forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfigs.py
65 lines (57 loc) · 1.76 KB
/
configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Lint as: python3
# pylint: disable=g-bad-file-header
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Environment configurations."""
def get_task_config():
return dict(
arena_size=11,
num_channels=2,
max_num_steps=50, # 50 for the actual task.
num_init_objects=10,
object_priors=[0.5, 0.5],
egocentric=True,
rewarder="BalancedCollectionRewarder",
)
def get_pretrain_config():
return dict(
arena_size=11,
num_channels=2,
max_num_steps=40, # 40 for pretraining.
num_init_objects=10,
object_priors=[0.5, 0.5],
egocentric=True,
default_w=(1, 1),
)
def get_fig4_task_config():
return dict(
arena_size=11,
num_channels=2,
max_num_steps=50, # 50 for the actual task.
num_init_objects=10,
object_priors=[0.5, 0.5],
egocentric=True,
default_w=(1, -1),
)
def get_fig5_task_config(default_w):
return dict(
arena_size=11,
num_channels=2,
max_num_steps=50, # 50 for the actual task.
num_init_objects=10,
object_priors=[0.5, 0.5],
egocentric=True,
default_w=default_w,
)