-
Notifications
You must be signed in to change notification settings - Fork 10
/
memory.c
566 lines (482 loc) · 18.1 KB
/
memory.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
/* memory.c - flat memory space routines */
/* SimpleScalar(TM) Tool Suite
* Copyright (C) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.
* All Rights Reserved.
*
* THIS IS A LEGAL DOCUMENT, BY USING SIMPLESCALAR,
* YOU ARE AGREEING TO THESE TERMS AND CONDITIONS.
*
* No portion of this work may be used by any commercial entity, or for any
* commercial purpose, without the prior, written permission of SimpleScalar,
* LLC ([email protected]). Nonprofit and noncommercial use is permitted
* as described below.
*
* 1. SimpleScalar is provided AS IS, with no warranty of any kind, express
* or implied. The user of the program accepts full responsibility for the
* application of the program and the use of any results.
*
* 2. Nonprofit and noncommercial use is encouraged. SimpleScalar may be
* downloaded, compiled, executed, copied, and modified solely for nonprofit,
* educational, noncommercial research, and noncommercial scholarship
* purposes provided that this notice in its entirety accompanies all copies.
* Copies of the modified software can be delivered to persons who use it
* solely for nonprofit, educational, noncommercial research, and
* noncommercial scholarship purposes provided that this notice in its
* entirety accompanies all copies.
*
* 3. ALL COMMERCIAL USE, AND ALL USE BY FOR PROFIT ENTITIES, IS EXPRESSLY
* PROHIBITED WITHOUT A LICENSE FROM SIMPLESCALAR, LLC ([email protected]).
*
* 4. No nonprofit user may place any restrictions on the use of this software,
* including as modified by the user, by any other authorized user.
*
* 5. Noncommercial and nonprofit users may distribute copies of SimpleScalar
* in compiled or executable form as set forth in Section 2, provided that
* either: (A) it is accompanied by the corresponding machine-readable source
* code, or (B) it is accompanied by a written offer, with no time limit, to
* give anyone a machine-readable copy of the corresponding source code in
* return for reimbursement of the cost of distribution. This written offer
* must permit verbatim duplication by anyone, or (C) it is distributed by
* someone who received only the executable form, and is accompanied by a
* copy of the written offer of source code.
*
* 6. SimpleScalar was developed by Todd M. Austin, Ph.D. The tool suite is
* currently maintained by SimpleScalar LLC ([email protected]). US Mail:
* 2395 Timbercrest Court, Ann Arbor, MI 48105.
*
* Copyright (C) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.
*/
#include <stdio.h>
#include <stdlib.h>
#include "host.h"
#include "misc.h"
#include "machine.h"
#include "options.h"
#include "stats.h"
#include "memory.h"
/* create a flat memory space */
struct mem_t *
mem_create(char *name) /* name of the memory space */
{
struct mem_t *mem;
mem = calloc(1, sizeof(struct mem_t));
if (!mem)
fatal("out of virtual memory");
mem->name = mystrdup(name);
return mem;
}
/* translate address ADDR in memory space MEM, returns pointer to host page */
byte_t *
mem_translate(struct mem_t *mem, /* memory space to access */
md_addr_t addr) /* virtual address to translate */
{
struct mem_pte_t *pte, *prev;
/* got here via a first level miss in the page tables */
mem->ptab_misses++; mem->ptab_accesses++;
/* locate accessed PTE */
for (prev=NULL, pte=mem->ptab[MEM_PTAB_SET(addr)];
pte != NULL;
prev=pte, pte=pte->next)
{
if (pte->tag == MEM_PTAB_TAG(addr))
{
/* move this PTE to head of the bucket list */
if (prev)
{
prev->next = pte->next;
pte->next = mem->ptab[MEM_PTAB_SET(addr)];
mem->ptab[MEM_PTAB_SET(addr)] = pte;
}
return pte->page;
}
}
/* no translation found, return NULL */
return NULL;
}
/* allocate a memory page */
void
