forked from jokergoo/circlize_book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path13-nested-zooming.Rmd
234 lines (188 loc) · 8.95 KB
/
13-nested-zooming.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
```{r, echo = FALSE}
library(circlize)
```
# Nested zooming {#nested-zooming}
## Basic idea
In Section \@ref(zooming-of-sectors) we introduced how to zoom sectors to the same circle
in the same track. This works fine if there are only a few regions that need to be zoomed.
However, when the regions that need to be zoomed is too many, the method will not work efficiently.
In this chapter, we introduce another zooming method which puts zoomed regions in a different
circular plot.
To illustrate the basic idea, we first generate a random data set.
```{r}
set.seed(123)
df = data.frame(cate = sample(letters[1:8], 400, replace = TRUE),
x = runif(400),
y = runif(400),
stringsAsFactors = FALSE)
df = df[order(df[[1]], df[[2]]), ]
rownames(df) = NULL
df$interval_x = as.character(cut(df$x, c(0, 0.2, 0.4, 0.6, 0.8, 1.0)))
df$name = paste(df$cate, df$interval_x, sep = ":")
df$start = as.numeric(gsub("^\\((\\d(\\.\\d)?).*(\\d(\\.\\d)?)]", "\\1", df$interval_x))
df$end = as.numeric(gsub("^\\((\\d(\\.\\d)?),(\\d(\\.\\d)?)]$", "\\3", df$interval_x))
nm = sample(unique(df$name), 20)
df2 = df[df$name %in% nm, ]
correspondance = unique(df2[, c("cate", "start", "end", "name", "start", "end")])
zoom_sector = unique(df2[, c("name", "start", "end", "cate")])
zoom_data = df2[, c("name", "x", "y")]
data = df[, 1:3]
sector = data.frame(cate = letters[1:8], start = 0, end = 1, stringsAsFactors = FALSE)
sector_col = structure(rand_color(8, transparency = 0.5), names = letters[1:8])
```
Following variables are used for downstream visualization. `sector` contains sector names
and coordinates at the x direction:
```{r}
head(sector, n = 4)
```
`data` contains data points for a track.
```{r}
head(data, n = 4)
```
In `sector`, we randomly sampled several intervals which will be used for
zooming. The zoomed intervals are stored in `zoom_sector`. In the zooming
track, each interval is treated as an independent sector, thus, the name for
each zoomed interval uses combination of the original sector name and the
interval itself, just for easy reading.
```{r}
head(zoom_sector, n = 4)
```
And the subset of data which are in the zoomed intervals.
```{r}
head(zoom_data, n = 4)
```
The correspondance between the original sectors and the zoomed intervals are
in `correspondance`. The value is a data frame with six columns. The value is
the position of the intervals in the second circular plot in the first plot.
```{r}
head(correspondance, n = 4)
```
The zooming is actually composed of two circulat plots where one for the
original track and one for the zoomed intervals. There is an additional connection track
which identifies which intervals that are zoomed belong to which sector. The
`circos.nested()` function in **circlize** puts the two circular plots
together, arranges them and automatically draws the connection lines.
To define "the circular plot", the code for generating the plot needs to be
wrapped into a function.
```{r}
f1 = function() {
circos.par(gap.degree = 10)
circos.initialize(sector[, 1], xlim = sector[, 2:3])
circos.track(data[[1]], x = data[[2]], y = data[[3]], ylim = c(0, 1),
panel.fun = function(x, y) {
circos.points(x, y, pch = 16, cex = 0.5, col = "red")
})
}
f2 = function() {
circos.par(gap.degree = 2, cell.padding = c(0, 0, 0, 0))
circos.initialize(zoom_sector[[1]], xlim = as.matrix(zoom_sector[, 2:3]))
circos.track(zoom_data[[1]], x = zoom_data[[2]], y = zoom_data[[3]],
panel.fun = function(x, y) {
circos.points(x, y, pch = 16, cex = 0.5)
})
}
```
In above, `f1()` is the code for generating the original plot and `f2()` is
the code for generating the zoomed plot. They can be executed independently.
To combine the two plots, simply put `f1()`, `f2()` and `corresponance` to
`circos.nested()` (Figure \@ref(fig:nested-normal)).
```{r nested-normal, fig.cap = "Nested zooming between two circular plots."}
circos.nested(f1, f2, correspondance)
```
In the plot, the zoomed circle is put inside the original circle and the start
degree for the second plot is automatically adjusted.
Zoomed circle can also be put outside by swtiching `f1()` and `f2()`.
Actually, for `circos.nested()`, It doesn't care which one is zoomed or not,
they are just two circular plots and a correspondance (Figure \@ref(fig:nested2)).
```{r nested2, fig.cap = "Nested zooming between two circular plots, zoomed plot is put outside."}
circos.nested(f2, f1, correspondance[, c(4:6, 1:3)])
```
There are some points that need to be noted while doing nested zoomings:
1. It can only be applied to the full circle.
2. If `canvas.xlim` and `canvas.ylim` are adjusted in the first plot, same
value should be set to the second plot.
