-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathsim-safe.c
358 lines (303 loc) · 12.1 KB
/
sim-safe.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/* sim-safe.c - sample functional simulator implementation */
/* SimpleScalar(TM) Tool Suite
* Copyright (C) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.
* All Rights Reserved.
*
* THIS IS A LEGAL DOCUMENT, BY USING SIMPLESCALAR,
* YOU ARE AGREEING TO THESE TERMS AND CONDITIONS.
*
* No portion of this work may be used by any commercial entity, or for any
* commercial purpose, without the prior, written permission of SimpleScalar,
* LLC ([email protected]). Nonprofit and noncommercial use is permitted
* as described below.
*
* 1. SimpleScalar is provided AS IS, with no warranty of any kind, express
* or implied. The user of the program accepts full responsibility for the
* application of the program and the use of any results.
*
* 2. Nonprofit and noncommercial use is encouraged. SimpleScalar may be
* downloaded, compiled, executed, copied, and modified solely for nonprofit,
* educational, noncommercial research, and noncommercial scholarship
* purposes provided that this notice in its entirety accompanies all copies.
* Copies of the modified software can be delivered to persons who use it
* solely for nonprofit, educational, noncommercial research, and
* noncommercial scholarship purposes provided that this notice in its
* entirety accompanies all copies.
*
* 3. ALL COMMERCIAL USE, AND ALL USE BY FOR PROFIT ENTITIES, IS EXPRESSLY
* PROHIBITED WITHOUT A LICENSE FROM SIMPLESCALAR, LLC ([email protected]).
*
* 4. No nonprofit user may place any restrictions on the use of this software,
* including as modified by the user, by any other authorized user.
*
* 5. Noncommercial and nonprofit users may distribute copies of SimpleScalar
* in compiled or executable form as set forth in Section 2, provided that
* either: (A) it is accompanied by the corresponding machine-readable source
* code, or (B) it is accompanied by a written offer, with no time limit, to
* give anyone a machine-readable copy of the corresponding source code in
* return for reimbursement of the cost of distribution. This written offer
* must permit verbatim duplication by anyone, or (C) it is distributed by
* someone who received only the executable form, and is accompanied by a
* copy of the written offer of source code.
*
* 6. SimpleScalar was developed by Todd M. Austin, Ph.D. The tool suite is
* currently maintained by SimpleScalar LLC ([email protected]). US Mail:
* 2395 Timbercrest Court, Ann Arbor, MI 48105.
*
* Copyright (C) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "host.h"
#include "misc.h"
#include "machine.h"
#include "regs.h"
#include "memory.h"
#include "loader.h"
#include "syscall.h"
#include "dlite.h"
#include "options.h"
#include "stats.h"
#include "sim.h"
/*
* This file implements a functional simulator. This functional simulator is
* the simplest, most user-friendly simulator in the simplescalar tool set.
* Unlike sim-fast, this functional simulator checks for all instruction
* errors, and the implementation is crafted for clarity rather than speed.
*/
/* simulated registers */
static struct regs_t regs;
/* simulated memory */
static struct mem_t *mem = NULL;
/* track number of refs */
static counter_t sim_num_refs = 0;
/* maximum number of inst's to execute */
static unsigned int max_insts;
/* register simulator-specific options */
void
sim_reg_options(struct opt_odb_t *odb)
{
opt_reg_header(odb,
"sim-safe: This simulator implements a functional simulator. This\n"
