forked from jokergoo/circlize_book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path10-create-plotting-regions.Rmd
227 lines (185 loc) · 9.28 KB
/
10-create-plotting-regions.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Create plotting regions for genomic data {#genomic-plotting-region}
Tracks are created and graphics are added by
`circos.genomicTrackPlotRegions()`, or the short version
`circos.genomicTrack()`. In following examples, chromosome will be used as the
genomic category, and we assume `data` is simply a data frame in _BED_ format
(where the first column is the chromosome name, the second and third column
are start and end positions, and the following columns are associated values).
For more complex form of `data` and behaviour of the functions, we will
introduce in Chapter \@ref(modes-of-input).
Similar as `circos.track()`, `circos.genomicTrack()` also accepts a self-
defined function `panel.fun` which is applied in every cell but with different
form.
```{r, eval = FALSE}
circos.genomicTrackPlotRegion(data, panel.fun = function(region, value, ...) {
circos.genomicPoints(region, value, ...)
})
```
Inside `panel.fun`, users can use low-level graphic functions to add basic
graphics in each cell. `panel.fun` expects two arguments `region` and `value`
which are automatically processed and passed from `circos.genomicTrack()`.
`region` is a two-column data frame which only contains start position and end
position in the current chromosome. `value` is also a data frame which
contains other columns (start for the fourth column, if it exists). Thus, basically,
`region` can be thought as values on x axes and `value` as values on y axes.
There should be a third arguments `...` which is mandatory and is used to pass
user-invisible variables to inner functions and make magics (explained in
Chapter \@ref(modes-of-input)). So whenever you use `panel.fun` in
`circos.genomicTrack()`, please add it to the end of your function.
Following code demonstrates the values for `region` and `value` when used inside `panel.fun`.
```{r, echo = 2:5}
pdf(NULL)
bed = generateRandomBed(nc = 2)
head(bed, n = 2)
circos.initializeWithIdeogram(plotType = NULL)
circos.genomicTrackPlotRegion(bed, panel.fun = function(region, value, ...) {
if(CELL_META$sector.index == "chr1") {
print(head(region, n = 2))
print(head(value, n = 2))
}
})
circos.clear()
invisible(dev.off())
```
Since `circos.genomicTrack()` creates a new track, it needs values to
calculate data ranges on y direction. Users can either specify the index of
numeric columns in `data` by `numeric.column` (named index or numeric index,
it can also be a vector with more than one columns) or directly set `ylim`. If none of
them are set, the function will try to look for all numeric columns in `data`
(of course, excluding the first three columns), and set them as
`numeric.column`.
```{r, eval = FALSE}
circos.genomicTrackPlotRegion(data, ylim = c(0, 1),
panel.fun = function(region, value, ...) {
circos.genomicPoints(region, value, ...)
})
circos.genomicTrackPlotRegion(data, numeric.column = c("value1", "value2"),
panel.fun = function(region, value, ...) {
circos.genomicPoints(region, value, ...)
})
```
Since genomic functions are implemented by basic circlize functions, you can
use `circos.info()` anywhere to get information of sectors and tracks.
As you already see in previous examples, **circlize** also provides low-level graphic
functions specifically designed for genomic data. They are all implemented by the corresponding
normal circlize functions, but needs input variables with special format.
In this chapter, we introduce the basic usage of `circos.genomicTrack()` and
low-level `circos.genomic*()`. In Chapter \@ref(modes-of-input), we will
introduce more usages of these functions, which are especially designed for
genomic regions measured at multiple conditions. Example plots are shown together in
Chapter \@ref(modes-of-input).
## Points {#genomic-points}
Usage of `circos.genomicPoints()` is similar as `circos.points()`.
`circos.genomicPoints()` expects a two-column data frame which contains genomic regions
and a data frame containing corresponding values. Points are always drawn at
the middle of each region. The data column of the y values for plotting should
be specified by `numeric.column`. If `numeric.column` has length larger than
one, all the specified columns will be used for adding points.
If the function is called inside `circos.genomicTrack()` and users have been
already set `numeric.column` in `circos.genomicTrack()`, proper value of
`numeric.column` will be passed to `circos.genomicPoints()` through `...` in
`panel.fun`, which means, you must add `...` as the final argument in
`circos.genomicPoints()` to get such information. If `numeric.column` is not
set in both places, `circos.genomicPoints()` will use all numeric columns
detected in `value`.
Note here `numeric.column` is measured in `value` while `numeric.column` in
`circos.genomicTrack()` is measured in the complete data frame. There is a
difference of 3 for the column index! When `numeric.column` is passed to
`circos.genomicPoints()` internally, 3 is subtracted automatically. If you use
character index instead of numeric index, you do not need to worry about it.
