From 7e7e11b0d11041f8786110c4c7ab6d60d8b6c816 Mon Sep 17 00:00:00 2001 From: stdlib-bot Date: Wed, 26 Oct 2022 21:46:10 +0000 Subject: [PATCH] Auto-generated commit --- .github/workflows/benchmark.yml | 2 +- .github/workflows/cancel.yml | 2 +- .github/workflows/examples.yml | 2 +- .github/workflows/npm_downloads.yml | 12 ++++++------ .github/workflows/productionize.yml | 28 ++++++++++++++-------------- .github/workflows/publish.yml | 4 ++-- .github/workflows/test.yml | 4 ++-- .github/workflows/test_bundles.yml | 4 ++-- .github/workflows/test_coverage.yml | 8 ++++---- .github/workflows/test_install.yml | 4 ++-- data/data.csv | 3 ++- data/data.json | 2 +- 12 files changed, 38 insertions(+), 37 deletions(-) diff --git a/.github/workflows/benchmark.yml b/.github/workflows/benchmark.yml index 29bf533..06a9a75 100644 --- a/.github/workflows/benchmark.yml +++ b/.github/workflows/benchmark.yml @@ -45,7 +45,7 @@ jobs: # Install Node.js: - name: 'Install Node.js' - uses: actions/setup-node@v2 + uses: actions/setup-node@v3 with: node-version: 16 timeout-minutes: 5 diff --git a/.github/workflows/cancel.yml b/.github/workflows/cancel.yml index a7a7f51..a00dbe5 100644 --- a/.github/workflows/cancel.yml +++ b/.github/workflows/cancel.yml @@ -44,7 +44,7 @@ jobs: # Cancel existing workflow runs: - name: 'Cancel existing workflow runs' - uses: styfle/cancel-workflow-action@0.9.0 + uses: styfle/cancel-workflow-action@0.11.0 with: workflow_id: >- benchmark.yml, diff --git a/.github/workflows/examples.yml b/.github/workflows/examples.yml index 39b1613..7902a7d 100644 --- a/.github/workflows/examples.yml +++ b/.github/workflows/examples.yml @@ -45,7 +45,7 @@ jobs: # Install Node.js: - name: 'Install Node.js' - uses: actions/setup-node@v2 + uses: actions/setup-node@v3 with: node-version: 16 timeout-minutes: 5 diff --git a/.github/workflows/npm_downloads.yml b/.github/workflows/npm_downloads.yml index 7ca169c..f5bd993 100644 --- a/.github/workflows/npm_downloads.yml +++ b/.github/workflows/npm_downloads.yml @@ -24,7 +24,7 @@ on: # Run this workflow weekly: schedule: # cron: ' ' - - cron: '0 8 * * 6' + - cron: '48 12 * * 5' # Allow the workflow to be manually run: workflow_dispatch: @@ -50,7 +50,7 @@ jobs: # Install Node.js: - name: 'Install Node.js' - uses: actions/setup-node@v2 + uses: actions/setup-node@v3 with: node-version: 16 timeout-minutes: 5 @@ -60,7 +60,7 @@ jobs: id: package_name run: | name=`node -e 'console.log(require("./package.json").name)' | tr -d '\n'` - echo "::set-output name=package_name::$name" + echo "package_name=$name" >> $GITHUB_OUTPUT timeout-minutes: 5 # Fetch download data: @@ -72,7 +72,7 @@ jobs: data=$(curl "$url") mkdir ./tmp echo "$data" > ./tmp/npm_downloads.json - echo "::set-output name=data::$data" + echo "data=$data" >> $GITHUB_OUTPUT timeout-minutes: 5 # Print summary of download data: @@ -84,7 +84,7 @@ jobs: # Upload the download data: - name: 'Upload data' - uses: actions/upload-artifact@v2 + uses: actions/upload-artifact@v3 with: # Define a name for the uploaded artifact (ensuring a unique name for each job): name: npm_downloads @@ -99,7 +99,7 @@ jobs: # Send data to events server: - name: 'Post data' - uses: distributhor/workflow-webhook@v2 + uses: distributhor/workflow-webhook@v3 env: webhook_url: ${{ secrets.STDLIB_NPM_DOWNLOADS_URL }} webhook_secret: ${{ secrets.STDLIB_WEBHOOK_SECRET }} diff --git a/.github/workflows/productionize.yml b/.github/workflows/productionize.yml index 5094681..9113bfe 100644 --- a/.github/workflows/productionize.yml +++ b/.github/workflows/productionize.yml @@ -56,7 +56,7 @@ jobs: # Install Node.js: - name: 'Install Node.js' - uses: actions/setup-node@v2 + uses: actions/setup-node@v3 with: node-version: 16 timeout-minutes: 5 @@ -141,7 +141,7 @@ jobs: # Install Node.js: - name: 'Install Node.js' - uses: actions/setup-node@v2 + uses: actions/setup-node@v3 with: node-version: 16 timeout-minutes: 5 @@ -198,9 +198,9 @@ jobs: git fetch --all git ls-remote --exit-code --heads origin deno if [ $? -eq 0 ]; then - echo "::set-output name=remote-exists::true" + echo "remote-exists=true" >> $GITHUB_OUTPUT else - echo "::set-output name=remote-exists::false" + echo "remote-exists=false" >> $GITHUB_OUTPUT fi # If `deno` exists, delete everything in branch and merge `production` into it @@ -242,7 +242,7 @@ jobs: # Install Node.js: - name: 'Install Node.js' - uses: actions/setup-node@v2 + uses: actions/setup-node@v3 with: node-version: 16 timeout-minutes: 5 @@ -364,9 +364,9 @@ jobs: git fetch --all git ls-remote --exit-code --heads origin umd if [ $? -eq 0 ]; then - echo "::set-output name=remote-exists::true" + echo "remote-exists=true" >> $GITHUB_OUTPUT else - echo "::set-output name=remote-exists::false" + echo "remote-exists=false" >> $GITHUB_OUTPUT fi # If `umd` exists, delete everything in branch and merge `production` into it @@ -400,7 +400,7 @@ jobs: # Install Node.js - name: 'Install Node.js' - uses: actions/setup-node@v2 + uses: actions/setup-node@v3 with: node-version: 16 timeout-minutes: 5 @@ -417,7 +417,7 @@ jobs: id: extract-alias run: | alias=$(grep -E 'require\(' README.md | head -n 1 | sed -E 's/^var ([a-zA-Z0-9_]+) = .