"functional simulator is the simplest, most user-friendly simulator in the\n"
"simplescalar tool set. Unlike sim-fast, this functional simulator checks\n"
"for all instruction errors, and the implementation is crafted for clarity\n"
"rather than speed.\n"
);
/* instruction limit */
opt_reg_uint(odb, "-max:inst", "maximum number of inst's to execute",
&max_insts, /* default */0,
/* print */TRUE, /* format */NULL);
}
/* check simulator-specific option values */
void
sim_check_options(struct opt_odb_t *odb, int argc, char **argv)
{
/* nada */
}
/* register simulator-specific statistics */
void
sim_reg_stats(struct stat_sdb_t *sdb)
{
stat_reg_counter(sdb, "sim_num_insn",
"total number of instructions executed",
&sim_num_insn, sim_num_insn, NULL);
stat_reg_counter(sdb, "sim_num_refs",
"total number of loads and stores executed",
&sim_num_refs, 0, NULL);
stat_reg_int(sdb, "sim_elapsed_time",
"total simulation time in seconds",
&sim_elapsed_time, 0, NULL);
stat_reg_formula(sdb, "sim_inst_rate",
"simulation speed (in insts/sec)",
"sim_num_insn / sim_elapsed_time", NULL);
ld_reg_stats(sdb);
mem_reg_stats(mem, sdb);
}
/* initialize the simulator */
void
sim_init(void)
{
sim_num_refs = 0;
/* allocate and initialize register file */
regs_init(®s);
/* allocate and initialize memory space */
mem = mem_create("mem");
mem_init(mem);
}
/* load program into simulated state */
void
sim_load_prog(char *fname, /* program to load */
int argc, char **argv, /* program arguments */
char **envp) /* program environment */
{
/* load program text and data, set up environment, memory, and regs */
ld_load_prog(fname, argc, argv, envp, ®s, mem, TRUE);
/* initialize the DLite debugger */
dlite_init(md_reg_obj, dlite_mem_obj, dlite_mstate_obj);
}
/* print simulator-specific configuration information */
void
sim_aux_config(FILE *stream) /* output stream */
{
/* nothing currently */
}
/* dump simulator-specific auxiliary simulator statistics */
void
sim_aux_stats(FILE *stream) /* output stream */
{
/* nada */
}
/* un-initialize simulator-specific state */
void
sim_uninit(void)
{
/* nada */
}
/*
* configure the execution engine
*/
/*
* precise architected register accessors
*/
/* next program counter */
#define SET_NPC(EXPR) (regs.regs_NPC = (EXPR))
/* current program counter */
#define CPC (regs.regs_PC)
/* general purpose registers */
#define GPR(N) (regs.regs_R[N])
#define SET_GPR(N,EXPR) (regs.regs_R[N] = (EXPR))
#if defined(TARGET_PISA)
/* floating point registers, L->word, F->single-prec, D->double-prec */
#define FPR_L(N) (regs.regs_F.l[(N)])
#define SET_FPR_L(N,EXPR) (regs.regs_F.l[(N)] = (EXPR))
#define FPR_F(N) (regs.regs_F.f[(N)])
#define SET_FPR_F(N,EXPR) (regs.regs_F.f[(N)] = (EXPR))
#define FPR_D(N) (regs.regs_F.d[(N) >> 1])
#define SET_FPR_D(N,EXPR) (regs.regs_F.d[(N) >> 1] = (EXPR))
/* miscellaneous register accessors */
#define SET_HI(EXPR) (regs.regs_C.hi = (EXPR))
#define HI (regs.regs_C.hi)
#define SET_LO(EXPR) (regs.regs_C.lo = (EXPR))
#define LO (regs.regs_C.lo)
#define FCC (regs.regs_C.fcc)
#define SET_FCC(EXPR) (regs.regs_C.fcc = (EXPR))
#elif defined(TARGET_ALPHA)
/* floating point registers, L->word, F->single-prec, D->double-prec */
#define FPR_Q(N) (regs.regs_F.q[N])
#define SET_FPR_Q(N,EXPR) (regs.regs_F.q[N] = (EXPR))
#define FPR(N) (regs.regs_F.d[(N)])
#define SET_FPR(N,EXPR) (regs.regs_F.d[(N)] = (EXPR))
/* miscellaneous register accessors */
#define FPCR (regs.regs_C.fpcr)
#define SET_FPCR(EXPR) (regs.regs_C.fpcr = (EXPR))
#define UNIQ (regs.regs_C.uniq)
#define SET_UNIQ(EXPR) (regs.regs_C.uniq = (EXPR))
#else
#error No ISA target defined...
