forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdm_control_suite.py
825 lines (699 loc) · 26.2 KB
/
dm_control_suite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
# Lint as: python3
# Copyright 2020 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Control RL Unplugged datasets.
Examples in the dataset represent sequences stored when running a partially
trained agent (trained in online way) as described in
https://arxiv.org/abs/2006.13888.
Every dataset has a SARSA version, and datasets for environments for solving
which we believe one may need a recurrent agent also include a version of the
dataset with overlapping sequences of length 40.
Datasets for the dm_control_suite environments only include proprio
observations, while datasets for dm_locomotion include both pixel and proprio
observations.
"""
import collections
import functools
import os
from typing import Dict, Optional, Tuple, Set
from acme import wrappers
from acme.adders import reverb as adders
from dm_control import composer
from dm_control import suite
from dm_control.composer.variation import colors
from dm_control.composer.variation import distributions
from dm_control.locomotion import arenas
from dm_control.locomotion import props
from dm_control.locomotion import tasks
from dm_control.locomotion import walkers
from dm_env import specs
import numpy as np
import reverb
import tensorflow as tf
import tree
def _build_rodent_escape_env():
"""Build environment where a rodent escapes from a bowl."""
walker = walkers.Rat(
observable_options={'egocentric_camera': dict(enabled=True)},
)
arena = arenas.bowl.Bowl(
size=(20., 20.),
aesthetic='outdoor_natural')
locomotion_task = tasks.escape.Escape(
walker=walker,
arena=arena,
physics_timestep=0.001,
control_timestep=.02)
raw_env = composer.Environment(
time_limit=20,
task=locomotion_task,
strip_singleton_obs_buffer_dim=True)
return raw_env
def _build_rodent_maze_env():
"""Build environment where a rodent runs to targets."""
walker = walkers.Rat(
observable_options={'egocentric_camera': dict(enabled=True)},
)
wall_textures = arenas.labmaze_textures.WallTextures(
style='style_01')
arena = arenas.mazes.RandomMazeWithTargets(
x_cells=11,
y_cells=11,
xy_scale=.5,
z_height=.3,
max_rooms=4,
room_min_size=4,
room_max_size=5,
spawns_per_room=1,
targets_per_room=3,
wall_textures=wall_textures,
aesthetic='outdoor_natural')
rodent_task = tasks.random_goal_maze.ManyGoalsMaze(
walker=walker,
maze_arena=arena,
target_builder=functools.partial(
props.target_sphere.TargetSphere,
radius=0.05,
height_above_ground=.125,
rgb1=(0, 0, 0.4),
rgb2=(0, 0, 0.7)),
target_reward_scale=50.,
contact_termination=False,
control_timestep=.02,
physics_timestep=0.001)
raw_env = composer.Environment(
time_limit=30,
task=rodent_task,
strip_singleton_obs_buffer_dim=True)
return raw_env
def _build_rodent_corridor_gaps():
"""Build environment where a rodent runs over gaps."""
walker = walkers.Rat(
observable_options={'egocentric_camera': dict(enabled=True)},
)
platform_length = distributions.Uniform(low=0.4, high=0.8)
gap_length = distributions.Uniform(low=0.05, high=0.2)
arena = arenas.corridors.GapsCorridor(
corridor_width=2,
platform_length=platform_length,
gap_length=gap_length,
corridor_length=40,
aesthetic='outdoor_natural')
rodent_task = tasks.corridors.RunThroughCorridor(
walker=walker,
arena=arena,
walker_spawn_position=(5, 0, 0),
walker_spawn_rotation=0,
target_velocity=1.0,
contact_termination=False,
terminate_at_height=-0.3,
physics_timestep=0.001,
control_timestep=.02)
raw_env = composer.Environment(
time_limit=30,
task=rodent_task,
strip_singleton_obs_buffer_dim=True)
return raw_env
def _build_rodent_two_touch_env():
"""Build environment where a rodent touches targets."""