+/\1/') - echo "::set-output name=alias::${alias}" + echo "alias=${alias}" >> $GITHUB_OUTPUT # Create Universal Module Definition (UMD) Node.js bundle: - name: 'Create Universal Module Definition (UMD) Node.js bundle' @@ -528,9 +528,9 @@ jobs: git fetch --all git ls-remote --exit-code --heads origin esm if [ $? -eq 0 ]; then - echo "::set-output name=remote-exists::true" + echo "remote-exists=true" >> $GITHUB_OUTPUT else - echo "::set-output name=remote-exists::false" + echo "remote-exists=false" >> $GITHUB_OUTPUT fi # If `esm` exists, delete everything in branch and merge `production` into it @@ -572,7 +572,7 @@ jobs: # Install Node.js: - name: 'Install Node.js' - uses: actions/setup-node@v2 + uses: actions/setup-node@v3 with: node-version: 16 timeout-minutes: 5 @@ -695,10 +695,10 @@ jobs: VERSION_CHANGE_PKG_JSON=$(git diff HEAD~1 HEAD package.json | grep '"version":') if [ -z "$VERSION_CHANGE_PKG_JSON" ]; then echo "This workflow was not triggered by a version bump." - echo "::set-output name=bump::false" + echo "bump=false" >> $GITHUB_OUTPUT else echo "This workflow was triggered by a version bump." - echo "::set-output name=bump::true" + echo "bump=true" >> $GITHUB_OUTPUT fi # Configure git: diff --git a/.github/workflows/publish.yml b/.github/workflows/publish.yml index 108695a..ad8ed19 100644 --- a/.github/workflows/publish.yml +++ b/.github/workflows/publish.yml @@ -50,7 +50,7 @@ jobs: # Install Node.js: - name: 'Install Node.js' - uses: actions/setup-node@v2 + uses: actions/setup-node@v3 with: node-version: 16 timeout-minutes: 5 @@ -105,7 +105,7 @@ jobs: # Cancel any running or queued workflow runs: - name: 'Cancel running or queued workflow runs' - uses: styfle/cancel-workflow-action@0.9.0 + uses: styfle/cancel-workflow-action@0.11.0 with: workflow_id: >- benchmark.yml, diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index db4c5e7..0800775 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -24,7 +24,7 @@ on: # Run workflow on a weekly schedule: schedule: # * is a special character in YAML so you have to quote this string - - cron: '30 1 * * 6' + - cron: '48 12 * * 5' # Allow the workflow to be manually run: workflow_dispatch: @@ -57,7 +57,7 @@ jobs: # Install Node.js: - name: 'Install Node.js' - uses: actions/setup-node@v2 + uses: actions/setup-node@v3 with: node-version: 16 timeout-minutes: 5 diff --git a/.github/workflows/test_bundles.yml b/.github/workflows/test_bundles.yml index c3b2290..e9df6a0 100644 --- a/.github/workflows/test_bundles.yml +++ b/.github/workflows/test_bundles.yml @@ -55,7 +55,7 @@ jobs: # Install Node.js: - name: 'Install Node.js' - uses: actions/setup-node@v2 + uses: actions/setup-node@v3 with: node-version: 17 @@ -119,7 +119,7 @@ jobs: # Install Node.js: - name: 'Install Node.js' - uses: actions/setup-node@v2 + uses: actions/setup-node@v3 with: node-version: 17 diff --git a/.github/workflows/test_coverage.yml b/.github/workflows/test_coverage.yml index be781ee..6d8aa0b 100644 --- a/.github/workflows/test_coverage.yml +++ b/.github/workflows/test_coverage.yml @@ -50,7 +50,7 @@ jobs: # Install Node.js: - name: 'Install Node.js' - uses: actions/setup-node@v2 + uses: actions/setup-node@v3 with: node-version: 16 timeout-minutes: 5 @@ -88,11 +88,11 @@ jobs: id: extract-coverage run: | coverage=`cat reports/coverage/lcov-report/index.html | grep "fraction" | grep -oP '\d+/\d+' | printf %s "$(cat)" | jq -R -s -c 'split("\n")'` - echo "::set-output name=coverage::$coverage" + echo "coverage=$coverage" >> $GITHUB_OUTPUT # Format coverage as Markdown table row: table=`echo $coverage | sed -e 's/,/|/g; s/"/ /g; s/\[/|/; s/\]/|/'` - echo "::set-output name=table::$table" + echo "table=$table" >> $GITHUB_OUTPUT # Print coverage report to GitHub Actions log: - name: 'Print coverage report to GitHub Actions log' @@ -115,7 +115,7 @@ jobs: # Send data to events server: - name: 'Post data' - uses: distributhor/workflow-webhook@v2 + uses: distributhor/workflow-webhook@v3 env: webhook_url: ${{ secrets.STDLIB_COVERAGE_URL }} webhook_secret: ${{ secrets.STDLIB_WEBHOOK_SECRET }} diff --git a/.github/workflows/test_install.yml b/.github/workflows/test_install.yml index 9899908..f5a2a18 100644 --- a/.github/workflows/test_install.yml +++ b/.github/workflows/test_install.yml @@ -24,7 +24,7 @@ on: # Run workflow on a weekly schedule: schedule: # * is a special character in YAML so you have to quote this string - - cron: '30 1 * * 6' + - cron: '48 12 * * 5' # Run workflow upon completion of `publish` workflow run: workflow_run: @@ -62,7 +62,7 @@ jobs: # Install Node.js: - name: 'Install Node.js' - uses: actions/setup-node@v2 + uses: actions/setup-node@v3 with: node-version: 16 timeout-minutes: 5 diff --git a/data/data.csv b/data/data.csv index 514f348..712d5c1 100644 --- a/data/data.csv +++ b/data/data.csv @@ -844,7 +844,8 @@ base.floorsd,"\nbase.floorsd( x:number, n:integer[, b:integer] )\n Rounds a n base.fresnel,"\nbase.fresnel( [out:Array|TypedArray|Object,] x:number )\n Computes the Fresnel integrals S(x) and C(x).\n" base.fresnelc,"\nbase.fresnelc( x:number )\n Computes the Fresnel integral C(x).\n" base.fresnels,"\nbase.fresnels( x:number )\n Computes the Fresnel integral S(x).\n" -base.frexp,"\nbase.frexp( [out:Array|TypedArray|Object,] x:number )\n Splits a double-precision floating-point number into a normalized fraction\n and an integer power of two.\n" +base.frexp,"\nbase.frexp( x:number )\n Splits a double-precision floating-point number into a normalized fraction\n and an integer power of two.\n" +base.frexp.assign,"\nbase.frexp.assign( x:number, out:Array, stride:integer, offset:integer )\n Splits a double-precision floating-point number into a normalized fraction\n and an integer power of two and assigns results to a provided output array.\n" base.fromBinaryString,"\nbase.fromBinaryString( bstr:string )\n Creates a double-precision floating-point number from a literal bit\n representation.\n" base.fromBinaryStringf,"\nbase.fromBinaryStringf( bstr:string )\n Creates a single-precision floating-point number from an IEEE 754 literal\n bit representation.\n" base.fromBinaryStringUint8,"\nbase.fromBinaryStringUint8( bstr:string )\n Creates an unsigned 8-bit integer from a literal bit representation.\n" diff --git a/data/data.json b/data/data.json index cd402da..a29ca3a 100644 --- a/data/data.json +++ b/data/data.json @@ -1 +1 @@ -{"abs":"\nabs( x:ndarray|ArrayLikeObject|number[, options:Object] )\n Computes the absolute value.