#endif
/* precise architected memory state accessor macros */
#define READ_BYTE(SRC, FAULT) \
((FAULT) = md_fault_none, addr = (SRC), MEM_READ_BYTE(mem, addr))
#define READ_HALF(SRC, FAULT) \
((FAULT) = md_fault_none, addr = (SRC), MEM_READ_HALF(mem, addr))
#define READ_WORD(SRC, FAULT) \
((FAULT) = md_fault_none, addr = (SRC), MEM_READ_WORD(mem, addr))
#ifdef HOST_HAS_QWORD
#define READ_QWORD(SRC, FAULT) \
((FAULT) = md_fault_none, addr = (SRC), MEM_READ_QWORD(mem, addr))
#endif /* HOST_HAS_QWORD */
#define WRITE_BYTE(SRC, DST, FAULT) \
((FAULT) = md_fault_none, addr = (DST), MEM_WRITE_BYTE(mem, addr, (SRC)))
#define WRITE_HALF(SRC, DST, FAULT) \
((FAULT) = md_fault_none, addr = (DST), MEM_WRITE_HALF(mem, addr, (SRC)))
#define WRITE_WORD(SRC, DST, FAULT) \
((FAULT) = md_fault_none, addr = (DST), MEM_WRITE_WORD(mem, addr, (SRC)))
#ifdef HOST_HAS_QWORD
#define WRITE_QWORD(SRC, DST, FAULT) \
((FAULT) = md_fault_none, addr = (DST), MEM_WRITE_QWORD(mem, addr, (SRC)))
#endif /* HOST_HAS_QWORD */
/* system call handler macro */
#define SYSCALL(INST) sys_syscall(®s, mem_access, mem, INST, TRUE)
/* start simulation, program loaded, processor precise state initialized */
void
sim_main(void)
{
md_inst_t inst;
register md_addr_t addr;
enum md_opcode op;
register int is_write;
enum md_fault_type fault;
fprintf(stderr, "sim: ** starting functional simulation **\n");
/* set up initial default next PC */
regs.regs_NPC = regs.regs_PC + sizeof(md_inst_t);
/* check for DLite debugger entry condition */
if (dlite_check_break(regs.regs_PC, /* !access */0, /* addr */0, 0, 0))
dlite_main(regs.regs_PC - sizeof(md_inst_t),
regs.regs_PC, sim_num_insn, ®s, mem);
while (TRUE)
{
/* maintain $r0 semantics */
regs.regs_R[MD_REG_ZERO] = 0;
#ifdef TARGET_ALPHA
regs.regs_F.d[MD_REG_ZERO] = 0.0;
#endif /* TARGET_ALPHA */
/* get the next instruction to execute */
MD_FETCH_INST(inst, mem, regs.regs_PC);
/* keep an instruction count */
sim_num_insn++;
/* set default reference address and access mode */
addr = 0; is_write = FALSE;
/* set default fault - none */
fault = md_fault_none;
/* decode the instruction */
MD_SET_OPCODE(op, inst);
/* execute the instruction */
switch (op)
{
#define DEFINST(OP,MSK,NAME,OPFORM,RES,FLAGS,O1,O2,I1,I2,I3) \
case OP: \
SYMCAT(OP,_IMPL); \
break;
#define DEFLINK(OP,MSK,NAME,MASK,SHIFT) \
case OP: \
panic("attempted to execute a linking opcode");
#define CONNECT(OP)
#define DECLARE_FAULT(FAULT) \
{ fault = (FAULT); break; }
#include "machine.def"
default:
panic("attempted to execute a bogus opcode");
}
if (fault != md_fault_none)
fatal("fault (%d) detected @ 0x%08p", fault, regs.regs_PC);
if (verbose)
{
myfprintf(stderr, "%10n [xor: 0x%08x] @ 0x%08p: ",
sim_num_insn, md_xor_regs(®s), regs.regs_PC);
md_print_insn(inst, regs.regs_PC, stderr);
if (MD_OP_FLAGS(op) & F_MEM)
myfprintf(stderr, " mem: 0x%08p", addr);
fprintf(stderr, "\n");
/* fflush(stderr); */
}
if (MD_OP_FLAGS(op) & F_MEM)
{
sim_num_refs++;
if (MD_OP_FLAGS(op) & F_STORE)
is_write = TRUE;
}
/* check for DLite debugger entry condition */
if (dlite_check_break(regs.regs_NPC,
is_write ? ACCESS_WRITE : ACCESS_READ,
addr, sim_num_insn, sim_num_insn))
dlite_main(regs.regs_PC, regs.regs_NPC, sim_num_insn, ®s, mem);
/* go to the next instruction */
regs.regs_PC = regs.regs_NPC;
regs.regs_NPC += sizeof(md_inst_t);
/* finish early? */
if (max_insts && sim_num_insn >= max_insts)
return;
}
}