-
Notifications
You must be signed in to change notification settings - Fork 56
/
Complexity.py
115 lines (97 loc) · 4.7 KB
/
Complexity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from copy import copy as copy
from numpy import dot as dot
from numpy import histogram as histogram
from numpy import zeros as zeros
from scipy.special import gammaincc as gammaincc
class ComplexityTest:
@staticmethod
def linear_complexity_test(binary_data:str, verbose=False, block_size=500):
"""
Note that this description is taken from the NIST documentation [1]
[1] http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
The focus of this test is the length of a linear feedback shift register (LFSR). The purpose of this test is to
determine whether or not the sequence is complex enough to be considered random. Random sequences are
characterized by longer LFSRs. An LFSR that is too short implies non-randomness.
:param binary_data: a binary string
:param verbose True to display the debug messgae, False to turn off debug message
:param block_size: Size of the block
:return: (p_value, bool) A tuple which contain the p_value and result of frequency_test(True or False)
"""
length_of_binary_data = len(binary_data)
# The number of degrees of freedom;
# K = 6 has been hard coded into the test.
degree_of_freedom = 6
# π0 = 0.010417, π1 = 0.03125, π2 = 0.125, π3 = 0.5, π4 = 0.25, π5 = 0.0625, π6 = 0.020833
# are the probabilities computed by the equations in Section 3.10
pi = [0.01047, 0.03125, 0.125, 0.5, 0.25, 0.0625, 0.020833]
t2 = (block_size / 3.0 + 2.0 / 9) / 2 ** block_size
mean = 0.5 * block_size + (1.0 / 36) * (9 + (-1) ** (block_size + 1)) - t2
number_of_block = int(length_of_binary_data / block_size)
if number_of_block > 1:
block_end = block_size
block_start = 0
blocks = []
for i in range(number_of_block):
blocks.append(binary_data[block_start:block_end])
block_start += block_size
block_end += block_size
complexities = []
for block in blocks:
complexities.append(ComplexityTest.berlekamp_massey_algorithm(block))
t = ([-1.0 * (((-1) ** block_size) * (chunk - mean) + 2.0 / 9) for chunk in complexities])
vg = histogram(t, bins=[-9999999999, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 9999999999])[0][::-1]
im = ([((vg[ii] - number_of_block * pi[ii]) ** 2) / (number_of_block * pi[ii]) for ii in range(7)])
xObs = 0.0
for i in range(len(pi)):
xObs += im[i]
# P-Value = igamc(K/2, xObs/2)
p_value = gammaincc(degree_of_freedom / 2.0, xObs / 2.0)
if verbose:
print('Linear Complexity Test DEBUG BEGIN:')
print("\tLength of input:\t", length_of_binary_data)
print('\tLength in bits of a block:\t', )
print("\tDegree of Freedom:\t\t", degree_of_freedom)
print('\tNumber of Blocks:\t', number_of_block)
print('\tValue of Vs:\t\t', vg)
print('\txObs:\t\t\t\t', xObs)
print('\tP-Value:\t\t\t', p_value)
print('DEBUG END.')
return (p_value, (p_value >= 0.01))
else:
return (-1.0, False)
@staticmethod
def berlekamp_massey_algorithm(block_data):
"""
An implementation of the Berlekamp Massey Algorithm. Taken from Wikipedia [1]
[1] - https://en.wikipedia.org/wiki/Berlekamp-Massey_algorithm
The Berlekamp–Massey algorithm is an algorithm that will find the shortest linear feedback shift register (LFSR)
for a given binary output sequence. The algorithm will also find the minimal polynomial of a linearly recurrent
sequence in an arbitrary field. The field requirement means that the Berlekamp–Massey algorithm requires all
non-zero elements to have a multiplicative inverse.
:param block_data:
:return:
"""
n = len(block_data)
c = zeros(n)
b = zeros(n)
c[0], b[0] = 1, 1
l, m, i = 0, -1, 0
int_data = [int(el) for el in block_data]
while i < n:
v = int_data[(i - l):i]
v = v[::-1]
cc = c[1:l + 1]
d = (int_data[i] + dot(v, cc)) % 2
if d == 1:
temp = copy(c)
p = zeros(n)
for j in range(0, l):
if b[j] == 1:
p[j + i - m] = 1
c = (c + p) % 2
if l <= 0.5 * i:
l = i + 1 - l
m = i
b = temp
i += 1
return l