mem_newpage(struct mem_t *mem, /* memory space to allocate in */
md_addr_t addr) /* virtual address to allocate */
{
byte_t *page;
struct mem_pte_t *pte;
/* see misc.c for details on the getcore() function */
page = getcore(MD_PAGE_SIZE);
if (!page)
fatal("out of virtual memory");
/* generate a new PTE */
pte = calloc(1, sizeof(struct mem_pte_t));
if (!pte)
fatal("out of virtual memory");
pte->tag = MEM_PTAB_TAG(addr);
pte->page = page;
/* insert PTE into inverted hash table */
pte->next = mem->ptab[MEM_PTAB_SET(addr)];
mem->ptab[MEM_PTAB_SET(addr)] = pte;
/* one more page allocated */
mem->page_count++;
}
/* generic memory access function, it's safe because alignments and permissions
are checked, handles any natural transfer sizes; note, faults out if nbytes
is not a power-of-two or larger then MD_PAGE_SIZE */
enum md_fault_type
mem_access(struct mem_t *mem, /* memory space to access */
enum mem_cmd cmd, /* Read (from sim mem) or Write */
md_addr_t addr, /* target address to access */
void *vp, /* host memory address to access */
int nbytes) /* number of bytes to access */
{
byte_t *p = vp;
/* check alignments */
if (/* check size */(nbytes & (nbytes-1)) != 0
|| /* check max size */nbytes > MD_PAGE_SIZE)
return md_fault_access;
if (/* check natural alignment */(addr & (nbytes-1)) != 0)
return md_fault_alignment;
/* perform the copy */
{
if (cmd == Read)
{
while (nbytes-- > 0)
{
*((byte_t *)p) = MEM_READ_BYTE(mem, addr);
p += sizeof(byte_t);
addr += sizeof(byte_t);
}
}
else
{
while (nbytes-- > 0)
{
MEM_WRITE_BYTE(mem, addr, *((byte_t *)p));
p += sizeof(byte_t);
addr += sizeof(byte_t);
}
}
}
#if 0
switch (nbytes)
{
case 1:
if (cmd == Read)
*((byte_t *)p) = MEM_READ_BYTE(mem, addr);
else
MEM_WRITE_BYTE(mem, addr, *((byte_t *)p));
break;
case 2:
if (cmd == Read)
*((half_t *)p) = MEM_READ_HALF(mem, addr);
else
MEM_WRITE_HALF(mem, addr, *((half_t *)p));
break;
case 4:
if (cmd == Read)
*((word_t *)p) = MEM_READ_WORD(mem, addr);
else
MEM_WRITE_WORD(mem, addr, *((word_t *)p));
break;
#ifdef HOST_HAS_QWORD
case 8:
if (cmd == Read)
*((qword_t *)p) = MEM_READ_QWORD(mem, addr);
else
MEM_WRITE_QWORD(mem, addr, *((qword_t *)p));
break;
#endif /* HOST_HAS_QWORD */
default:
break;
}
#endif
/* no fault... */
return md_fault_none;
}
/* register memory system-specific statistics */
void
mem_reg_stats(struct mem_t *mem, /* memory space to declare */
struct stat_sdb_t *sdb) /* stats data base */
{
char buf[512], buf1[512];
sprintf(buf, "%s.page_count", mem->name);
stat_reg_counter(sdb, buf, "total number of pages allocated",
&mem->page_count, mem->page_count, NULL);
sprintf(buf, "%s.page_mem", mem->name);
sprintf(buf1, "%s.page_count * %d / 1024", mem->name, MD_PAGE_SIZE);
stat_reg_formula(sdb, buf, "total size of memory pages allocated",
buf1, "%11.0fk");
sprintf(buf, "%s.ptab_misses", mem->name);
stat_reg_counter(sdb, buf, "total first level page table misses",
&mem->ptab_misses, mem->ptab_misses, NULL);
sprintf(buf, "%s.ptab_accesses", mem->name);
stat_reg_counter(sdb, buf, "total page table accesses",
&mem->ptab_accesses, mem->ptab_accesses, NULL);
sprintf(buf, "%s.ptab_miss_rate", mem->name);
sprintf(buf1, "%s.ptab_misses / %s.ptab_accesses", mem->name, mem->name);
stat_reg_formula(sdb, buf, "first level page table miss rate", buf1, NULL);
}
/* initialize memory system, call before loader.c */
void
mem_init(struct mem_t *mem) /* memory space to initialize */
{
int i;
/* initialize the first level page table to all empty */
for (i=0; i < MEM_PTAB_SIZE; i++)
mem->ptab[i] = NULL;
mem->page_count = 0;
mem->ptab_misses = 0;
mem->ptab_accesses = 0;
}
/* dump a block of memory, returns any faults encountered */
enum md_fault_type
mem_dump(struct mem_t *mem, /* memory space to display */
md_addr_t addr, /* target address to dump */
int len, /* number bytes to dump */
FILE *stream) /* output stream */
{
