Skip to content

Latest commit

 

History

History
76 lines (65 loc) · 3.84 KB

README.md

File metadata and controls

76 lines (65 loc) · 3.84 KB

Sandbox

This repository holds scripts and notebooks for Steve's musings, investigations, case studies, animations, and slides.

Here's a high-level snapshot of each script.

Non-text Analytics

File Language Dataset Package Notes
NB.R R NaiveBayes.csv e1071 Simple example of NB.
arules.Rmd R arules::Groceries arules, arulesViz
bigdata.Rmd R N/A tidyverse Just some charts for the big data slides.
classifiers.R R laheart.csv rpart, e1071, MLmetrics Compares NB and DT.
intro.Rmd R gapminder tidyr, dplyr, ggplot2 An intro to R and the tidyverse.
recSys.R R recommenderlab::MovieLense recommenderlab Recommendation system for Movie Lense data. Uses CF.
slide_plots.Rmd R chirps.csv, Prestige.txt, clusters.csv tidytext, tm, tidyverse Just a script to create some plots/charts I've used in slides.
spark-sample.mdR R nycflights13, Lahman sparklyr Simple of example of how to use sparklyr.
sql.Rmd R customer.csv, transaction.csv sqldf Shows how to use the sqldf package. Used for some of my slides on SQL.
sqlChallenge.Rmd R Lahman sqldf Used for creating the SQL challenge.
titanic.Rmd R titanic tidyverse, rpart, MLmetrics Titanic case study. Builds a DT to predict survival.

Text Analytics

File Language Dataset Package Notes
cluster_20.ipynb Python sklearn.datasets::20newsgroups nltk, sklearn Clustering the 20 Newsgroup dataset.
imdb.Rmd R all.imdb.pipe.csv tidytext, cleanNLP, tm Classifying IMDB data.
kiva.Rmd R kiva.csv tidytext, topicmodels, rpart, MLmetrics Classifying KIVA loans. Used as a case study.
nltk-cluster.py Python sklearn.datasets::20newsgroups nltk, sklearn I'm not sure how this is different from cluster_20.ipynb
sentiment-manning.Rmd R manning.csv, brady.csv tidytext Sentiment analysis on tweets about Peyton Manning and Tom Brady.
slides_sentiment.R R N/A tidytext Just a script to do some simple tidy-based sentiment analysis on some made-up data.
slides_text_amazon.Rmd R reviews_Grocery_and_Gourmet_Food_5_50000.csv tidytext, tm, wordcloud Descriptive stats on Amazon Reviews (Food category).
slides_text_amazon_classify.R R reviews_Grocery_and_Gourmet_Food_5_50000.csv tidytext, tm, caret Classifying Amazon reviews.
slides_text_reuters.Rmd R reutersCSV.csv tidytext, tm, wordcloud Descriptive stats on Reuters dataset.

Data

Note: the source isn't actually "Unknown" for most of the data files below. I just haven't done it yet.

File Source
HR_comma_sep.csv Unknown
Master.csv Unknown
NaiveBayes.csv Unknown
Prestige.txt Unknown
Salaries.csv Unknown
all.imdb.pipe.csv Unknown
alltweets.csv Unknown
beta.csv Unknown
beta_12.csv Unknown
chirps.csv Unknown
clusters.csv Unknown
customer.csv Unknown
gamma.csv Unknown
gamma_12.csv Unknown
jackastors.csv Unknown
kiva..csv Unknown
laheart.csv Unknown
laheart2.csv Unknown
site.csv Unknown
student.csv Unknown
survey.csv Unknown
topicnames_12.csv Unknown
transaction.csv Unknown
visited.csv Unknown
groceries.csv Unknown
loan_small.csv Unknown
all.imdb.pipe.csv Unknown
brady.csv Unknown
manning.csv Unknown
reutersCSV.csv Unknown
reviews_Grocery_and_Gourmet_Food_5_50000.csv Unknown