walker = walkers.Rat(
observable_options={'egocentric_camera': dict(enabled=True)},
)
arena_floor = arenas.floors.Floor(
size=(10., 10.), aesthetic='outdoor_natural')
task_reach = tasks.reach.TwoTouch(
walker=walker,
arena=arena_floor,
target_builders=[
functools.partial(
props.target_sphere.TargetSphereTwoTouch,
radius=0.025),
],
randomize_spawn_rotation=True,
target_type_rewards=[25.],
shuffle_target_builders=False,
target_area=(1.5, 1.5),
physics_timestep=0.001,
control_timestep=.02)
raw_env = composer.Environment(
time_limit=30,
task=task_reach,
strip_singleton_obs_buffer_dim=True)
return raw_env
def _build_humanoid_walls_env():
"""Build humanoid walker walls environment."""
walker = walkers.CMUHumanoidPositionControlled(
name='walker',
observable_options={'egocentric_camera': dict(enabled=True)},
)
wall_width = distributions.Uniform(low=1, high=7)
wall_height = distributions.Uniform(low=2.5, high=4.0)
swap_wall_side = distributions.Bernoulli(prob=0.5)
wall_r = distributions.Uniform(low=0.5, high=0.6)
wall_g = distributions.Uniform(low=0.21, high=0.41)
wall_rgba = colors.RgbVariation(r=wall_r, g=wall_g, b=0, alpha=1)
arena = arenas.WallsCorridor(
wall_gap=5.0,
wall_width=wall_width,
wall_height=wall_height,
swap_wall_side=swap_wall_side,
wall_rgba=wall_rgba,
corridor_width=10,
corridor_length=100)
humanoid_task = tasks.RunThroughCorridor(
walker=walker,
arena=arena,
walker_spawn_rotation=1.57, # pi / 2
physics_timestep=0.005,
control_timestep=0.03)
raw_env = composer.Environment(
time_limit=30,
task=humanoid_task,
strip_singleton_obs_buffer_dim=True)
return raw_env
def _build_humanoid_corridor_env():
"""Build humanoid walker walls environment."""
walker = walkers.CMUHumanoidPositionControlled(
name='walker',
observable_options={'egocentric_camera': dict(enabled=True)},
)
arena = arenas.EmptyCorridor(
corridor_width=10,
corridor_length=100)
humanoid_task = tasks.RunThroughCorridor(
walker=walker,
arena=arena,
walker_spawn_rotation=1.57, # pi / 2
physics_timestep=0.005,
control_timestep=0.03)
raw_env = composer.Environment(
time_limit=30,
task=humanoid_task,
strip_singleton_obs_buffer_dim=True)
return raw_env
def _build_humanoid_corridor_gaps():
"""Build humanoid walker walls environment."""
walker = walkers.CMUHumanoidPositionControlled(
name='walker',
observable_options={'egocentric_camera': dict(enabled=True)},
)
platform_length = distributions.Uniform(low=0.3, high=2.5)
gap_length = distributions.Uniform(low=0.75, high=1.25)
arena = arenas.GapsCorridor(
corridor_width=10,
platform_length=platform_length,
gap_length=gap_length,
corridor_length=100)
humanoid_task = tasks.RunThroughCorridor(
walker=walker,
arena=arena,
walker_spawn_position=(2, 0, 0),
walker_spawn_rotation=1.57, # pi / 2
physics_timestep=0.005,
control_timestep=0.03)
raw_env = composer.Environment(
time_limit=30,
task=humanoid_task,
strip_singleton_obs_buffer_dim=True)
return raw_env
class MujocoActionNormalizer(wrappers.EnvironmentWrapper):
"""Rescale actions to [-1, 1] range for mujoco physics engine.
For control environments whose actions have bounded range in [-1, 1], this
adaptor rescale actions to the desired range. This allows actor network to
output unscaled actions for better gradient dynamics.
