End-to-End Object Detection with Transformers, arxiv
PaddlePaddle training/validation code and pretrained models for DETR.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
DETR Model OverviewUpdate (2021-09-01): Code is released and ported weights are uploaded.
Model | backbone | box_mAP | Model |
---|---|---|---|
DETR | ResNet50 | 42.0 | google/baidu(n5gk) |
DETR | ResNet101 | 43.5 | google/baidu(bxz2) |
*The results are evaluated on COCO validation set.
We provide a few notebooks in aistudio to help you get started:
*(coming soon)*
- Python>=3.6
- yaml>=0.2.5
- PaddlePaddle>=2.1.0
- yacs>=0.1.8
COCO2017 dataset is used in the following folder structure:
COCO dataset folder
├── annotations
│ ├── captions_train2017.json
│ ├── captions_val2017.json
│ ├── instances_train2017.json
│ ├── instances_val2017.json
│ ├── person_keypoints_train2017.json
│ └── person_keypoints_val2017.json
├── train2017
│ ├── 000000000009.jpg
│ ├── 000000000025.jpg
│ ├── 000000000030.jpg
│ ├── 000000000034.jpg
| ...
└── val2017
├── 000000000139.jpg
├── 000000000285.jpg
├── 000000000632.jpg
├── 000000000724.jpg
...
More details about the COCO dataset can be found here and COCO official dataset.
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume the downloaded weight file is stored in ./detr_resnet50.pdparams
, to use the detr
model in python:
from config import get_config
from detr import build_detr
# config files in ./configs/
config = get_config('./configs/detr_resnet50.yaml')
# build model
model, critertion, postprocessors = build_detr(config)
# load pretrained weights, .pdparams is NOT needed
model_state_dict = paddle.load('./detr_resnet50')
model.set_dict(model_state_dict)
To evaluate DETR model performance on COCO2017 with a single GPU, run the following script using command line:
sh run_eval.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/detr_resnet50.yaml' \
-dataset='coco' \
-batch_size=4 \
-data_path='/dataset/coco' \
-eval \
-pretrained='./detr_resnet50'
Run evaluation using multi-GPUs:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/detr_resnet50.yaml' \
-dataset='coco' \
-batch_size=4 \
-data_path='/dataset/coco' \
-eval \
-pretrained='./detr_resnet50'
To train the DETR model on COCO2017 with single GPU, run the following script using command line:
sh run_train.sh
or
CUDA_VISIBLE_DEVICES=1 \
python main_single_gpu.py \
-cfg='./configs/detr_resnet50.yaml' \
-dataset='coco' \
-batch_size=2 \
-data_path='/dataset/coco' \
Run training using multi-GPUs (coming soon):
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/detr_resnet50.yaml' \
-dataset='coco' \
-batch_size=2 \
-data_path='/dataset/coco' \
coming soon
@inproceedings{carion2020end,
title={End-to-end object detection with transformers},
author={Carion, Nicolas and Massa, Francisco and Synnaeve, Gabriel and Usunier, Nicolas and Kirillov, Alexander and Zagoruyko, Sergey},
booktitle={European Conference on Computer Vision},
pages={213--229},
year={2020},
organization={Springer}
}