forked from sebastiankmiec/NinaTools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathninapro_example.py
33 lines (22 loc) · 1.2 KB
/
ninapro_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from ninaeval.config import config_parser, config_setup
from ninaeval.utils.nina_data import NinaDataParser
DATA_PATH = "all_data/"
MODEL_PATH = "all_models/"
def main():
# Reads JSON file via --json, or command line arguments:
config_param = config_parser.parse_config()
feat_extractor = config_setup.get_feat_extract(config_param.features)()
classifier = config_setup.get_model(config_param.model)(MODEL_PATH, feat_extractor)
dataset = config_setup.get_dataset(config_param.data)(DATA_PATH, feat_extractor, False)
if not dataset.load_dataset():
data_parser = NinaDataParser(DATA_PATH)
print("Loading Ninapro data from processed directory...")
loaded_nina = data_parser.load_processed_data()
print("Extracting dataset features for training, and testing...")
dataset.create_dataset(loaded_nina)
print("Training classifier on training dataset...")
classifier.train_model(dataset.train_features, dataset.train_labels, dataset.test_features, dataset.test_labels)
print("Testing classifier on testing dataset...")
print(classifier.perform_inference(dataset.test_features, dataset.test_labels))
if __name__ == "__main__":
main()