int data;
enum md_fault_type fault;
if (!stream)
stream = stderr;
addr &= ~sizeof(word_t);
len = (len + (sizeof(word_t) - 1)) & ~sizeof(word_t);
while (len-- > 0)
{
fault = mem_access(mem, Read, addr, &data, sizeof(word_t));
if (fault != md_fault_none)
return fault;
myfprintf(stream, "0x%08p: %08x\n", addr, data);
addr += sizeof(word_t);
}
/* no faults... */
return md_fault_none;
}
/* copy a '\0' terminated string to/from simulated memory space, returns
the number of bytes copied, returns any fault encountered */
enum md_fault_type
mem_strcpy(mem_access_fn mem_fn, /* user-specified memory accessor */
struct mem_t *mem, /* memory space to access */
enum mem_cmd cmd, /* Read (from sim mem) or Write */
md_addr_t addr, /* target address to access */
char *s)
{
int n = 0;
char c;
enum md_fault_type fault;
switch (cmd)
{
case Read:
/* copy until string terminator ('\0') is encountered */
do {
fault = mem_fn(mem, Read, addr++, &c, 1);
if (fault != md_fault_none)
return fault;
*s++ = c;
n++;
} while (c);
break;
case Write:
/* copy until string terminator ('\0') is encountered */
do {
c = *s++;
fault = mem_fn(mem, Write, addr++, &c, 1);
if (fault != md_fault_none)
return fault;
n++;
} while (c);
break;
default:
return md_fault_internal;
}
/* no faults... */
return md_fault_none;
}
/* copy NBYTES to/from simulated memory space, returns any faults */
enum md_fault_type
mem_bcopy(mem_access_fn mem_fn, /* user-specified memory accessor */
struct mem_t *mem, /* memory space to access */
enum mem_cmd cmd, /* Read (from sim mem) or Write */
md_addr_t addr, /* target address to access */
void *vp, /* host memory address to access */
int nbytes)
{
byte_t *p = vp;
enum md_fault_type fault;
/* copy NBYTES bytes to/from simulator memory */
while (nbytes-- > 0)
{
fault = mem_fn(mem, cmd, addr++, p++, 1);
if (fault != md_fault_none)
return fault;
}
/* no faults... */
return md_fault_none;
}
/* copy NBYTES to/from simulated memory space, NBYTES must be a multiple
of 4 bytes, this function is faster than mem_bcopy(), returns any
faults encountered */
enum md_fault_type
mem_bcopy4(mem_access_fn mem_fn, /* user-specified memory accessor */
struct mem_t *mem, /* memory space to access */
enum mem_cmd cmd, /* Read (from sim mem) or Write */
md_addr_t addr, /* target address to access */
void *vp, /* host memory address to access */
int nbytes)
{
byte_t *p = vp;
int words = nbytes >> 2; /* note: nbytes % 2 == 0 is assumed */
enum md_fault_type fault;
while (words-- > 0)
{
fault = mem_fn(mem, cmd, addr, p, sizeof(word_t));
if (fault != md_fault_none)
return fault;
addr += sizeof(word_t);
p += sizeof(word_t);
}
/* no faults... */
return md_fault_none;
}
/* zero out NBYTES of simulated memory, returns any faults encountered */
enum md_fault_type
mem_bzero(mem_access_fn mem_fn, /* user-specified memory accessor */
struct mem_t *mem, /* memory space to access */
md_addr_t addr, /* target address to access */
int nbytes)
{
byte_t c = 0;
enum md_fault_type fault;
/* zero out NBYTES of simulator memory */
while (nbytes-- > 0)
{
fault = mem_fn(mem, Write, addr++, &c, 1);
if (fault != md_fault_none)
return fault;
}
/* no faults... */
return md_fault_none;
}
#if 0
/*
* The SimpleScalar virtual memory address space is 2^31 bytes mapped from
* 0x00000000 to 0x7fffffff. The upper 2^31 bytes are currently reserved for
* future developments. The address space from 0x00000000 to 0x00400000 is
* currently unused. The address space from 0x00400000 to 0x10000000 is used
* to map the program text (code), although accessing any memory outside of
* the defined program space causes an error to be declared. The address
* space from 0x10000000 to "mem_brk_point" is used for the program data
* segment. This section of the address space is initially set to contain the
* initialized data segment and then the uninitialized data segment.
