forked from dedSyn4ps3/enviroplus-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweather-and-light.py
executable file
·426 lines (331 loc) · 12.8 KB
/
weather-and-light.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
#!/usr/bin/env python3
import os
import time
import numpy
import colorsys
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from fonts.ttf import RobotoMedium as UserFont
import ST7735
from bme280 import BME280
from ltr559 import LTR559
import pytz
from pytz import timezone
from astral.geocoder import database, lookup
from astral.sun import sun
from datetime import datetime, timedelta
try:
from smbus2 import SMBus
except ImportError:
from smbus import SMBus
def calculate_y_pos(x, centre):
"""Calculates the y-coordinate on a parabolic curve, given x."""
centre = 80
y = 1 / centre * (x - centre) ** 2
return int(y)
def circle_coordinates(x, y, radius):
"""Calculates the bounds of a circle, given centre and radius."""
x1 = x - radius # Left
x2 = x + radius # Right
y1 = y - radius # Bottom
y2 = y + radius # Top
return (x1, y1, x2, y2)
def map_colour(x, centre, start_hue, end_hue, day):
"""Given an x coordinate and a centre point, a start and end hue (in degrees),
and a Boolean for day or night (day is True, night False), calculate a colour
hue representing the 'colour' of that time of day."""
start_hue = start_hue / 360 # Rescale to between 0 and 1
end_hue = end_hue / 360
sat = 1.0
# Dim the brightness as you move from the centre to the edges
val = 1 - (abs(centre - x) / (2 * centre))
# Ramp up towards centre, then back down
if x > centre:
x = (2 * centre) - x
# Calculate the hue
hue = start_hue + ((x / centre) * (end_hue - start_hue))
# At night, move towards purple/blue hues and reverse dimming
if not day:
hue = 1 - hue
val = 1 - val
r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(hue, sat, val)]
return (r, g, b)
def x_from_sun_moon_time(progress, period, x_range):
"""Recalculate/rescale an amount of progress through a time period."""
x = int((progress / period) * x_range)
return x
def sun_moon_time(city_name, time_zone):
"""Calculate the progress through the current sun/moon period (i.e day or
night) from the last sunrise or sunset, given a datetime object 't'."""
city = lookup(city_name, database())
# Datetime objects for yesterday, today, tomorrow
utc = pytz.utc
utc_dt = datetime.now(tz=utc)
local_dt = utc_dt.astimezone(pytz.timezone(time_zone))
today = local_dt.date()
yesterday = today - timedelta(1)
tomorrow = today + timedelta(1)
# Sun objects for yesterday, today, tomorrow
sun_yesterday = sun(city.observer, date=yesterday)
sun_today = sun(city.observer, date=today)
sun_tomorrow = sun(city.observer, date=tomorrow)
# Work out sunset yesterday, sunrise/sunset today, and sunrise tomorrow
sunset_yesterday = sun_yesterday["sunset"]
sunrise_today = sun_today["sunrise"]
sunset_today = sun_today["sunset"]
sunrise_tomorrow = sun_tomorrow["sunrise"]
# Work out lengths of day or night period and progress through period
if sunrise_today < local_dt < sunset_today:
day = True
period = sunset_today - sunrise_today
# mid = sunrise_today + (period / 2)
progress = local_dt - sunrise_today
elif local_dt > sunset_today:
day = False
period = sunrise_tomorrow - sunset_today
# mid = sunset_today + (period / 2)
progress = local_dt - sunset_today
else:
day = False
period = sunrise_today - sunset_yesterday
# mid = sunset_yesterday + (period / 2)
progress = local_dt - sunset_yesterday
# Convert time deltas to seconds
progress = progress.total_seconds()
period = period.total_seconds()
return (progress, period, day, local_dt)
def draw_background(progress, period, day):
"""Given an amount of progress through the day or night, draw the
background colour and overlay a blurred sun/moon."""