"""
def __init__(self, environment, rescale='clip'):
super().__init__(environment)
self._rescale = rescale
def step(self, action):
"""Rescale actions to [-1, 1] range before stepping wrapped environment."""
if self._rescale == 'tanh':
scaled_actions = tree.map_structure(np.tanh, action)
elif self._rescale == 'clip':
scaled_actions = tree.map_structure(lambda a: np.clip(a, -1., 1.), action)
else:
raise ValueError('Unrecognized scaling option: %s' % self._rescale)
return self._environment.step(scaled_actions)
class NormilizeActionSpecWrapper(wrappers.EnvironmentWrapper):
"""Turn each dimension of the actions into the range of [-1, 1]."""
def __init__(self, environment):
super().__init__(environment)
action_spec = environment.action_spec()
self._scale = action_spec.maximum - action_spec.minimum
self._offset = action_spec.minimum
minimum = action_spec.minimum * 0 - 1.
maximum = action_spec.minimum * 0 + 1.
self._action_spec = specs.BoundedArray(
action_spec.shape,
action_spec.dtype,
minimum,
maximum,
name=action_spec.name)
def _from_normal_actions(self, actions):
actions = 0.5 * (actions + 1.0) # a_t is now in the range [0, 1]
# scale range to [minimum, maximum]
return actions * self._scale + self._offset
def step(self, action):
action = self._from_normal_actions(action)
return self._environment.step(action)
def action_spec(self):
return self._action_spec
class FilterObservationsWrapper(wrappers.EnvironmentWrapper):
"""Filter out all the observations not specified to this wrapper."""
def __init__(self, environment, observations_to_keep):
super().__init__(environment)
self._observations_to_keep = observations_to_keep
spec = self._environment.observation_spec()
filtered = [(k, spec[k]) for k in observations_to_keep]
self._observation_spec = collections.OrderedDict(filtered)
def _filter_observation(self, timestep):
observation = timestep.observation
filtered = [(k, observation[k]) for k in self._observations_to_keep]
return timestep._replace(observation=collections.OrderedDict(filtered))
def step(self, action):
return self._filter_observation(self._environment.step(action))
def reset(self):
return self._filter_observation(self._environment.reset())
def observation_spec(self):
return self._observation_spec
class ControlSuite:
"""Create bits needed to run agents on an Control Suite dataset."""
def __init__(self, task_name='humanoid_run'):
"""Initializes datasets/environments for the Deepmind Control suite.
Args:
task_name: take name. Must be one of,
finger_turn_hard, manipulator_insert_peg, humanoid_run,
cartpole_swingup, cheetah_run, fish_swim, manipulator_insert_ball,
walker_stand, walker_walk
"""
self.task_name = task_name
self._uint8_features = set([])
self._environment = None
if task_name == 'swim':
self._domain_name = 'fish'
self._task_name = 'swim'
self._shapes = {
'observation/target': (3,),
'observation/velocity': (13,),
'observation/upright': (1,),
'observation/joint_angles': (7,),
'action': (5,),
'discount': (),
'reward': (),
'episodic_reward': (),
'step_type': ()
}
elif task_name == 'humanoid_run':
self._domain_name = 'humanoid'
self._task_name = 'run'
self._shapes = {
'observation/velocity': (27,),
'observation/com_velocity': (3,),
'observation/torso_vertical': (3,),
'observation/extremities': (12,),
'observation/head_height': (1,),
'observation/joint_angles': (21,),
'action': (21,),
'discount': (),
'reward': (),
'episodic_reward': (),
'step_type': ()
}
elif task_name == 'manipulator_insert_ball':
self._domain_name = 'manipulator'
self._task_name = 'insert_ball'
self._shapes = {
'observation/arm_pos': (16,),
'observation/arm_vel': (8,),
'observation/touch': (5,),
'observation/hand_pos': (4,),
'observation/object_pos': (4,),
'observation/object_vel': (3,),
'observation/target_pos': (4,),
'action': (5,),
'discount': (),
'reward': (),
'episodic_reward': (),
'step_type': ()}
elif task_name == 'manipulator_insert_peg':
self._domain_name = 'manipulator'
self._task_name = 'insert_peg'
self._shapes = {
'observation/arm_pos': (16,),
'observation/arm_vel': (8,),
'observation/touch': (5,),
'observation/hand_pos': (4,),