\n","abs.assign":"\nabs.assign( x:ndarray|ArrayLikeObject, y:ndarray|ArrayLikeObject )\n Computes the absolute value and assigns results to a provided output array.\n","acronym":"\nacronym( str:string[, options:Object] )\n Generates an acronym for a given string.\n","AFINN_96":"\nAFINN_96()\n Returns a list of English words rated for valence.\n","AFINN_111":"\nAFINN_111()\n Returns a list of English words rated for valence.\n","afull":"\nafull( length:integer, value:any[, dtype:string] )\n Returns a filled array having a specified length.\n","afullLike":"\nafullLike( x:TypedArray|Array[, dtype:string] )\n Returns a filled array having the same length and data type as a provided\n input array.\n","alias2pkg":"\nalias2pkg( alias:string )\n Returns the package name associated with a provided alias.\n","alias2related":"\nalias2related( alias:string )\n Returns aliases related to a specified alias.\n","alias2standalone":"\nalias2standalone( alias:string )\n Returns the standalone package name associated with a provided alias.\n","aliases":"\naliases( [namespace:string] )\n Returns a list of standard library aliases.\n","allocUnsafe":"\nallocUnsafe( size:integer )\n Allocates a buffer having a specified number of bytes.\n","anova1":"\nanova1( x:Array, factor:Array[, options:Object] )\n Performs a one-way analysis of variance.\n","ANSCOMBES_QUARTET":"\nANSCOMBES_QUARTET()\n Returns Anscombe's quartet.\n","any":"\nany( collection:Array|TypedArray|Object )\n Tests whether at least one element in a collection is truthy.\n","anyBy":"\nanyBy( collection:Array|TypedArray|Object, predicate:Function[, thisArg:any ] )\n Tests whether at least one element in a collection passes a test implemented\n by a predicate function.\n","anyByAsync":"\nanyByAsync( collection:Array|TypedArray|Object, [options:Object,] \n predicate:Function, done:Function )\n Tests whether at least one element in a collection passes a test implemented\n by a predicate function.\n","anyByAsync.factory":"\nanyByAsync.factory( [options:Object,] predicate:Function )\n Returns a function which tests whether at least one element in a collection\n passes a test implemented by a predicate function.\n","anyByRight":"\nanyByRight( collection:Array|TypedArray|Object, predicate:Function[, \n thisArg:any ] )\n Tests whether at least one element in a collection passes a test implemented\n by a predicate function, iterating from right to left.\n","anyByRightAsync":"\nanyByRightAsync( collection:Array|TypedArray|Object, [options:Object,] \n predicate:Function, done:Function )\n Tests whether at least one element in a collection passes a test implemented\n by a predicate function, iterating from right to left.\n","anyByRightAsync.factory":"\nanyByRightAsync.factory( [options:Object,] predicate:Function )\n Returns a function which tests whether at least one element in a collection\n passes a test implemented by a predicate function, iterating from right to\n left.\n","aones":"\naones( length:integer[, dtype:string] )\n Returns an array filled with ones and having a specified length.\n","aonesLike":"\naonesLike( x:TypedArray|Array[, dtype:string] )\n Returns an array filled with ones and having the same length and data type\n as a provided input array.\n","APERY":"\nAPERY\n Apéry's constant.\n","append":"\nappend( collection1:Array|TypedArray|Object, \n collection2:Array|TypedArray|Object )\n Adds the elements of one collection to the end of another collection.\n","ARCH":"\nARCH\n Operating system CPU architecture.\n","argumentFunction":"\nargumentFunction( idx:integer )\n Returns a function which always returns a specified argument.\n","ARGV":"\nARGV\n An array containing command-line arguments passed when launching the calling\n process.\n","array":"\narray( [buffer:Array|TypedArray|Buffer|ndarray,] [options:Object] )\n Returns a multidimensional array.\n","array2buffer":"\narray2buffer( arr:Array )\n Allocates a buffer using an octet array.\n","array2iterator":"\narray2iterator( src:ArrayLikeObject[, mapFcn:Function[, thisArg:any]] )\n Returns an iterator which iterates over the elements of an array-like\n object.\n","array2iteratorRight":"\narray2iteratorRight( src:ArrayLikeObject[, mapFcn:Function[, thisArg:any]] )\n Returns an iterator which iterates from right to left over the elements of\n an array-like object.\n","ArrayBuffer":"\nArrayBuffer( size:integer )\n Returns an array buffer having a specified number of bytes.\n","ArrayBuffer.length":"\nArrayBuffer.length\n Number of input arguments the constructor accepts.\n","ArrayBuffer.isView":"\nArrayBuffer.isView( arr:any )\n Returns a boolean indicating if provided an array buffer view.\n","ArrayBuffer.prototype.byteLength":"\nArrayBuffer.prototype.byteLength\n Read-only property which returns the length (in bytes) of the array buffer.\n","ArrayBuffer.prototype.slice":"\nArrayBuffer.prototype.slice( [start:integer[, end:integer]] )\n Copies the bytes of an array buffer to a new array buffer.\n","arraybuffer2buffer":"\narraybuffer2buffer( buf:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Allocates a buffer from an ArrayBuffer.\n","arrayCtors":"\narrayCtors( dtype:string )\n Returns an array constructor.\n","arrayDataType":"\narrayDataType( array:any )\n Returns the data type of an array.\n","arrayDataTypes":"\narrayDataTypes()\n Returns a list of array data types.\n","arrayMinDataType":"\narrayMinDataType( value:any )\n Returns the minimum array data type of the closest \"kind\" necessary for\n storing a provided scalar value.\n","arrayNextDataType":"\narrayNextDataType( [dtype:string] )\n Returns the next larger array data type of the same kind.\n","arrayPromotionRules":"\narrayPromotionRules( [dtype1:string, dtype2:string] )\n Returns the array data type with the smallest size and closest \"kind\" to\n which array data types can be safely cast.