forked from BR-IDL/PaddleViT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transforms.py
371 lines (291 loc) · 12.6 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Transforms for image data and detection targets"""
import random
import numpy as np
import PIL
import paddle
import paddle.vision.transforms as T
from paddle.vision.transforms import functional as F
from random_erasing import RandomErasing
from box_ops import box_xyxy_to_cxcywh
from box_ops import box_xyxy_to_cxcywh_numpy
def crop(image, target, region):
cropped_image = T.crop(image, *region)
target = target.copy()
i, j, h, w = region
#target['size'] = paddle.to_tensor([h, w]).cpu()
target['size'] = np.array([h, w], dtype='float32')
fields = ['labels', 'area', 'iscrowd']
if 'boxes' in target:
boxes = target['boxes']
#max_size = paddle.to_tensor([h, w], dtype='float32').cpu()
max_size = np.array([h, w], dtype='float32')
#cropped_boxes = boxes - paddle.to_tensor([j, i, j, i], dtype='float32').cpu() # box are (x1, y1, x2, y2)
cropped_boxes = boxes - np.array([j, i, j, i], dtype='float32') # box are (x1, y1, x2, y2)
#cropped_boxes = paddle.minimum(cropped_boxes.reshape([-1, 2, 2]), max_size)
cropped_boxes = np.minimum(cropped_boxes.reshape([-1, 2, 2]), max_size)
cropped_boxes = cropped_boxes.clip(min=0)
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(axis=1)
target['boxes'] = cropped_boxes.reshape([-1, 4])
target['area'] = area
fields.append('boxes')
if 'masks' in target:
target['masks'] = target['masks'][:, i:i + h, j:j + w]
fields.append('masks')
# remove the boxe or mask if the area is zero
if 'boxes' in target or 'masks' in target:
if 'boxes' in target:
cropped_boxes = target['boxes'].reshape((-1, 2, 2))
# FIXME: select indices where x2 > x1 and y2 > y1
# This paddle api will raise error in current env
#keep = paddle.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], axis=1)
# Instead we use numpy for temp fix
#cropped_boxes = cropped_boxes.cpu().numpy()
keep = np.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], axis=1)
#keep = keep.cpu().numpy()
else:
keep = target['masks'].flatten(1).any(1)
#keep = keep.cpu().numpy()
keep_idx = np.where(keep)[0].astype('int32')
#keep = paddle.to_tensor(keep_idx).cpu()
keep = keep_idx
for field in fields:
#target[field] = target[field].index_select(keep, axis=0)
target[field] = target[field][keep]
return cropped_image, target
def hflip(image, target):
flipped_image = T.hflip(image)
w, h = image.size
target = target.copy()
if 'boxes' in target:
boxes = target['boxes'] # n x 4
#boxes = boxes.index_select(paddle.to_tensor([2, 1, 0, 3], dtype='int32').cpu(), axis=1)
boxes = boxes[:, [2, 1, 0, 3]]
#boxes = boxes * paddle.to_tensor(
# [-1, 1, -1, 1], dtype='float32').cpu() + paddle.to_tensor([w, 0, w, 0], dtype='float32').cpu()
boxes = boxes * np.array([-1, 1, -1, 1], dtype='float32') + np.array([w, 0, w, 0], dtype='float32')
target['boxes'] = boxes
if 'masks' in target:
target['masks'] = (target['masks']).flip(axis=[-1])
return flipped_image, target
def resize(image, target, size, max_size=None):
def get_size_with_aspect_ratio(image_size, size, max_size=None):
""" get new image size for rescale, aspect ratio is kept, and longer side must < max_size
Args:
image_size: tuple/list of image width and height
size: length of shorter side of scaled image
max_size: max length of longer side of scaled image
Returns:
size: output image size in (h, w) order.
"""
w, h = image_size
if max_size is not None:
min_original_size = float(min(w, h))
max_original_size = float(max(w, h))
# size is shorter side and keep the aspect ratio, if the longer side
# is larger than the max_size
if max_original_size / min_original_size * size > max_size:
# longer side is the max_size, shorter side size is:
size = int(round(max_size * min_original_size / max_original_size))
if (w <= h and w == size) or (h <= w and h == size):
return (h, w)
if w < h:
ow = size
oh = int(size * h / w)
else:
oh = size
ow = int(size * w / h)
return (oh, ow)
def get_size(image_size, size, max_size=None):
""""get new image size to rescale
Args:
image_size: tuple, Pillow image size, (width, height)
size: int or list/tuple, if size is list or tuple, return
this size as the new image size to rescale, if size is a
single int, then compute the new image size by this size
(as shorter side) and max_size (as longer side), also keep
the same aspect_ratio as original image.
