ConvMLP: Hierarchical Convolutional MLPs for Vision, arxiv
PaddlePaddle training/validation code and pretrained models for ConvMLP.
The official and 3rd party pytorch implementation are here.
This implementation is developed by PPViT.
Update (2021-09-26): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
convmlp_s | 76.76 | 93.40 | 9.0M | 2.4G | 224 | 0.875 | bicubic | google/baidu(3jz3) |
convmlp_m | 79.03 | 94.53 | 17.4M | 4.0G | 224 | 0.875 | bicubic | google/baidu(vyp1) |
convmlp_l | 80.15 | 95.00 | 42.7M | 10.0G | 224 | 0.875 | bicubic | google/baidu(ne5x) |
*The results are evaluated on ImageNet2012 validation set.
Note: ConvMLP weights are ported from here
We provide a few notebooks in aistudio to help you get started:
*(coming soon)*
- Python>=3.6
- yaml>=0.2.5
- PaddlePaddle>=2.1.0
- yacs>=0.1.8
ImageNet2012 dataset is used in the following folder structure:
│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume the downloaded weight file is stored in ./convmlp_s.pdparams
, to use the convmlp_s
model in python:
from config import get_config
from convmlp import build_convmlp as build_model
# config files in ./configs/
config = get_config('./configs/convmlp_s.yaml')
# build model
model = build_model(config)
# load pretrained weights, .pdparams is NOT needed
model_state_dict = paddle.load('./convmlp_s7')
model.set_dict(model_state_dict)
To evaluate ConvMLP model performance on ImageNet2012 with a single GPU, run the following script using command line:
sh run_eval.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/convmlp_s.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./convmlp_s'
Run evaluation using multi-GPUs:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/convmlp_s.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./convmlp_s'
To train the ConvMLP Transformer model on ImageNet2012 with single GPUs, run the following script using command line:
sh run_train.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/convmlp_s.yaml' \
-dataset='imagenet2012' \
-batch_size=32 \
-data_path='/dataset/imagenet' \
Run training using multi-GPUs:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/convmlp_s.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
(coming soon)
@article{li2021convmlp,
title={ConvMLP: Hierarchical Convolutional MLPs for Vision},
author={Jiachen Li and Ali Hassani and Steven Walton and Humphrey Shi},
year={2021},
eprint={2109.04454},
archivePrefix={arXiv},
primaryClass={cs.CV}
}