* "mem_brk_point" then grows to higher memory when sbrk() is called to
* service heap growth. The data segment can continue to expand until it
* collides with the stack segment. The stack segment starts at 0x7fffc000
* and grows to lower memory as more stack space is allocated. Initially,
* the stack contains program arguments and environment variables (see
* loader.c for details on initial stack layout). The stack may continue to
* expand to lower memory until it collides with the data segment.
*
* The SimpleScalar virtual memory address space is implemented with a
* one level page table, where the first level table contains MEM_TABLE_SIZE
* pointers to MEM_BLOCK_SIZE byte pages in the second level table. Pages
* are allocated in MEM_BLOCK_SIZE size chunks when first accessed, the initial
* value of page memory is all zero.
*
* Graphically, it all looks like this:
*
* Virtual Level 1 Host Memory Pages
* Address Page (allocated as needed)
* Space Table
* 0x00000000 +----------+ +-+ +-------------------+
* | unused | | |----->| memory page (64k) |
* 0x00400000 +----------+ +-+ +-------------------+
* | | | |
* | text | +-+
* | | | |
* 0x10000000 +----------+ +-+
* | | | |
* | data seg | +-+ +-------------------+
* | | | |----->| memory page (64k) |
* mem_brk_point +----------+ +-+ +-------------------+
* | | | |
* | | +-+
* | | | |
* regs_R[29] +----------+ +-+
* (stack ptr) | | | |
* | stack | +-+
* | | | |
* 0x7fffc000 +----------+ +-+ +-------------------+
* | unsed | | |----->| memory page (64k) |
* 0x7fffffff +----------+ +-+ +-------------------+
*/
/* top of the data segment, sbrk() moves this to higher memory */
extern SS_ADDR_TYPE mem_brk_point;
/* lowest address accessed on the stack */
extern SS_ADDR_TYPE mem_stack_min;
/*
* memory page table defs
*/
/* memory indirect table size (upper mem is not used) */
#define MEM_TABLE_SIZE 0x8000 /* was: 0x7fff */
#ifndef HIDE_MEM_TABLE_DEF /* used by sim-fast.c */
/* the level 1 page table map */
extern char *mem_table[MEM_TABLE_SIZE];
#endif /* HIDE_MEM_TABLE_DEF */
/* memory block size, in bytes */
#define MEM_BLOCK_SIZE 0x10000
/* check permissions, no probes allowed into undefined segment regions */
if (!(/* text access and a read */
(addr >= ld_text_base && addr < (ld_text_base+ld_text_size)
&& cmd == Read)
/* data access within bounds */
|| (addr >= ld_data_base && addr < ld_stack_base)))
fatal("access error: segmentation violation, addr 0x%08p", addr);
/* track the minimum SP for memory access stats */
if (addr > mem_brk_point && addr < mem_stack_min)
mem_stack_min = addr;
/* determines if the memory access is valid, returns error str or NULL */
char * /* error string, or NULL */
mem_valid(struct mem_t *mem, /* memory space to probe */
enum mem_cmd cmd, /* Read (from sim'ed mem) or Write */
md_addr_t addr, /* target address to access */
int nbytes, /* number of bytes to access */
int declare); /* declare any detected error? */
/* determines if the memory access is valid, returns error str or NULL */
char * /* error string, or NULL */
mem_valid(enum mem_cmd cmd, /* Read (from sim mem) or Write */
SS_ADDR_TYPE addr, /* target address to access */
int nbytes, /* number of bytes to access */
int declare) /* declare the error if detected? */
{
char *err_str = NULL;
/* check alignments */
if ((nbytes & (nbytes-1)) != 0 || (addr & (nbytes-1)) != 0)
{
err_str = "bad size or alignment";
}
/* check permissions, no probes allowed into undefined segment regions */
else if (!(/* text access and a read */
(addr >= ld_text_base && addr < (ld_text_base+ld_text_size)
&& cmd == Read)
/* data access within bounds */
|| (addr >= ld_data_base && addr < ld_stack_base)))
{
err_str = "segmentation violation";
}
/* track the minimum SP for memory access stats */
if (addr > mem_brk_point && addr < mem_stack_min)
mem_stack_min = addr;
if (!declare)
return err_str;
else if (err_str != NULL)
fatal(err_str);
else /* no error */
return NULL;
}
/* initialize memory system, call after loader.c */
void
mem_init1(void)
{
/* initialize the bottom of heap to top of data segment */
mem_brk_point = ROUND_UP(ld_data_base + ld_data_size, SS_PAGE_SIZE);
/* set initial minimum stack pointer value to initial stack value */
mem_stack_min = regs_R[SS_STACK_REGNO];
}
#endif