word in word2index:
coefs = np.asarray(values[1:], dtype='float32')
embedding_matrix[word2index[word]] = coefs
mn += 1
else:
nm += 1
print("loaded vectors from `{}`; {} found out of pretrain total {}".format(
pretrain_path, mn, mn + nm))
f.close()
return embedding_matrix
def load_pubmed_gensim_en(word2index):
print("loading model .bin file ...")
model = KeyedVectors.load_word2vec_format(
"/home/mlt/saad/tmp/pubmed2018_w2v_400D/pubmed2018_w2v_400D.bin", binary=True
)
print('matching word embeddings...')
mn = 0
embedding_matrix = np.zeros((len(word2index), 400))
for word in word2index:
if word in model:
coefs = model[word]
embedding_matrix[word2index[word]] = coefs
mn += 1
print("{} found out of pretrain total".format(mn))
del model
return embedding_matrix
def to_fasttext(gmodel, outfile):
with open(outfile, "w", encoding="utf-8", errors="ignore") as wf:
wf.write("{} 400\n".format(len(gmodel.wv.vocab), gmodel.vector_size))
for word in gmodel.wv.vocab:
wf.write(word + " " + " ".join(["%0.4f" % i for i in gmodel[word]]) + "\n")
def load_pkl_datafile(fname, use_data="de", as_sents=False):
examples = []
with open(fname, "rb") as rf:
data = pkl.load(rf)
# each item is tuple((doc orig, doc de, doc en [opt]), doc id, binary labels)
for value, doc_id, one_hot_labels in data:
if use_data == "orig":
text = value[0]
if not as_sents:
text = " ".join(text.split("<SECTION>"))
else:
text = text.split("<SECTION>")
else:
if use_data == "de":
text = value[1]
else:
text = value[2] # en
if not as_sents:
text = " ".join(text.replace("<SENT>", " ").split("<SECTION>"))
else:
text = [s.replace("<SECTION>", "") for s in text.split("<SENT>")]
examples.append((text, one_hot_labels, doc_id))
return examples
def build_vocab(texts, min_df=5, max_df=0.6, keep_n=10000):
counter = Counter([token for text in texts for token in text.split()])
counter = Counter({k:v for k, v in counter.items() if min_df <= v <= int(len(texts)*max_df)})
words = [w for w, _ in counter.most_common()[:keep_n-2]]
word2index = {"<pad>":0, "<unk>": 1}
for i in range(len(words)):
word2index[words[i]] = i+2
return word2index
def text_to_seq(text, word2index):
return [word2index[token] if token in word2index else word2index["<unk>"] for token in text.split()]
def doc_to_seq(doc, word2index):
return [text_to_seq(sentence, word2index) for sentence in doc]
def pad_seq(seq, max_len):
seq = seq[:max_len]
seq += [0 for i in range(max_len - len(seq))]
return seq
def pad_doc(doc, max_sents, max_words):
for idx, sentence in enumerate(doc):
if len(sentence) != max_words:
doc[idx] = pad_seq(sentence, max_words)
if len(doc) < max_sents:
doc.extend([[0]*max_words for _ in range(max_sents - len(doc))])
elif len(doc) > max_sents:
doc = doc[:max_sents]
return doc
def batched_data(*tensors, batch_size=64):
data = TensorDataset(*tensors)
sampler = RandomSampler(data)
dataloader = DataLoader(data, sampler=sampler, batch_size=batch_size)
return dataloader
def get_X_y_ids(input_file, word2index, use_data="de", max_seq_len=256,
as_heirarchy=False, max_sents_in_doc=10, max_words_in_sent=40,
is_test=False):
data = load_pkl_datafile(input_file, use_data=use_data, as_sents=as_heirarchy)
X, y, doc_ids = [], [], []
for idx, val in enumerate(data):
text, labels, doc_id = val
if as_heirarchy:
X.append(pad_doc(doc_to_seq(text, word2index), max_sents_in_doc, max_words_in_sent))
else:
X.append(pad_seq(text_to_seq(text, word2index), max_seq_len))
if not is_test:
y.append(labels)
doc_ids.append(doc_id)
X = torch.tensor(X, dtype=torch.long)
y = torch.tensor(y, dtype=torch.float)
doc_ids = torch.tensor(doc_ids, dtype=torch.long)
if as_heirarchy:
X = X.view(-1, max_sents_in_doc, max_words_in_sent)
else:
X = X.view(-1, max_seq_len)
if not is_test:
num_classes = len(y[0])
y = y.view(-1, num_classes)
doc_ids = doc_ids.view(-1)
return X, y, doc_ids
def get_data(train_file, dev_file, use_data="de", max_seq_len=256,
as_heirarchy=False, max_sents_in_doc=10, max_words_in_sent=40,
test_file=None, **kwargs):
data = load_pkl_datafile(train_file, use_data=use_data, as_sents=as_heirarchy)
if as_heirarchy:
data = [" ".join(d[0]) for d in data]
else:
data = [d[0] for d in data]
word2index = build_vocab(data, **kwargs)
# train X, y, ids
Xtrain, ytrain, ids_train = get_X_y_ids(
train_file, word2index, use_data=use_data, max_seq_len=max_seq_len,
as_heirarchy=as_heirarchy, max_sents_in_doc=max_sents_in_doc,
max_words_in_sent=max_words_in_sent
)
# dev X, y, ids
Xdev, ydev, ids_dev = get_X_y_ids(
dev_file, word2index, use_data=use_data, max_seq_len=max_seq_len,
as_heirarchy=as_heirarchy, max_sents_in_doc=max_sents_in_doc,
max_words_in_sent=max_words_in_sent
)
if test_file:
Xtest, _, ids_test = get_X_y_ids(
test_file, word2index, use_data=use_data, max_seq_len=max_seq_len,
as_heirarchy=as_heirarchy, max_sents_in_doc=max_sents_in_doc,
max_words_in_sent=max_words_in_sent, is_test=True
)
if test_file:
return (Xtrain, ytrain, ids_train), (Xdev, ydev, ids_dev), (Xtest, ids_test), word2index
else:
return (Xtrain, ytrain, ids_train), (Xdev, ydev, ids_dev), word2index
def get_titles_T(codes_titles_file):
titles = []
with open(codes_titles_file, "r") as rf:
for line in rf:
title, code = line.split("\t")
titles.append(title)
titles_vocab = build_vocab(titles, 1, 1.0)
titles = [pad_seq(text_to_seq(i, titles_vocab), 10) for i in titles]
titles = torch.tensor(titles).long()
return titles, titles_vocab