\n","arraySafeCasts":"\narraySafeCasts( [dtype:string] )\n Returns a list of array data types to which a provided array data type can\n be safely cast.\n","arraySameKindCasts":"\narraySameKindCasts( [dtype:string] )\n Returns a list of array data types to which a provided array data type can\n be safely cast or cast within the same \"kind\".\n","arrayShape":"\narrayShape( arr:ArrayLikeObject )\n Determines array dimensions.\n","arrayStream":"\narrayStream( src:ArrayLikeObject[, options:Object] )\n Creates a readable stream from an array-like object.\n","arrayStream.factory":"\narrayStream.factory( [options:Object] )\n Returns a function for creating readable streams from array-like objects.\n","arrayStream.objectMode":"\narrayStream.objectMode( src:ArrayLikeObject[, options:Object] )\n Returns an \"objectMode\" readable stream from an array-like object.\n","arrayview2iterator":"\narrayview2iterator( src:ArrayLikeObject[, begin:integer[, end:integer]][, \n mapFcn:Function[, thisArg:any]] )\n Returns an iterator which iterates over the elements of an array-like object\n view.\n","arrayview2iteratorRight":"\narrayview2iteratorRight( src:ArrayLikeObject[, begin:integer[, end:integer]][, \n mapFcn:Function[, thisArg:any]] )\n Returns an iterator which iterates from right to left over the elements of\n an array-like object view.\n","AsyncIteratorSymbol":"\nAsyncIteratorSymbol\n Async iterator symbol.\n","azeros":"\nazeros( length:integer[, dtype:string] )\n Returns a zero-filled array having a specified length.\n","azerosLike":"\nazerosLike( x:TypedArray|Array[, dtype:string] )\n Returns a zero-filled array having the same length and data type as a\n provided input array.\n","bartlettTest":"\nbartlettTest( ...x:Array[, options:Object] )\n Computes Bartlett’s test for equal variances.\n","base.abs":"\nbase.abs( x:number )\n Computes the absolute value of a double-precision floating-point number `x`.\n","base.abs2":"\nbase.abs2( x:number )\n Computes the squared absolute value of a double-precision floating-point\n `x`.\n","base.abs2f":"\nbase.abs2f( x:number )\n Computes the squared absolute value of a single-precision floating-point\n `x`.\n","base.absdiff":"\nbase.absdiff( x:number, y:number )\n Computes the absolute difference.\n","base.absf":"\nbase.absf( x:number )\n Computes the absolute value of a single-precision floating-point number `x`.\n","base.acos":"\nbase.acos( x:number )\n Compute the arccosine of a number.\n","base.acosh":"\nbase.acosh( x:number )\n Computes the hyperbolic arccosine of a number.\n","base.acot":"\nbase.acot( x:number )\n Computes the inverse cotangent of a number.\n","base.acoth":"\nbase.acoth( x:number )\n Computes the inverse hyperbolic cotangent of a number.\n","base.acovercos":"\nbase.acovercos( x:number )\n Computes the inverse coversed cosine.\n","base.acoversin":"\nbase.acoversin( x:number )\n Computes the inverse coversed sine.\n","base.acsc":"\nbase.acsc( x:number )\n Computes the arccosecant of a number.\n","base.acsch":"\nbase.acsch( x:number )\n Computes the hyperbolic arccosecant of a number.\n","base.add":"\nbase.add( x:number, y:number )\n Computes the sum of two double-precision floating-point numbers `x` and `y`.\n","base.addf":"\nbase.addf( x:number, y:number )\n Computes the sum of two single-precision floating-point numbers `x` and `y`.\n","base.ahavercos":"\nbase.ahavercos( x:number )\n Computes the inverse half-value versed cosine.\n","base.ahaversin":"\nbase.ahaversin( x:number )\n Computes the inverse half-value versed sine.\n","base.asec":"\nbase.asec( x:number )\n Computes the inverse (arc) secant of a number.\n","base.asech":"\nbase.asech( x:number )\n Computes the hyperbolic arcsecant of a number.\n","base.asin":"\nbase.asin( x:number )\n Computes the arcsine of a number.\n","base.asinh":"\nbase.asinh( x:number )\n Computes the hyperbolic arcsine of a number.\n","base.atan":"\nbase.atan( x:number )\n Computes the arctangent of a number.\n","base.atan2":"\nbase.atan2( y:number, x:number )\n Computes the angle in the plane (in radians) between the positive x-axis and\n the ray from (0,0) to the point (x,y).\n","base.atanh":"\nbase.atanh( x:number )\n Computes the hyperbolic arctangent of a number.\n","base.avercos":"\nbase.avercos( x:number )\n Computes the inverse versed cosine.\n","base.aversin":"\nbase.aversin( x:number )\n Computes the inverse versed sine.\n","base.bernoulli":"\nbase.bernoulli( n:integer )\n Computes the nth Bernoulli number.\n","base.besselj0":"\nbase.besselj0( x:number )\n Computes the Bessel function of the first kind of order zero.\n","base.besselj1":"\nbase.besselj1( x:number )\n Computes the Bessel function of the first kind of order one.\n","base.bessely0":"\nbase.bessely0( x:number )\n Computes the Bessel function of the second kind of order zero.\n","base.bessely1":"\nbase.bessely1( x:number )\n Computes the Bessel function of the second kind of order one.\n","base.beta":"\nbase.beta( x:number, y:number )\n Evaluates the beta function.\n","base.betainc":"\nbase.betainc( x:number, a:number, b:number[, regularized:boolean[, \n upper:boolean]] )\n Computes the regularized incomplete beta function.\n","base.betaincinv":"\nbase.betaincinv( p:number, a:number, b:number[, upper:boolean] )\n Computes the inverse of the lower incomplete beta function.\n","base.betaln":"\nbase.betaln( a:number, b:number )\n Evaluates the natural logarithm of the beta function.\n","base.binet":"\nbase.binet( x:number )\n Evaluates Binet's formula extended to real numbers.\n","base.binomcoef":"\nbase.binomcoef( n:integer, k:integer )\n Computes the binomial coefficient of two integers.\n","base.binomcoefln":"\nbase.binomcoefln( n:integer, k:integer )\n Computes the natural logarithm of the binomial coefficient of two integers.