You are given a string of n lines, each substring being n characters long: For example:
s = "abcd\nefgh\nijkl\nmnop"
We will study some transformations of this square of strings.
Clock rotation 180 degrees: rot rot(s) => "ponm\nlkji\nhgfe\ndcba"
selfie_and_rot(s) (or selfieAndRot or selfie-and-rot)
It is initial string + string obtained by clock rotation 180 degrees with dots interspersed in order (hopefully) to better show the rotation when printed.
s = "abcd\nefgh\nijkl\nmnop" --> "abcd....\nefgh....\nijkl....\nmnop....\n....ponm\n....lkji\n....hgfe\n....dcba"
or printed:
|rotation |selfie_and_rot
|abcd --> ponm |abcd --> abcd....
|efgh lkji |efgh efgh....
|ijkl hgfe |ijkl ijkl....
|mnop dcba |mnop mnop....
....ponm
....lkji
....hgfe
....dcba
Write these two functions rotand
selfie_and_rot
and
high-order function oper(fct, s) where
- fct is the function of one variable f to apply to the string s (fct will be one of rot, selfie_and_rot)
s = "abcd\nefgh\nijkl\nmnop"
oper(rot, s) => "ponm\nlkji\nhgfe\ndcba"
oper(selfie_and_rot, s) => "abcd....\nefgh....\nijkl....\nmnop....\n....ponm\n....lkji\n....hgfe\n....dcba"
The form of the parameter fct in oper changes according to the language.
You can see each form according to the language in "Your test cases".
It could be easier to take these katas from number (I) to number (IV) Forthcoming katas will study other transformations.
The input strings are separated by , instead of \n. The output strings should be separated by \r instead of \n. See "Sample Tests".