forked from BR-IDL/PaddleViT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_multi_gpu.py
439 lines (395 loc) · 18 KB
/
main_multi_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Styleformer training/validation using single GPU """
import sys
import os
import time
import logging
import argparse
import random
import numpy as np
import paddle
import paddle.distributed as dist
from datasets import get_dataloader
from datasets import get_dataset
from generator import Generator
from discriminator import StyleGANv2Discriminator
from utils.utils import AverageMeter
from utils.utils import WarmupCosineScheduler
from utils.utils import gradient_penalty
from utils.utils import all_gather
from config import get_config
from config import update_config
from metrics.fid import FID
parser = argparse.ArgumentParser('Styleformer')
parser.add_argument('-cfg', type=str, default=None)
parser.add_argument('-dataset', type=str, default=None)
parser.add_argument('-batch_size', type=int, default=None)
parser.add_argument('-image_size', type=int, default=None)
parser.add_argument('-data_path', type=str, default=None)
parser.add_argument('-ngpus', type=int, default=None)
parser.add_argument('-pretrained', type=str, default=None)
parser.add_argument('-resume', type=str, default=None)
parser.add_argument('-last_epoch', type=int, default=None)
parser.add_argument('-eval', action='store_true')
parser_args = parser.parse_args()
log_format = "%(asctime)s %(message)s"
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt="%m%d %I:%M:%S %p")
# get default config
config = get_config()
# update config by arguments
config = update_config(config, parser_args)
config.NGPUS = len(paddle.static.cuda_places()) if config.NGPUS == -1 else config.NGPUS
# set output folder
if not config.EVAL:
config.SAVE = '{}/train-{}'.format(config.SAVE, time.strftime('%Y%m%d-%H-%M-%S'))
else:
config.SAVE = '{}/eval-{}'.format(config.SAVE, time.strftime('%Y%m%d-%H-%M-%S'))
#config.freeze()
if not os.path.exists(config.SAVE):
os.makedirs(config.SAVE, exist_ok=True)
# set logging format
logger = logging.getLogger()
file_handler = logging.FileHandler(os.path.join(config.SAVE, 'log.txt'))
file_handler.setFormatter(logging.Formatter(log_format))
logger.addHandler(file_handler)
logger.info(f'config= {config}')
def train(dataloader,
gen,
dis,
z_dim,
gen_optimizer,
dis_optimizer,
epoch,
total_batch,
debug_steps=100):
"""Training for one epoch
Args:
dataloader: paddle.io.DataLoader, dataloader instance
model: nn.Layer, a ViT model
z_dim: int, input dimenstion of generator
criterion: nn.criterion
epoch: int, current epoch
total_epoch: int, total num of epoch, for logging
debug_steps: int, num of iters to log info
Returns:
train_loss_meter.avg
train_acc_meter.avg
train_time
"""
gen.train()
train_loss_meter = AverageMeter()
time_st = time.time()
lambda_gp = 10
# fid = FID()
for batch_id, data in enumerate(dataloader):
dis_optimizer.clear_grad()
real_img = data[0]
batch_size = real_img.shape[0]
noise = paddle.randn([batch_size, z_dim])
fake_img = gen(noise, c=paddle.zeros([0]))
fake_img = (fake_img * 127.5 + 128).clip(0, 255).astype('uint8')
fake_img = fake_img / 255.0
fake_pred = dis(fake_img.detach())
real_pred = dis(real_img)
# fid.update(fake_img, real_img)
# fid_score = fid.accumulate()
# print(fake_pred[0],real_pred[0])
gp = gradient_penalty(dis, real_img, fake_img.detach())
d_loss = -(paddle.mean(real_pred) - paddle.mean(fake_pred)) + lambda_gp * gp
d_loss.backward()
dis_optimizer.step()
for _ in range(5):
gen_optimizer.clear_grad()
noise = paddle.randn([batch_size, z_dim])
gen_img = gen(noise, c=paddle.zeros([0]))
gen_img = (gen_img * 127.5 + 128).clip(0, 255).astype('uint8')
gen_img = gen_img / 255.0
#gen_imgs=paddle.multiply(gen_img,paddle.to_tensor(127.5))
#gen_imgs=paddle.clip(paddle.add(
# gen_imgs,paddle.to_tensor(127.5)).transpose((0,2,3,1)),
# min=0.0,max=255.0).astype('uint8')
fake_pred = dis(gen_img)
g_loss = -paddle.mean(fake_pred)
g_loss.backward()
gen_optimizer.step()
train_loss_meter.update(d_loss.numpy()[0] + g_loss.numpy()[0], batch_size)
if batch_id % debug_steps == 0:
logger.info(
f"Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
f"Step[{batch_id:04d}/{total_batch:04d}], " +
f"D Loss: {d_loss.item():.4f}, " +
f"G Loss: {g_loss.item():.4f}")
train_time = time.time() - time_st
return train_loss_meter.avg, train_time
def r1_penalty(real_pred, real_img):
"""
R1 regularization for discriminator. The core idea is to
penalize the gradient on real data alone: when the
generator distribution produces the true data distribution
and the discriminator is equal to 0 on the data manifold, the
gradient penalty ensures that the discriminator cannot create
a non-zero gradient orthogonal to the data manifold without
suffering a loss in the GAN game.