\n","base.boxcox":"\nbase.boxcox( x:number, lambda:number )\n Computes a one-parameter Box-Cox transformation.\n","base.boxcox1p":"\nbase.boxcox1p( x:number, lambda:number )\n Computes a one-parameter Box-Cox transformation of 1+x.\n","base.boxcox1pinv":"\nbase.boxcox1pinv( y:number, lambda:number )\n Computes the inverse of a one-parameter Box-Cox transformation for 1+x.\n","base.boxcoxinv":"\nbase.boxcoxinv( y:number, lambda:number )\n Computes the inverse of a one-parameter Box-Cox transformation.\n","base.cabs":"\nbase.cabs( z:Complex128 )\n Computes the absolute value of a double-precision complex floating-point\n number.\n","base.cabs2":"\nbase.cabs2( z:Complex128 )\n Computes the squared absolute value of a double-precision complex floating-\n point number.\n","base.cabs2f":"\nbase.cabs2f( z:Complex64 )\n Computes the squared absolute value of a single-precision complex floating-\n point number.\n","base.cabsf":"\nbase.cabsf( z:Complex64 )\n Computes the absolute value of a single-precision complex floating-point\n number.\n","base.cadd":"\nbase.cadd( z1:Complex128, z2:Complex128 )\n Adds two double-precision complex floating-point numbers.\n","base.caddf":"\nbase.caddf( z1:Complex64, z2:Complex64 )\n Adds two single-precision complex floating-point numbers.\n","base.cbrt":"\nbase.cbrt( x:number )\n Computes the cube root of a double-precision floating-point number.\n","base.cbrtf":"\nbase.cbrtf( x:number )\n Computes the cube root of a single-precision floating-point number.\n","base.cceil":"\nbase.cceil( z:Complex128 )\n Rounds a double-precision complex floating-point number toward positive\n infinity.\n","base.cceilf":"\nbase.cceilf( z:Complex64 )\n Rounds a single-precision complex floating-point number toward positive\n infinity.\n","base.cceiln":"\nbase.cceiln( [out:Array|TypedArray|Object,] re:number, im:number, n:integer )\n Rounds a complex number to the nearest multiple of `10^n` toward positive\n infinity.\n","base.ccis":"\nbase.ccis( [out:Array|TypedArray|Object,] re:number, im:number )\n Computes the cis function of a complex number.\n","base.cdiv":"\nbase.cdiv( [out:Array|TypedArray|Object,] re1:number, im1:number, re2:number, \n im2:number )\n Divides two complex numbers.\n","base.ceil":"\nbase.ceil( x:number )\n Rounds a double-precision floating-point number toward positive infinity.\n","base.ceil2":"\nbase.ceil2( x:number )\n Rounds a numeric value to the nearest power of two toward positive infinity.\n","base.ceil10":"\nbase.ceil10( x:number )\n Rounds a numeric value to the nearest power of ten toward positive infinity.\n","base.ceilb":"\nbase.ceilb( x:number, n:integer, b:integer )\n Rounds a numeric value to the nearest multiple of `b^n` toward positive\n infinity.\n","base.ceilf":"\nbase.ceilf( x:number )\n Rounds a single-precision floating-point number toward positive infinity.\n","base.ceiln":"\nbase.ceiln( x:number, n:integer )\n Rounds a numeric value to the nearest multiple of `10^n` toward positive\n infinity.\n","base.ceilsd":"\nbase.ceilsd( x:number, n:integer[, b:integer] )\n Rounds a numeric value to the nearest number toward positive infinity with\n `n` significant figures.\n","base.cexp":"\nbase.cexp( [out:Array|TypedArray|Object,] re:number, im:number )\n Computes the exponential function of a complex number.\n","base.cflipsign":"\nbase.cflipsign( z:Complex128, y:number )\n Returns a double-precision complex floating-point number with the same\n magnitude as `z` and the sign of `y*z`.\n","base.cflipsignf":"\nbase.cflipsignf( z:Complex64, y:number )\n Returns a single-precision complex floating-point number with the same\n magnitude as `z` and the sign of `y*z`.\n","base.cfloor":"\nbase.cfloor( [out:Array|TypedArray|Object,] re:number, im:number )\n Rounds a complex number toward negative infinity.\n","base.cfloorn":"\nbase.cfloorn( [out:Array|TypedArray|Object,] re:number, im:number, n:integer )\n Rounds a complex number to the nearest multiple of `10^n` toward negative\n infinity.\n","base.cidentity":"\nbase.cidentity( z:Complex128 )\n Evaluates the identity function for a double-precision complex floating-\n point number.\n","base.cidentityf":"\nbase.cidentityf( z:Complex64 )\n Evaluates the identity function for a single-precision complex floating-\n point number.\n","base.cinv":"\nbase.cinv( [out:Array|TypedArray|Object,] re:number, im:number )\n Computes the inverse of a complex number.\n","base.clamp":"\nbase.clamp( v:number, min:number, max:number )\n Restricts a double-precision floating-point number to a specified range.\n","base.clampf":"\nbase.clampf( v:number, min:number, max:number )\n Restricts a single-precision floating-point number to a specified range.\n","base.cmul":"\nbase.cmul( z1:Complex128, z2:Complex128 )\n Multiplies two double-precision complex floating-point numbers.\n","base.cmulf":"\nbase.cmulf( z1:Complex64, z2:Complex64 )\n Multiplies two single-precision complex floating-point numbers.\n","base.cneg":"\nbase.cneg( [out:Array|TypedArray|Object,] re:number, im:number )\n Negates a complex number.\n","base.continuedFraction":"\nbase.continuedFraction( generator:Function[, options:Object] )\n Evaluates the continued fraction approximation for the supplied series\n generator using the modified Lentz algorithm.\n","base.copysign":"\nbase.copysign( x:number, y:number )\n Returns a double-precision floating-point number with the magnitude of `x`\n and the sign of `y`.\n","base.copysignf":"\nbase.copysignf( x:number, y:number )\n Returns a single-precision floating-point number with the magnitude of `x`\n and the sign of `y`.\n","base.cos":"\nbase.cos( x:number )\n Computes the cosine of a number.\n","base.cosh":"\nbase.cosh( x:number )\n Computes the hyperbolic cosine of a number.\n","base.cosm1":"\nbase.cosm1( x:number )\n Computes the cosine of a number minus one.