'observation/object_pos': (4,),
'observation/object_vel': (3,),
'observation/target_pos': (4,),
'episodic_reward': (),
'action': (5,),
'discount': (),
'reward': (),
'step_type': ()}
elif task_name == 'cartpole_swingup':
self._domain_name = 'cartpole'
self._task_name = 'swingup'
self._shapes = {
'observation/position': (3,),
'observation/velocity': (2,),
'action': (1,),
'discount': (),
'reward': (),
'episodic_reward': (),
'step_type': ()}
elif task_name == 'walker_walk':
self._domain_name = 'walker'
self._task_name = 'walk'
self._shapes = {
'observation/orientations': (14,),
'observation/velocity': (9,),
'observation/height': (1,),
'action': (6,),
'discount': (),
'reward': (),
'episodic_reward': (),
'step_type': ()}
elif task_name == 'walker_stand':
self._domain_name = 'walker'
self._task_name = 'stand'
self._shapes = {
'observation/orientations': (14,),
'observation/velocity': (9,),
'observation/height': (1,),
'action': (6,),
'discount': (),
'reward': (),
'episodic_reward': (),
'step_type': ()}
elif task_name == 'cheetah_run':
self._domain_name = 'cheetah'
self._task_name = 'run'
self._shapes = {
'observation/position': (8,),
'observation/velocity': (9,),
'action': (6,),
'discount': (),
'reward': (),
'episodic_reward': (),
'step_type': ()}
elif task_name == 'finger_turn_hard':
self._domain_name = 'finger'
self._task_name = 'turn_hard'
self._shapes = {
'observation/position': (4,),
'observation/velocity': (3,),
'observation/touch': (2,),
'observation/target_position': (2,),
'observation/dist_to_target': (1,),
'action': (2,),
'discount': (),
'reward': (),
'episodic_reward': (),
'step_type': ()}
else:
raise ValueError('Task \'{}\' not found.'.format(task_name))
self._data_path = 'dm_control_suite/{}/train'.format(task_name)
@property
def shapes(self):
return self._shapes
@property
def data_path(self):
return self._data_path
@property
def uint8_features(self):
return self._uint8_features
@property
def environment(self):
"""Build and return the environment."""
if self._environment is not None:
return self._environment
self._environment = suite.load(
domain_name=self._domain_name,
task_name=self._task_name)
self._environment = wrappers.SinglePrecisionWrapper(self._environment)
self._environment = NormilizeActionSpecWrapper(self._environment)
return self._environment
class CmuThirdParty:
"""Create bits needed to run agents on an locomotion humanoid dataset."""
def __init__(self, task_name='humanoid_walls'):
# 'humanoid_corridor|humanoid_gaps|humanoid_walls'
self._task_name = task_name
self._pixel_keys = self.get_pixel_keys()
self._uint8_features = set(['observation/walker/egocentric_camera'])
self.additional_paths = {}
self._proprio_keys = [
'walker/joints_vel',
'walker/sensors_velocimeter',
'walker/sensors_gyro',
'walker/joints_pos',
'walker/world_zaxis',
'walker/body_height',
'walker/sensors_accelerometer',
'walker/end_effectors_pos'
]
self._shapes = {
'observation/walker/joints_vel': (56,),
'observation/walker/sensors_velocimeter': (3,),
'observation/walker/sensors_gyro': (3,),
'observation/walker/joints_pos': (56,),
'observation/walker/world_zaxis': (3,),
'observation/walker/body_height': (1,),
'observation/walker/sensors_accelerometer': (3,),
'observation/walker/end_effectors_pos': (12,),
'observation/walker/egocentric_camera': (
64,
64,
3,
),
'action': (56,),
'discount': (),
'reward': (),
'episodic_reward': (),
'step_type': ()
}
if task_name == 'humanoid_corridor':
self._data_path = 'dm_locomotion/humanoid_corridor/seq2/train'
elif task_name == 'humanoid_gaps':
self._data_path = 'dm_locomotion/humanoid_gaps/seq2/train'
elif task_name == 'humanoid_walls':
self._data_path = 'dm_locomotion/humanoid_walls/seq40/train'
else:
raise ValueError('Task \'{}\' not found.'.format(task_name))
@staticmethod
def get_pixel_keys():
return ('walker/egocentric_camera',)
@property
def uint8_features(self):
return self._uint8_features
@property
def shapes(self):
return self._shapes
@property
def data_path(self):
return self._data_path
@property
def environment(self):
"""Build and return the environment."""