Possible usages of `circos.genomicPoints()` are as follows.
```{r, eval = FALSE}
circos.genomicPoints(region, value, numeric.column = c(1, 2))
circos.genomicPoints(region, value, cex, pch)
circos.genomicPoints(region, value, sector.index, track.index)
circos.genomicTrack(data, numeric.column = 4,
panel.fun = function(region, value, ...) {
# numeric.column is automatically passed to `circos.genomicPoints()`
circos.genomicPoints(region, value, ...)
})
```
If there is only one numeric column, graphical parameters such as `pch`, `cex`
can be of length one or number of rows of `region`. If there are more than one
numeric columns specified, points for each numeric column will be added
iteratively, and the graphical parameters should be either length one or
number of numeric columns specified.
`circos.genomicPoints()` is simply implemented by `circos.points()`. The basic
idea of the implementation is shown as following code, so, if you don't like the
`circos.genomic*()` functions, it would not be difficult to directly use the
`circos.*()` functions.
```{r, eval = FALSE}
circos.genomicPoints = function(region, value, numeric.column = 1, ...) {
x = (region[[2]] + region[[1]])/2
for(i in numeric.column) {
y = value[[i]]
circos.points(x, y, ...)
}
}
```
## Lines {#genomic-lines}
`circos.genomicLines()` is similar as `circos.lines()`. The setting of
graphical parameters is similar as `circos.genomicPoints()`.
```{r, eval = FALSE}
circos.genomicLines(region, value, ...)
circos.genomicLines(region, value, numeric.column = c(1, 2))
circos.genomicLines(region, value, area, baseline, border)
circos.genomicLines(region, value, sector.index, track.index)
```
**circlize** additionally provides a new option `segment` for `lty` by
which each genomic regions represent as 'horizontal' lines at y positions
(see Figure \@ref(fig:genomic-application-lines), track H).
```{r, eval = FALSE}
circos.genomicLines(region, value, lwd, lty = "segment")
```
## Text {#genomic-text}
For `circos.genomicText()`, the position of text can be specified either by `numeric.column`
or a separated vector `y`. The labels of text can be specified either by `labels.column`
or a vector `labels`.
```{r, eval = FALSE}
circos.genomicText(region, value, ...)
circos.genomicText(region, value, y = 1, labels)
circos.genomicText(region, value, numeric.column, labels.column)
circos.genomicText(region, value, facing, niceFacing, adj)
circos.genomicText(region, value, sector.index, track.index)
```
## Rectangles {#genomic-rectangles}
For `circos.genomicRect()`, Since the left and right of the rectangles are
already determined by the start and end of the genomic regions, we only need
to set the positions of top and bottom of the rectangles by specifying `ytop`,
`ybottom` or `ytop.column`, `ybottom.column`.
```{r, eval = FALSE}
circos.genomicRect(region, value, ytop = 1, ybottom = 0)
circos.genomicRect(region, value, ytop.column = 2, ybottom = 0)
circos.genomicRect(region, value, col, border)
```
## Links {#genomic-links}
`circos.genomicLink()` expects two data frames and it adds links from genomic
regions in the first data frame to corresponding genomic regions in the second
data frame. All additional arguments are passed to `circos.link()`.
```{r genomic-links, fig.width = 6, fig.height = 6, fig.cap = "Add links from two sets of genomic regions."}
set.seed(123)
bed1 = generateRandomBed(nr = 100)
bed1 = bed1[sample(nrow(bed1), 20), ]
bed2 = generateRandomBed(nr = 100)
bed2 = bed2[sample(nrow(bed2), 20), ]
circos.initializeWithIdeogram()
circos.genomicLink(bed1, bed2, col = rand_color(nrow(bed1), transparency = 0.5),
border = NA)
circos.clear()
```
## Mixed use of general circlize functions
`panel.fun` is applied on each cell, which means, besides genomic graphic
functions, you can also use general circlize functions to add more graphics.
For example, some horizontal lines and texts are added to each cell and axes
are put on top of each cell.
```{r, eval = FALSE}
circos.genomicTrack(bed, ylim = c(-1, 1),
panel.fun = function(region, value, ...) {
circos.genomicPoints(region, value, ...)
for(h in c(-1, -0.5, 0, 0.5, 1)) {
circos.lines(CELL_META$cell.xlim, c(0, 0), lty = 2, col = "grey")
}
circos.text(x, y, labels)
circos.axis("top")
})
```