\n","base.cospi":"\nbase.cospi( x:number )\n Computes the value of `cos(πx)`.\n","base.cot":"\nbase.cot( x:number )\n Computes the cotangent of a number.\n","base.coth":"\nbase.coth( x:number )\n Computes the hyperbolic cotangent of a number.\n","base.covercos":"\nbase.covercos( x:number )\n Computes the coversed cosine.\n","base.coversin":"\nbase.coversin( x:number )\n Computes the coversed sine.\n","base.cphase":"\nbase.cphase( re:number, im:number )\n Computes the argument of a complex number in radians.\n","base.cpolar":"\nbase.cpolar( [out:Array|TypedArray|Object,] re:number, im:number )\n Returns the absolute value and phase of a complex number.\n","base.cround":"\nbase.cround( [out:Array|TypedArray|Object,] re:number, im:number )\n Rounds a complex number to the nearest integer.\n","base.croundn":"\nbase.croundn( [out:Array|TypedArray|Object,] re:number, im:number, n:integer )\n Rounds a complex number to the nearest multiple of `10^n`.\n","base.csch":"\nbase.csch( x:number )\n Computes the hyperbolic cosecant of a number.\n","base.csignum":"\nbase.csignum( [out:Array|TypedArray|Object,] re:number, im:number )\n Evaluates the signum function of a complex number.\n","base.csub":"\nbase.csub( z1:Complex128, z2:Complex128 )\n Subtracts two double-precision complex floating-point numbers.\n","base.csubf":"\nbase.csubf( z1:Complex64, z2:Complex64 )\n Subtracts two single-precision complex floating-point numbers.\n","base.deg2rad":"\nbase.deg2rad( x:number )\n Converts an angle from degrees to radians.\n","base.deg2radf":"\nbase.deg2radf( x:number )\n Converts an angle from degrees to radians (single-precision).\n","base.digamma":"\nbase.digamma( x:number )\n Evaluates the digamma function.\n","base.diracDelta":"\nbase.diracDelta( x:number )\n Evaluates the Dirac delta function.\n","base.dists.arcsine.Arcsine":"\nbase.dists.arcsine.Arcsine( [a:number, b:number] )\n Returns an arcsine distribution object.\n","base.dists.arcsine.cdf":"\nbase.dists.arcsine.cdf( x:number, a:number, b:number )\n Evaluates the cumulative distribution function (CDF) for an arcsine\n distribution with minimum support `a` and maximum support `b` at a value\n `x`.\n","base.dists.arcsine.cdf.factory":"\nbase.dists.arcsine.cdf.factory( a:number, b:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of an arcsine distribution with minimum support `a` and maximum support `b`.\n","base.dists.arcsine.entropy":"\nbase.dists.arcsine.entropy( a:number, b:number )\n Returns the differential entropy of an arcsine distribution (in nats).\n","base.dists.arcsine.kurtosis":"\nbase.dists.arcsine.kurtosis( a:number, b:number )\n Returns the excess kurtosis of an arcsine distribution.\n","base.dists.arcsine.logcdf":"\nbase.dists.arcsine.logcdf( x:number, a:number, b:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for an\n arcsine distribution with minimum support `a` and maximum support `b` at a\n value `x`.\n","base.dists.arcsine.logcdf.factory":"\nbase.dists.arcsine.logcdf.factory( a:number, b:number )\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of an arcsine distribution with minimum support\n `a` and maximum support `b`.\n","base.dists.arcsine.logpdf":"\nbase.dists.arcsine.logpdf( x:number, a:number, b:number )\n Evaluates the logarithm of the probability density function (PDF) for an\n arcsine distribution with minimum support `a` and maximum support `b` at a\n value `x`.\n","base.dists.arcsine.logpdf.factory":"\nbase.dists.arcsine.logpdf.factory( a:number, b:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of an arcsine distribution with minimum support `a` and\n maximum support `b`.\n","base.dists.arcsine.mean":"\nbase.dists.arcsine.mean( a:number, b:number )\n Returns the expected value of an arcsine distribution.\n","base.dists.arcsine.median":"\nbase.dists.arcsine.median( a:number, b:number )\n Returns the median of an arcsine distribution.\n","base.dists.arcsine.mode":"\nbase.dists.arcsine.mode( a:number, b:number )\n Returns the mode of an arcsine distribution.\n","base.dists.arcsine.pdf":"\nbase.dists.arcsine.pdf( x:number, a:number, b:number )\n Evaluates the probability density function (PDF) for an arcsine distribution\n with minimum support `a` and maximum support `b` at a value `x`.\n","base.dists.arcsine.pdf.factory":"\nbase.dists.arcsine.pdf.factory( a:number, b:number )\n Returns a function for evaluating the probability density function (PDF) of\n an arcsine distribution with minimum support `a` and maximum support `b`.\n","base.dists.arcsine.quantile":"\nbase.dists.arcsine.quantile( p:number, a:number, b:number )\n Evaluates the quantile function for an arcsine distribution with minimum\n support `a` and maximum support `b` at a probability `p`.\n","base.dists.arcsine.quantile.factory":"\nbase.dists.arcsine.quantile.factory( a:number, b:number )\n Returns a function for evaluating the quantile function of an arcsine\n distribution with minimum support `a` and maximum support `b`.\n","base.dists.arcsine.skewness":"\nbase.dists.arcsine.skewness( a:number, b:number )\n Returns the skewness of an arcsine distribution.\n","base.dists.arcsine.stdev":"\nbase.dists.arcsine.stdev( a:number, b:number )\n Returns the standard deviation of an arcsine distribution.\n","base.dists.arcsine.variance":"\nbase.dists.arcsine.variance( a:number, b:number )\n Returns the variance of an arcsine distribution.\n","base.dists.bernoulli.Bernoulli":"\nbase.dists.bernoulli.Bernoulli( [p:number] )\n Returns a Bernoulli distribution object.\n","base.dists.bernoulli.cdf":"\nbase.dists.bernoulli.cdf( x:number, p:number )\n Evaluates the cumulative distribution function (CDF) for a Bernoulli\n distribution with success probability `p` at a value `x`.