Ref:
Eq. 9 in Which training methods for GANs do actually converge.
"""
grad_real = paddle.grad(outputs=real_pred.sum(),
inputs=real_img,
create_graph=True)[0]
grad_penalty = (grad_real * grad_real).reshape([grad_real.shape[0],
-1]).sum(1).mean()
return grad_penalty
def validate(dataloader,
model,
z_dim,
batch_size,
total_batch,
num_classes,
max_real_num=None,
max_gen_num=None,
debug_steps=32):
"""Validation for whole dataset
Args:
dataloader: paddle.io.DataLoader, dataloader instance
model: nn.Layer, a ViT model
z_dim: int, input dimenstion of generator
batch_size: int, batch size (used to init FID measturement)
total_epoch: int, total num of epoch, for logging
debug_steps: int, num of iters to log info
Returns:
fid_score: float, fid score
val_time: int, validation time in ms
"""
model.eval()
time_st = time.time()
fid = FID(batch_size)
fid_preds_all = []
fid_gts_all = []
# similar to metric type: fid50k_full, fid50k, etc.
if max_real_num is not None:
max_real_batch = max_real_num // batch_size
else:
max_real_batch = total_batch
if max_gen_num is not None:
max_gen_batch = max_gen_num // batch_size
else:
max_gen_batch = total_batch
with paddle.no_grad():
for batch_id, data in enumerate(dataloader):
if batch_id >= max_real_batch:
break
curr_batch_size = data[0].shape[0]
fid.batch_size = curr_batch_size
real_image = data[0]
z = paddle.randn([curr_batch_size, z_dim])
fake_image = model(z, c=paddle.randint(0, num_classes, [curr_batch_size]))
fake_image = (fake_image * 127.5 + 128).clip(0, 255).astype('uint8')
fake_image = fake_image / 255.0
fid.update(fake_image, real_image)
# if exceed max num of gen, skip gather
if batch_id < max_gen_batch:
# gather all fid related data from other gpus
fid_preds_list = all_gather(fid.preds)
fid_preds = sum(fid_preds_list, [])
fid_preds_all.extend(fid_preds)
fid_gts_list = all_gather(fid.gts)
fid_gts = sum(fid_gts_list, [])
fid_gts_all.extend(fid_gts)
fid.reset()
if batch_id % debug_steps == 0:
if batch_id >= max_gen_batch:
logger.info(f"Val Step[{batch_id:04d}/{total_batch:04d}] done (no gen)")
else:
logger.info(f"Val Step[{batch_id:04d}/{total_batch:04d}] done")
fid.preds = fid_preds_all
fid.gts = fid_gts_all
fid_score = fid.accumulate()
val_time = time.time() - time_st
return fid_score, val_time
def main_worker(*args):
# 0. Preparation
dist.init_parallel_env()
last_epoch = config.TRAIN.LAST_EPOCH
world_size = dist.get_world_size()
local_rank = dist.get_rank()
logger.info(f'----- world_size = {world_size}, local_rank = {local_rank}')
seed = config.SEED + local_rank
paddle.seed(seed)
np.random.seed(seed)
random.seed(seed)
# 1. Create model
gen = Generator(config)
gen = paddle.DataParallel(gen)
# dis = Discriminator(c_dim=0,img_resolution=32,img_channels=3)
dis = StyleGANv2Discriminator(config)
dis = paddle.DataParallel(dis)
# 2. Create train and val dataloader
dataset_train, dataset_val = args[0], args[1]