# x-coordinate for sun/moon
x = x_from_sun_moon_time(progress, period, WIDTH)
# If it's day, then move right to left
if day:
x = WIDTH - x
# Calculate position on sun/moon's curve
centre = WIDTH / 2
y = calculate_y_pos(x, centre)
# Background colour
background = map_colour(x, 80, mid_hue, day_hue, day)
# New image for background colour
img = Image.new('RGBA', (WIDTH, HEIGHT), color=background)
# draw = ImageDraw.Draw(img)
# New image for sun/moon overlay
overlay = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0))
overlay_draw = ImageDraw.Draw(overlay)
# Draw the sun/moon
circle = circle_coordinates(x, y, sun_radius)
overlay_draw.ellipse(circle, fill=(200, 200, 50, opacity))
# Overlay the sun/moon on the background as an alpha matte
composite = Image.alpha_composite(img, overlay).filter(ImageFilter.GaussianBlur(radius=blur))
return composite
def overlay_text(img, position, text, font, align_right=False, rectangle=False):
draw = ImageDraw.Draw(img)
w, h = font.getsize(text)
if align_right:
x, y = position
x -= w
position = (x, y)
if rectangle:
x += 1
y += 1
position = (x, y)
border = 1
rect = (x - border, y, x + w, y + h + border)
rect_img = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0))
rect_draw = ImageDraw.Draw(rect_img)
rect_draw.rectangle(rect, (255, 255, 255))
rect_draw.text(position, text, font=font, fill=(0, 0, 0, 0))
img = Image.alpha_composite(img, rect_img)
else:
draw.text(position, text, font=font, fill=(255, 255, 255))
return img
def get_cpu_temperature():
with open("/sys/class/thermal/thermal_zone0/temp", "r") as f:
temp = f.read()
temp = int(temp) / 1000.0
return temp
def correct_humidity(humidity, temperature, corr_temperature):
dewpoint = temperature - ((100 - humidity) / 5)
corr_humidity = 100 - (5 * (corr_temperature - dewpoint))
return min(100, corr_humidity)
def analyse_pressure(pressure, t):
global time_vals, pressure_vals, trend
if len(pressure_vals) > num_vals:
pressure_vals = pressure_vals[1:] + [pressure]
time_vals = time_vals[1:] + [t]
# Calculate line of best fit
line = numpy.polyfit(time_vals, pressure_vals, 1, full=True)
# Calculate slope, variance, and confidence
slope = line[0][0]
intercept = line[0][1]
variance = numpy.var(pressure_vals)
residuals = numpy.var([(slope * x + intercept - y) for x, y in zip(time_vals, pressure_vals)])
r_squared = 1 - residuals / variance
# Calculate change in pressure per hour
change_per_hour = slope * 60 * 60
# variance_per_hour = variance * 60 * 60
mean_pressure = numpy.mean(pressure_vals)
# Calculate trend
if r_squared > 0.5:
if change_per_hour > 0.5:
trend = ">"
elif change_per_hour < -0.5:
trend = "<"
elif -0.5 <= change_per_hour <= 0.5:
trend = "-"
if trend != "-":
if abs(change_per_hour) > 3:
trend *= 2
else:
pressure_vals.append(pressure)
time_vals.append(t)
mean_pressure = numpy.mean(pressure_vals)
change_per_hour = 0
trend = "-"
# time.sleep(interval)
return (mean_pressure, change_per_hour, trend)
def describe_pressure(pressure):
"""Convert pressure into barometer-type description."""
if pressure < 970:
description = "storm"
elif 970 <= pressure < 990:
description = "rain"
elif 990 <= pressure < 1010:
description = "change"
elif 1010 <= pressure < 1030:
description = "fair"
elif pressure >= 1030:
description = "dry"
else:
description = ""
return description
def describe_humidity(humidity):
"""Convert relative humidity into good/bad description."""
if 40 < humidity < 60:
description = "good"
else:
description = "bad"
return description
def describe_light(light):
"""Convert light level in lux to descriptive value."""
if light < 50:
description = "dark"
elif 50 <= light < 100:
description = "dim"
elif 100 <= light < 500:
description = "light"
elif light >= 500:
description = "bright"
return description
# Initialise the LCD
disp = ST7735.ST7735(
port=0,
cs=1,
dc=9,
backlight=12,
rotation=270,
spi_speed_hz=10000000
)
disp.begin()