if self._task_name == 'humanoid_corridor':
self._environment = _build_humanoid_corridor_env()
elif self._task_name == 'humanoid_gaps':
self._environment = _build_humanoid_corridor_gaps()
elif self._task_name == 'humanoid_walls':
self._environment = _build_humanoid_walls_env()
self._environment = NormilizeActionSpecWrapper(self._environment)
self._environment = MujocoActionNormalizer(
environment=self._environment, rescale='clip')
self._environment = wrappers.SinglePrecisionWrapper(self._environment)
all_observations = list(self._proprio_keys) + list(self._pixel_keys)
self._environment = FilterObservationsWrapper(self._environment,
all_observations)
return self._environment
class Rodent:
"""Create bits needed to run agents on an Rodent dataset."""
def __init__(self, task_name='rodent_gaps'):
# 'rodent_escape|rodent_two_touch|rodent_gaps|rodent_mazes'
self._task_name = task_name
self._pixel_keys = self.get_pixel_keys()
self._uint8_features = set(['observation/walker/egocentric_camera'])
self._proprio_keys = [
'walker/joints_pos', 'walker/joints_vel', 'walker/tendons_pos',
'walker/tendons_vel', 'walker/appendages_pos', 'walker/world_zaxis',
'walker/sensors_accelerometer', 'walker/sensors_velocimeter',
'walker/sensors_gyro', 'walker/sensors_touch',
]
self._shapes = {
'observation/walker/joints_pos': (30,),
'observation/walker/joints_vel': (30,),
'observation/walker/tendons_pos': (8,),
'observation/walker/tendons_vel': (8,),
'observation/walker/appendages_pos': (15,),
'observation/walker/world_zaxis': (3,),
'observation/walker/sensors_accelerometer': (3,),
'observation/walker/sensors_velocimeter': (3,),
'observation/walker/sensors_gyro': (3,),
'observation/walker/sensors_touch': (4,),
'observation/walker/egocentric_camera': (64, 64, 3),
'action': (38,),
'discount': (),
'reward': (),
'step_type': ()
}
if task_name == 'rodent_gaps':
self._data_path = 'dm_locomotion/rodent_gaps/seq2/train'
elif task_name == 'rodent_escape':
self._data_path = 'dm_locomotion/rodent_bowl_escape/seq2/train'
elif task_name == 'rodent_two_touch':
self._data_path = 'dm_locomotion/rodent_two_touch/seq40/train'
elif task_name == 'rodent_mazes':
self._data_path = 'dm_locomotion/rodent_mazes/seq40/train'
else:
raise ValueError('Task \'{}\' not found.'.format(task_name))
@staticmethod
def get_pixel_keys():
return ('walker/egocentric_camera',)
@property
def shapes(self):
return self._shapes
@property
def uint8_features(self):
return self._uint8_features
@property
def data_path(self):
return self._data_path
@property
def environment(self):
"""Return environment."""
if self._task_name == 'rodent_escape':
self._environment = _build_rodent_escape_env()
elif self._task_name == 'rodent_gaps':
self._environment = _build_rodent_corridor_gaps()
elif self._task_name == 'rodent_two_touch':
self._environment = _build_rodent_two_touch_env()
elif self._task_name == 'rodent_mazes':
self._environment = _build_rodent_maze_env()
self._environment = NormilizeActionSpecWrapper(self._environment)
self._environment = MujocoActionNormalizer(
environment=self._environment, rescale='clip')
self._environment = wrappers.SinglePrecisionWrapper(self._environment)
all_observations = list(self._proprio_keys) + list(self._pixel_keys)
self._environment = FilterObservationsWrapper(self._environment,
all_observations)
return self._environment
def _parse_seq_tf_example(example, uint8_features, shapes):
"""Parse tf.Example containing one or two episode steps."""