\n","base.dists.bernoulli.cdf.factory":"\nbase.dists.bernoulli.cdf.factory( p:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Bernoulli distribution with success probability `p`.\n","base.dists.bernoulli.entropy":"\nbase.dists.bernoulli.entropy( p:number )\n Returns the entropy of a Bernoulli distribution with success probability\n `p` (in nats).\n","base.dists.bernoulli.kurtosis":"\nbase.dists.bernoulli.kurtosis( p:number )\n Returns the excess kurtosis of a Bernoulli distribution with success\n probability `p`.\n","base.dists.bernoulli.mean":"\nbase.dists.bernoulli.mean( p:number )\n Returns the expected value of a Bernoulli distribution with success\n probability `p`.\n","base.dists.bernoulli.median":"\nbase.dists.bernoulli.median( p:number )\n Returns the median of a Bernoulli distribution with success probability `p`.\n","base.dists.bernoulli.mgf":"\nbase.dists.bernoulli.mgf( t:number, p:number )\n Evaluates the moment-generating function (MGF) for a Bernoulli\n distribution with success probability `p` at a value `t`.\n","base.dists.bernoulli.mgf.factory":"\nbase.dists.bernoulli.mgf.factory( p:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n Bernoulli distribution with success probability `p`.\n","base.dists.bernoulli.mode":"\nbase.dists.bernoulli.mode( p:number )\n Returns the mode of a Bernoulli distribution with success probability `p`.\n","base.dists.bernoulli.pmf":"\nbase.dists.bernoulli.pmf( x:number, p:number )\n Evaluates the probability mass function (PMF) for a Bernoulli distribution\n with success probability `p` at a value `x`.\n","base.dists.bernoulli.pmf.factory":"\nbase.dists.bernoulli.pmf.factory( p:number )\n Returns a function for evaluating the probability mass function (PMF) of a\n Bernoulli distribution with success probability `p`.\n","base.dists.bernoulli.quantile":"\nbase.dists.bernoulli.quantile( r:number, p:number )\n Evaluates the quantile function for a Bernoulli distribution with success\n probability `p` at a probability `r`.\n","base.dists.bernoulli.quantile.factory":"\nbase.dists.bernoulli.quantile.factory( p:number )\n Returns a function for evaluating the quantile function of a Bernoulli\n distribution with success probability `p`.\n","base.dists.bernoulli.skewness":"\nbase.dists.bernoulli.skewness( p:number )\n Returns the skewness of a Bernoulli distribution with success probability\n `p`.\n","base.dists.bernoulli.stdev":"\nbase.dists.bernoulli.stdev( p:number )\n Returns the standard deviation of a Bernoulli distribution with success\n probability `p`.\n","base.dists.bernoulli.variance":"\nbase.dists.bernoulli.variance( p:number )\n Returns the variance of a Bernoulli distribution with success probability\n `p`.\n","base.dists.beta.Beta":"\nbase.dists.beta.Beta( [α:number, β:number] )\n Returns a beta distribution object.\n","base.dists.beta.cdf":"\nbase.dists.beta.cdf( x:number, α:number, β:number )\n Evaluates the cumulative distribution function (CDF) for a beta distribution\n with first shape parameter `α` and second shape parameter `β` at a value\n `x`.\n","base.dists.beta.cdf.factory":"\nbase.dists.beta.cdf.factory( α:number, β:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a beta distribution with first shape parameter `α` and second shape\n parameter `β`.\n","base.dists.beta.entropy":"\nbase.dists.beta.entropy( α:number, β:number )\n Returns the differential entropy of a beta distribution.\n","base.dists.beta.kurtosis":"\nbase.dists.beta.kurtosis( α:number, β:number )\n Returns the excess kurtosis of a beta distribution.\n","base.dists.beta.logcdf":"\nbase.dists.beta.logcdf( x:number, α:number, β:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for a beta distribution with first shape parameter `α` and second\n shape parameter `β` at a value `x`.\n","base.dists.beta.logcdf.factory":"\nbase.dists.beta.logcdf.factory( α:number, β:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a beta distribution with first shape\n parameter `α` and second shape parameter `β`.\n","base.dists.beta.logpdf":"\nbase.dists.beta.logpdf( x:number, α:number, β:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for a beta distribution with first shape parameter `α` and second shape\n parameter `β` at a value `x`.\n","base.dists.beta.logpdf.factory":"\nbase.dists.beta.logpdf.factory( α:number, β:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of a beta distribution with first shape parameter `α`\n and second shape parameter `β`.\n","base.dists.beta.mean":"\nbase.dists.beta.mean( α:number, β:number )\n Returns the expected value of a beta distribution.\n","base.dists.beta.median":"\nbase.dists.beta.median( α:number, β:number )\n Returns the median of a beta distribution.\n","base.dists.beta.mgf":"\nbase.dists.beta.mgf( t:number, α:number, β:number )\n Evaluates the moment-generating function (MGF) for a beta distribution with\n first shape parameter `α` and second shape parameter `β` at a value `t`.\n","base.dists.beta.mgf.factory":"\nbase.dists.beta.mgf.factory( α:number, β:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n beta distribution with first shape parameter `α` and second shape parameter\n `β`.\n","base.dists.beta.mode":"\nbase.dists.beta.mode( α:number, β:number )\n Returns the mode of a beta distribution.\n","base.dists.beta.pdf":"\nbase.dists.beta.pdf( x:number, α:number, β:number )\n Evaluates the probability density function (PDF) for a beta distribution\n with first shape parameter `α` and second shape parameter `β` at a value\n `x`.\n","base.dists.beta.pdf.factory":"\nbase.dists.beta.pdf.factory( α:number, β:number )\n Returns a function for evaluating the probability density function (PDF) of\n a beta distribution with first shape parameter `α` and second shape\n parameter `β`.