dataloader_train = get_dataloader(config, dataset_train, 'train', True)
dataloader_val = get_dataloader(config, dataset_val, 'val', True)
total_batch_train = len(dataloader_train)
total_batch_val = len(dataloader_val)
logging.info(f'----- Total # of train batch (single gpu): {total_batch_train}')
logging.info(f'----- Total # of val batch (single gpu): {total_batch_val}')
# 3. Define criterion
# validation criterion (FID) is defined in validate method
# 4. Define lr_scheduler
scheduler = None
if config.TRAIN.LR_SCHEDULER.NAME == "warmupcosine":
scheduler = WarmupCosineScheduler(learning_rate=config.TRAIN.BASE_LR,
warmup_start_lr=config.TRAIN.WARMUP_START_LR,
start_lr=config.TRAIN.BASE_LR,
end_lr=config.TRAIN.END_LR,
warmup_epochs=config.TRAIN.WARMUP_EPOCHS,
total_epochs=config.TRAIN.NUM_EPOCHS,
last_epoch=config.TRAIN.LAST_EPOCH,
)
elif config.TRAIN.LR_SCHEDULER.NAME == "cosine":
scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=config.TRAIN.BASE_LR,
T_max=config.TRAIN.NUM_EPOCHS,
last_epoch=last_epoch)
elif config.scheduler == "multi-step":
milestones = [int(v.strip()) for v in config.TRAIN.LR_SCHEDULER.MILESTONES.split(",")]
scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=config.TRAIN.BASE_LR,
milestones=milestones,
gamma=config.TRAIN.LR_SCHEDULER.DECAY_RATE,
last_epoch=last_epoch)
else:
logging.fatal(f"Unsupported Scheduler: {config.TRAIN.LR_SCHEDULER}.")
raise NotImplementedError(f"Unsupported Scheduler: {config.TRAIN.LR_SCHEDULER}.")
# 5. Define optimizer
if config.TRAIN.OPTIMIZER.NAME == "SGD":
if config.TRAIN.GRAD_CLIP:
clip = paddle.nn.ClipGradByGlobalNorm(config.TRAIN.GRAD_CLIP)
else:
clip = None
gen_optimizer = paddle.optimizer.Momentum(
parameters=gen.parameters(),
learning_rate=scheduler if scheduler is not None else config.TRAIN.BASE_LR,
weight_decay=config.TRAIN.WEIGHT_DECAY,
momentum=config.TRAIN.OPTIMIZER.MOMENTUM,
grad_clip=clip)
dis_optimizer = paddle.optimizer.Momentum(
parameters=dis.parameters(),
learning_rate=scheduler if scheduler is not None else config.TRAIN.BASE_LR,
weight_decay=config.TRAIN.WEIGHT_DECAY,
momentum=config.TRAIN.OPTIMIZER.MOMENTUM,
grad_clip=clip)
elif config.TRAIN.OPTIMIZER.NAME == "Adam":
gen_optimizer = paddle.optimizer.Adam(
parameters=gen.parameters(),
learning_rate=scheduler if scheduler is not None else config.TRAIN.BASE_LR,
beta1=config.TRAIN.OPTIMIZER.BETAS[0],
beta2=config.TRAIN.OPTIMIZER.BETAS[1],
weight_decay=config.TRAIN.WEIGHT_DECAY,
epsilon=config.TRAIN.OPTIMIZER.EPS,
)
dis_optimizer = paddle.optimizer.Adam(
parameters=dis.parameters(),
learning_rate=scheduler if scheduler is not None else config.TRAIN.BASE_LR,
beta1=config.TRAIN.OPTIMIZER.BETAS[0],
beta2=config.TRAIN.OPTIMIZER.BETAS[1],
weight_decay=config.TRAIN.WEIGHT_DECAY,
epsilon=config.TRAIN.OPTIMIZER.EPS,
)
else:
logging.fatal(f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}.")
raise NotImplementedError(f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}.")