3. By default the start degree of the second plot is automatically adjusted to
make the difference between the original positions and zoomed sectors to a
minimal. However, users can also manually adjusted the start degree for the
second plot by setting `circos.par("start.degree" = ...)` and
`adjust_start_degree` must be set to `TRUE` in `circos.nested()`.
4. Since the function needs to know some information for the two circular
plots, do not put `circos.clear()` at the end of each plot. They will be
added internally.
`f1()` and `f2()` are just normal code for implementing circular plot. There is no problem
to make it more complex (Figure \@ref(fig:nested-complex)).
```{r nested-complex, fig.cap = "Nested zooming between two circular plots, slightly complex plots."}
sector_col = structure(rand_color(8, transparency = 0.5), names = letters[1:8])
f1 = function() {
circos.par(gap.degree = 10)
circos.initialize(sector[, 1], xlim = sector[, 2:3])
circos.track(data[[1]], x = data[[2]], y = data[[3]], ylim = c(0, 1),
panel.fun = function(x, y) {
l = correspondance[[1]] == CELL_META$sector.index
if(sum(l)) {
for(i in which(l)) {
circos.rect(correspondance[i, 2], CELL_META$cell.ylim[1],
correspondance[i, 3], CELL_META$cell.ylim[2],
col = sector_col[CELL_META$sector.index],
border = sector_col[CELL_META$sector.index])
}
}
circos.points(x, y, pch = 16, cex = 0.5)
circos.text(CELL_META$xcenter, CELL_META$ylim[2] + mm_y(2),
CELL_META$sector.index, niceFacing = TRUE, adj = c(0.5, 0))
})
}
f2 = function() {
circos.par(gap.degree = 2, cell.padding = c(0, 0, 0, 0))
circos.initialize(zoom_sector[[1]], xlim = as.matrix(zoom_sector[, 2:3]))
circos.track(zoom_data[[1]], x = zoom_data[[2]], y = zoom_data[[3]],
panel.fun = function(x, y) {
circos.points(x, y, pch = 16, cex = 0.5)
}, bg.col = sector_col[zoom_sector$cate],
track.margin = c(0, 0))
}
circos.nested(f1, f2, correspondance, connection_col = sector_col[correspondance[[1]]])
```
## Visualization of DMRs from tagmentation-based WGBS
[Tagmentation-based whole-genome bisulfite sequencing](http://www.nature.com/nprot/journal/v8/n10/full/nprot.2013.118.html)
(T-WGBS) is a technology which can examine only a minor fraction of methylome of interest.
In this section, we demonstrate how to visualize DMRs which are detected from T-WGBS data in a circular plot by **circlize** package.
In the example data loaded, `tagments` contains regions which are sequenced,
`DMR1` contains DMRs for one patient detectd in tagment regions. Correspondance between tagment regions
and original genome is stored in `correspondance`.
```{r}
load(system.file(package = "circlize", "extdata", "tagments_WGBS_DMR.RData"))
head(tagments, n = 4)
head(DMR1, n = 4)
head(correspondance, n = 4)
```
In Figure \@ref(fig:dmr), the tagment regions are actually zoomed from the genome. In following code,
`f1()` only makes a circular plot with whole genome and `f2()` makes circular plot for the tagment regions.
```{r dmr, fig.width = 6, fig.height = 6, fig.cap = "Visualization of DMRs."}
chr_bg_color = rand_color(22, transparency = 0.8)
names(chr_bg_color) = paste0("chr", 1:22)
f1 = function() {
circos.par(gap.after = 2, start.degree = 90)
circos.initializeWithIdeogram(chromosome.index = paste0("chr", 1:22),
plotType = c("ideogram", "labels"), ideogram.height = 0.03)
}
f2 = function() {
circos.par(cell.padding = c(0, 0, 0, 0), gap.after = c(rep(1, nrow(tagments)-1), 10))
circos.genomicInitialize(tagments, plotType = NULL)
circos.genomicTrack(DMR1, ylim = c(-0.6, 0.6),
panel.fun = function(region, value, ...) {
for(h in seq(-0.6, 0.6, by = 0.2)) {
circos.lines(CELL_META$cell.xlim, c(h, h), lty = 3, col = "#AAAAAA")
}
circos.lines(CELL_META$cell.xlim, c(0, 0), lty = 3, col = "#888888")
circos.genomicPoints(region, value,
col = ifelse(value[[1]] > 0, "#E41A1C", "#377EB8"),
pch = 16, cex = 0.5)
}, bg.col = chr_bg_color[tagments$chr], track.margin = c(0.02, 0))
circos.yaxis(side = "left", at = seq(-0.6, 0.6, by = 0.3),
sector.index = get.all.sector.index()[1], labels.cex = 0.4)
circos.track(ylim = c(0, 1), track.height = mm_h(2),
bg.col = add_transparency(chr_bg_color[tagments$chr], 0))
}
circos.nested(f1, f2, correspondance, connection_col = chr_bg_color[correspondance[[1]]])
```