WIDTH = disp.width
HEIGHT = disp.height
# The city and timezone that you want to display.
city_name = "Columbus"
time_zone = "US/Eastern"
# Values that alter the look of the background
blur = 50
opacity = 125
mid_hue = 0
day_hue = 25
sun_radius = 50
# Fonts
font_sm = ImageFont.truetype(UserFont, 12)
font_lg = ImageFont.truetype(UserFont, 14)
# Margins
margin = 3
# Set up BME280 weather sensor
bus = SMBus(1)
bme280 = BME280(i2c_dev=bus)
min_temp = None
max_temp = None
factor = 2.25
cpu_temps = [get_cpu_temperature()] * 5
# Set up light sensor
ltr559 = LTR559()
# Pressure variables
pressure_vals = []
time_vals = []
num_vals = 1000
interval = 1
trend = "-"
# Keep track of time elapsed
start_time = time.time()
while True:
path = os.path.dirname(os.path.realpath(__file__))
progress, period, day, local_dt = sun_moon_time(city_name, time_zone)
background = draw_background(progress, period, day)
# Time.
time_elapsed = time.time() - start_time
date_string = local_dt.strftime("%d %b %y").lstrip('0')
time_string = local_dt.strftime("%H:%M")
img = overlay_text(background, (0 + margin, 0 + margin), time_string, font_lg)
img = overlay_text(img, (WIDTH - margin, 0 + margin), date_string, font_lg, align_right=True)
# Temperature
temperature = bme280.get_temperature()
# Corrected temperature
cpu_temp = get_cpu_temperature()
cpu_temps = cpu_temps[1:] + [cpu_temp]
avg_cpu_temp = sum(cpu_temps) / float(len(cpu_temps))
corr_temperature = temperature - ((avg_cpu_temp - temperature) / factor)
corr_temperature_f = corr_temperature * 1.8 + 32
if time_elapsed > 30:
if min_temp is not None and max_temp is not None:
if corr_temperature < min_temp:
min_temp = corr_temperature_f
elif corr_temperature > max_temp:
max_temp = corr_temperature_f
else:
min_temp = corr_temperature_f
max_temp = corr_temperature_f
temp_string = f"{corr_temperature_f:.0f}°F"
img = overlay_text(img, (68, 18), temp_string, font_lg, align_right=True)
spacing = font_lg.getsize(temp_string)[1] + 1
if min_temp is not None and max_temp is not None:
range_string = f"{min_temp:.0f}-{max_temp:.0f}"
else:
range_string = "------"
img = overlay_text(img, (68, 18 + spacing), range_string, font_sm, align_right=True, rectangle=True)
temp_icon = Image.open(f"{path}/icons/temperature.png")
img.paste(temp_icon, (margin, 18), mask=temp_icon)
# Humidity
humidity = bme280.get_humidity()
corr_humidity = correct_humidity(humidity, temperature, corr_temperature)
humidity_string = f"{corr_humidity:.0f}%"
img = overlay_text(img, (68, 48), humidity_string, font_lg, align_right=True)
spacing = font_lg.getsize(humidity_string)[1] + 1
humidity_desc = describe_humidity(corr_humidity).upper()
img = overlay_text(img, (68, 48 + spacing), humidity_desc, font_sm, align_right=True, rectangle=True)
humidity_icon = Image.open(f"{path}/icons/humidity-{humidity_desc.lower()}.png")
img.paste(humidity_icon, (margin, 48), mask=humidity_icon)
# Light
light = ltr559.get_lux()
light_string = f"{int(light):,}"
img = overlay_text(img, (WIDTH - margin, 18), light_string, font_lg, align_right=True)
spacing = font_lg.getsize(light_string.replace(",", ""))[1] + 1
light_desc = describe_light(light).upper()
img = overlay_text(img, (WIDTH - margin - 1, 18 + spacing), light_desc, font_sm, align_right=True, rectangle=True)
light_icon = Image.open(f"{path}/icons/bulb-{light_desc.lower()}.png")
img.paste(humidity_icon, (80, 18), mask=light_icon)
# Pressure
pressure = bme280.get_pressure()
t = time.time()
mean_pressure, change_per_hour, trend = analyse_pressure(pressure, t)
pressure_string = f"{int(mean_pressure):,} {trend}"
img = overlay_text(img, (WIDTH - margin, 48), pressure_string, font_lg, align_right=True)
pressure_desc = describe_pressure(mean_pressure).upper()
spacing = font_lg.getsize(pressure_string.replace(",", ""))[1] + 1
img = overlay_text(img, (WIDTH - margin - 1, 48 + spacing), pressure_desc, font_sm, align_right=True, rectangle=True)
pressure_icon = Image.open(f"{path}/icons/weather-{pressure_desc.lower()}.png")
img.paste(pressure_icon, (80, 48), mask=pressure_icon)
# Display image
disp.display(img)