# 6. Load pretrained model or load resume model and optimizer states
if config.MODEL.PRETRAINED:
assert os.path.isfile(config.MODEL.PRETRAINED + '.pdparams')
model_state = paddle.load(config.MODEL.PRETRAINED+'.pdparams')
gen.set_dict(model_state["gen_state_dict"])
dis.set_dict(model_state["dis_state_dict"])
logger.info(f"----- Pretrained: Load model state from {config.MODEL.PRETRAINED}")
if config.MODEL.RESUME:
assert os.path.isfile(config.MODEL.RESUME + '.pdparams') is True
assert os.path.isfile(config.MODEL.RESUME + '.pdopt') is True
# load model weights
model_state = paddle.load(config.MODEL.RESUME + '.pdparams')
gen.set_dict(model_state["gen_state_dict"])
dis.set_dict(model_state["dis_state_dict"])
# load optimizer
opt_state = paddle.load(config.MODEL.RESUME + '.pdopt')
gen_optimizer.set_state_dict(opt_state["gen_state_dict"])
dis_optimizer.set_state_dict(opt_state["dis_state_dict"])
logger.info(f"----- Resume: Load model and optmizer from {config.MODEL.RESUME}")
# 7. Validation
if config.EVAL:
logger.info('----- Start Validating')
fid_score, val_time = validate(
dataloader=dataloader_val,
model=gen,
z_dim=config.MODEL.GEN.Z_DIM,
batch_size=config.DATA.BATCH_SIZE,
total_batch=total_batch_val,
num_classes=config.MODEL.NUM_CLASSES,
max_real_num=config.DATA.MAX_REAL_NUM // config.NGPUS if config.DATA.MAX_REAL_NUM else None,
max_gen_num=config.DATA.MAX_GEN_NUM // config.NGPUS if config.DATA.MAX_GEN_NUM else None,
debug_steps=config.REPORT_FREQ)
logger.info(f" ----- FID: {fid_score:.4f}, time: {val_time:.2f}")
return
# 8. Start training and validation
logging.info(f"Start training from epoch {last_epoch+1}.")
for epoch in range(last_epoch+1, config.TRAIN.NUM_EPOCHS+1):
# train
logging.info(f"Now training epoch {epoch}. LR={gen_optimizer.get_lr():.6f}")
train_loss, train_time = train(dataloader=dataloader_train,
gen=gen,
dis=dis,
gen_optimizer=gen_optimizer,
dis_optimizer=dis_optimizer,
z_dim=config.MODEL.GEN.Z_DIM,
epoch=epoch,
total_batch=total_batch_train,
debug_steps=config.REPORT_FREQ)
scheduler.step()
logger.info(f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
f"Train Loss: {train_loss:.4f}, " +
f"time: {train_time:.2f}")
# validation
if epoch % config.VALIDATE_FREQ == 0 or epoch == config.TRAIN.NUM_EPOCHS:
logger.info(f'----- Validation after Epoch: {epoch}')
fid_score, val_time = validate(
dataloader=dataloader_val,
model=gen,
z_dim=config.MODEL.GEN.Z_DIM,
batch_size=config.DATA.BATCH_SIZE,
total_batch=total_batch_val,
num_classes=config.MODEL.NUM_CLASSES,
max_real_num=config.DATA.MAX_REAL_NUM // config.NGPUS if config.DATA.MAX_REAL_NUM else None,
max_gen_num=config.DATA.MAX_GEN_NUM // config.NGPUS if config.DATA.MAX_GEN_NUM else None,
debug_steps=config.REPORT_FREQ)
logger.info(f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
f"Validation FID: {fid_score:.4f}, " +
f"time: {val_time:.2f}")
# model save
if local_rank == 0:
if epoch % config.SAVE_FREQ == 0 or epoch == config.TRAIN.NUM_EPOCHS:
model_path = os.path.join(
config.SAVE, f"{config.MODEL.TYPE}-Epoch-{epoch}-Loss-{train_loss}")
paddle.save({"gen_state_dict":gen.state_dict(),
"dis_state_dict":dis.state_dict()}, model_path + '.pdparams')
paddle.save({"gen_state_dict":gen_optimizer.state_dict(),
"dis_state_dict":dis_optimizer.state_dict()}, model_path + '.pdopt')
logger.info(f"----- Save model: {model_path}.pdparams")
logger.info(f"----- Save optim: {model_path}.pdopt")
def main():
dataset_train = get_dataset(config, mode='train')
dataset_val = get_dataset(config, mode='val')
dist.spawn(main_worker, args=(dataset_train, dataset_val, ), nprocs=config.NGPUS)
if __name__ == "__main__":
main()