max_size: longest side max size of new image size
Return:
size: tuple, (width, height)
"""
if isinstance(size, (list, tuple)):
return size[::-1]
else:
return get_size_with_aspect_ratio(image_size, size, max_size)
# STEP0: get new image size
size = get_size(image.size, size, max_size)
# STEP1: resize image with new size
rescaled_image = T.resize(image, size) # here size is (h, w)
# STEP2: resize targets
if target is None:
return rescaled_image, None
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
ratio_width, ratio_height = ratios
target = target.copy()
if 'boxes' in target:
boxes = target['boxes']
if boxes.shape[0] == 0: # empty boxes
scaled_boxes = boxes
else: # this line works well in pytorch, but not in paddle
#scaled_boxes = boxes * paddle.to_tensor([ratio_width, ratio_height, ratio_width, ratio_height]).cpu()
scaled_boxes = boxes * np.array([ratio_width, ratio_height, ratio_width, ratio_height], dtype='float32')
target['boxes'] = scaled_boxes
if 'area' in target:
area = target['area']
scaled_area = area * (ratio_width * ratio_height)
target['area'] = scaled_area
h, w = size
#target['size'] = paddle.to_tensor([h, w]).cpu()
target['size'] = np.array([h, w], dtype='float32')
if 'masks' in target:
masks = target['masks'] # [N, H, W]
masks = masks.unsqueeze(-1).astype('float32') #[N, H, W, 1]
masks = paddle.to_tensor(masks).cpu()
masks = paddle.nn.functional.interpolate(
masks, size, data_format='NHWC') #[N, H', W', 1]
masks = masks[:, :, :, 0] > 0.5
masks = masks.astype('int32')
masks = masks.numpy()
target['masks'] = masks
return rescaled_image, target
def pad(image, target, padding):
padded_image = T.pad(image, (0, 0, padding[0], padding[1]))
if target is None:
return padded_image, None
target = target.copy()
#target['size'] = paddle.to_tensor(padded_image.size[::-1]).cpu()
target['size'] = np.array(padded_image.size[::-1], dtype='float32')
if 'masks' in target:
target['masks'] = T.pad(target['masks'], (0, padding[0], 0, padding[1]))
return padded_image, target
class RandomCrop():
def __init__(self, size):
self.size = size
@staticmethod
def get_param(image, output_size):
def _get_image_size(img):
if F._is_pil_image(img):
return img.size
elif F._is_numpy_image(img):
return img.shape[:2][::-1]
elif F._is_tensor_image(img):
return img.shape[1:][::-1] # chw
else:
raise TypeError("Unexpected type {}".format(type(img)))
w, h = _get_image_size(image)
th, tw = output_size
if w == tw and h == th:
return 0, 0, h, w
i = random.randint(0, h - th + 1)
j = random.randint(0, w - tw + 1)
return i, j, th, tw
def __call__(self, image, target):
region = RandomCrop.get_param(image, self.size)
return crop(image, target, region)
class RandomSizeCrop():
def __init__(self, min_size, max_size):
self.min_size = min_size
self.max_size = max_size
def __call__(self, image, target):
w = random.randint(self.min_size, min(image.width, self.max_size))
h = random.randint(self.min_size, min(image.height, self.max_size))
region = RandomCrop.get_param(image, (h, w))
return crop(image, target, region)
class CenterCrop():
def __init__(self, size):
self.size = size
def __call__(self, image, target):
image_width, image_height = image.size
crop_height, crop_width = self.size
crop_top = int(round((image_height - crop_height) / 2.))
crop_left = int(round((image_width - crop_width) / 2.))
return crop(image, target, (crop_top, crop_left, crop_height, crop_width))
class RandomHorizontalFlip():
def __init__(self, p=0.5):
self.p = p
def __call__(self, image, target):
if random.random() < self.p:
return hflip(image, target)
return image, target
class RandomResize():
def __init__(self, sizes, max_size=None):
assert isinstance(sizes, (list, tuple))
self.sizes = sizes
self.max_size = max_size
def __call__(self, image, target=None):
size = random.choice(self.sizes)
return resize(image, target, size, self.max_size)
class RandomPad():
def __init__(self, max_pad):
self.max_pad = max_pad
def __call__(self, image, target):
pad_x = random.randint(0, self.max_pad)
pad_y = random.randint(0, self.max_pad)
return pad(image, target, (pad_x, pad_y))
class RandomSelect():
""" Random select one the transforms to apply with probablity p"""
def __init__(self, transforms1, transforms2, p=0.5):
self.transforms1 = transforms1
self.transforms2 = transforms2
self.p = p
def __call__(self, image, target):
if random.random() > self.p:
return self.transforms1(image, target)
return self.transforms2(image, target)
class ToTensor():
def __call__(self, image, target):
return T.to_tensor(image), target
class RandomErasing():
def __init__(self, *args, **kwargs):
self.eraser = RandomErasing(*args, **kwargs)
def __call__(self, image, target):
return self.eraser(image), target
class Normalize():
"""Normalization for image and labels.
Specifically, image is normalized with -mean and /std,
boxes are converted to [cx, cy, w, h] format and scaled to
[0, 1] according to image size
"""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, image, target=None):
image = T.functional.normalize(image, mean=self.mean, std=self.std)
if target is None:
return image, None
target = target.copy()
h, w = image.shape[-2:]
if 'boxes' in target and target['boxes'].shape[0] != 0:
boxes = target['boxes']
boxes = box_xyxy_to_cxcywh_numpy(boxes)
#boxes = boxes / paddle.to_tensor([w, h, w, h], dtype='float32').cpu()
boxes = boxes / np.array([w, h, w, h], dtype='float32')
target['boxes'] = boxes
return image, target
class Compose():
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, image, target):
for t in self.transforms:
image, target = t(image, target)
return image, target
def __repr__(self):
format_string = self.__class__.__name__ + "("
for t in self.transforms:
format_string += '\n'
format_string += ' {0}'.format(t)
format_string += '\n)'
return format_string