def to_feature(key, shape):
if key in uint8_features:
return tf.io.FixedLenSequenceFeature(
shape=[], dtype=tf.string, allow_missing=True)
else:
return tf.io.FixedLenSequenceFeature(
shape=shape, dtype=tf.float32, allow_missing=True)
feature_map = {}
for k, v in shapes.items():
feature_map[k] = to_feature(k, v)
parsed = tf.io.parse_single_example(example, features=feature_map)
observation = {}
restructured = {}
for k in parsed.keys():
if 'observation' not in k:
restructured[k] = parsed[k]
continue
if k in uint8_features:
observation[k.replace('observation/', '')] = tf.reshape(
tf.io.decode_raw(parsed[k], out_type=tf.uint8), (-1,) + shapes[k])
else:
observation[k.replace('observation/', '')] = parsed[k]
restructured['observation'] = observation
restructured['length'] = tf.shape(restructured['action'])[0]
return restructured
def _build_sequence_example(sequences):
"""Convert raw sequences into a Reverb sequence sample."""
data = adders.Step(
observation=sequences['observation'],
action=sequences['action'],
reward=sequences['reward'],
discount=sequences['discount'],
start_of_episode=(),
extras=())
info = reverb.SampleInfo(key=tf.constant(0, tf.uint64),
probability=tf.constant(1.0, tf.float64),
table_size=tf.constant(0, tf.int64),
priority=tf.constant(1.0, tf.float64))
return reverb.ReplaySample(info=info, data=data)
def _build_sarsa_example(sequences):
"""Convert raw sequences into a Reverb n-step SARSA sample."""
o_tm1 = tree.map_structure(lambda t: t[0], sequences['observation'])
o_t = tree.map_structure(lambda t: t[1], sequences['observation'])
a_tm1 = tree.map_structure(lambda t: t[0], sequences['action'])
a_t = tree.map_structure(lambda t: t[1], sequences['action'])
r_t = tree.map_structure(lambda t: t[0], sequences['reward'])
p_t = tree.map_structure(lambda t: t[0], sequences['discount'])
info = reverb.SampleInfo(key=tf.constant(0, tf.uint64),
probability=tf.constant(1.0, tf.float64),
table_size=tf.constant(0, tf.int64),
priority=tf.constant(1.0, tf.float64))
return reverb.ReplaySample(info=info, data=(o_tm1, a_tm1, r_t, p_t, o_t, a_t))
def _padded_batch(example_ds, batch_size, shapes, drop_remainder=False):
"""Batch data while handling unequal lengths."""
padded_shapes = {}
padded_shapes['observation'] = {}
for k, v in shapes.items():
if 'observation' in k:
padded_shapes['observation'][
k.replace('observation/', '')] = (-1,) + v
else:
padded_shapes[k] = (-1,) + v
padded_shapes['length'] = ()
return example_ds.padded_batch(batch_size,
padded_shapes=padded_shapes,
drop_remainder=drop_remainder)
def dataset(root_path: str,
data_path: str,
shapes: Dict[str, Tuple[int]],
num_threads: int,
batch_size: int,
uint8_features: Optional[Set[str]] = None,
num_shards: int = 100,
shuffle_buffer_size: int = 100000,
sarsa: bool = True) -> tf.data.Dataset:
"""Create tf dataset for training."""
uint8_features = uint8_features if uint8_features else {}
path = os.path.join(root_path, data_path)
filenames = [f'{path}-{i:05d}-of-{num_shards:05d}' for i in range(num_shards)]
file_ds = tf.data.Dataset.from_tensor_slices(filenames)
file_ds = file_ds.repeat().shuffle(num_shards)
example_ds = file_ds.interleave(
functools.partial(tf.data.TFRecordDataset, compression_type='GZIP'),
cycle_length=tf.data.experimental.AUTOTUNE,
block_length=5)
example_ds = example_ds.shuffle(shuffle_buffer_size)
def map_func(example):
example = _parse_seq_tf_example(example, uint8_features, shapes)
return example
example_ds = example_ds.map(map_func, num_parallel_calls=num_threads)
example_ds = example_ds.repeat().shuffle(batch_size * 10)
if sarsa:
example_ds = example_ds.map(
_build_sarsa_example,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
example_ds.batch(batch_size)
else:
example_ds = _padded_batch(
example_ds, batch_size, shapes, drop_remainder=True)
example_ds = example_ds.map(
_build_sequence_example,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
example_ds = example_ds.prefetch(tf.data.experimental.AUTOTUNE)
return example_ds