\n","base.dists.beta.quantile":"\nbase.dists.beta.quantile( p:number, α:number, β:number )\n Evaluates the quantile function for a beta distribution with first shape\n parameter `α` and second shape parameter `β` at a probability `p`.\n","base.dists.beta.quantile.factory":"\nbase.dists.beta.quantile.factory( α:number, β:number )\n Returns a function for evaluating the quantile function of a beta\n distribution with first shape parameter `α` and second shape parameter `β`.\n","base.dists.beta.skewness":"\nbase.dists.beta.skewness( α:number, β:number )\n Returns the skewness of a beta distribution.\n","base.dists.beta.stdev":"\nbase.dists.beta.stdev( α:number, β:number )\n Returns the standard deviation of a beta distribution.\n","base.dists.beta.variance":"\nbase.dists.beta.variance( α:number, β:number )\n Returns the variance of a beta distribution.\n","base.dists.betaprime.BetaPrime":"\nbase.dists.betaprime.BetaPrime( [α:number, β:number] )\n Returns a beta prime distribution object.\n","base.dists.betaprime.cdf":"\nbase.dists.betaprime.cdf( x:number, α:number, β:number )\n Evaluates the cumulative distribution function (CDF) for a beta prime\n distribution with first shape parameter `α` and second shape parameter `β`\n at a value `x`.\n","base.dists.betaprime.cdf.factory":"\nbase.dists.betaprime.cdf.factory( α:number, β:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a beta prime distribution with first shape parameter `α` and second shape\n parameter `β`.\n","base.dists.betaprime.kurtosis":"\nbase.dists.betaprime.kurtosis( α:number, β:number )\n Returns the excess kurtosis of a beta prime distribution.\n","base.dists.betaprime.logcdf":"\nbase.dists.betaprime.logcdf( x:number, α:number, β:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for a beta prime distribution with first shape parameter `α` and\n second shape parameter `β` at a value `x`.\n","base.dists.betaprime.logcdf.factory":"\nbase.dists.betaprime.logcdf.factory( α:number, β:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a beta prime distribution with first shape\n parameter `α` and second shape parameter `β`.\n","base.dists.betaprime.logpdf":"\nbase.dists.betaprime.logpdf( x:number, α:number, β:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for a beta prime distribution with first shape parameter `α` and second\n shape parameter `β` at a value `x`.\n","base.dists.betaprime.logpdf.factory":"\nbase.dists.betaprime.logpdf.factory( α:number, β:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of a beta prime distribution with first shape\n parameter `α` and second shape parameter `β`.\n","base.dists.betaprime.mean":"\nbase.dists.betaprime.mean( α:number, β:number )\n Returns the expected value of a beta prime distribution.\n","base.dists.betaprime.mode":"\nbase.dists.betaprime.mode( α:number, β:number )\n Returns the mode of a beta prime distribution.\n","base.dists.betaprime.pdf":"\nbase.dists.betaprime.pdf( x:number, α:number, β:number )\n Evaluates the probability density function (PDF) for a beta prime\n distribution with first shape parameter `α` and second shape parameter `β`\n at a value `x`.\n","base.dists.betaprime.pdf.factory":"\nbase.dists.betaprime.pdf.factory( α:number, β:number )\n Returns a function for evaluating the probability density function (PDF) of\n a beta prime distribution with first shape parameter `α` and second shape\n parameter `β`.\n","base.dists.betaprime.quantile":"\nbase.dists.betaprime.quantile( p:number, α:number, β:number )\n Evaluates the quantile function for a beta prime distribution with first\n shape parameter `α` and second shape parameter `β` at a probability `p`.\n","base.dists.betaprime.quantile.factory":"\nbase.dists.betaprime.quantile.factory( α:number, β:number )\n Returns a function for evaluating the quantile function of a beta prime\n distribution with first shape parameter `α` and second shape parameter `β`.\n","base.dists.betaprime.skewness":"\nbase.dists.betaprime.skewness( α:number, β:number )\n Returns the skewness of a beta prime distribution.\n","base.dists.betaprime.stdev":"\nbase.dists.betaprime.stdev( α:number, β:number )\n Returns the standard deviation of a beta prime distribution.\n","base.dists.betaprime.variance":"\nbase.dists.betaprime.variance( α:number, β:number )\n Returns the variance of a beta prime distribution.\n","base.dists.binomial.Binomial":"\nbase.dists.binomial.Binomial( [n:integer, p:number] )\n Returns a binomial distribution object.\n","base.dists.binomial.cdf":"\nbase.dists.binomial.cdf( x:number, n:integer, p:number )\n Evaluates the cumulative distribution function (CDF) for a binomial\n distribution with number of trials `n` and success probability `p` at a\n value `x`.\n","base.dists.binomial.cdf.factory":"\nbase.dists.binomial.cdf.factory( n:integer, p:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a binomial distribution with number of trials `n` and success probability\n `p`.\n","base.dists.binomial.entropy":"\nbase.dists.binomial.entropy( n:integer, p:number )\n Returns the entropy of a binomial distribution.\n","base.dists.binomial.kurtosis":"\nbase.dists.binomial.kurtosis( n:integer, p:number )\n Returns the excess kurtosis of a binomial distribution.\n","base.dists.binomial.logpmf":"\nbase.dists.binomial.logpmf( x:number, n:integer, p:number )\n Evaluates the natural logarithm of the probability mass function (PMF) for a\n binomial distribution with number of trials `n` and success probability `p`\n at a value `x`.\n","base.dists.binomial.logpmf.factory":"\nbase.dists.binomial.logpmf.factory( n:integer, p:number )\n Returns a function for evaluating the natural logarithm of the probability\n mass function (PMF) of a binomial distribution with number of trials `n` and\n success probability `p`.\n","base.dists.binomial.mean":"\nbase.dists.binomial.mean( n:integer, p:number )\n Returns the expected value of a binomial distribution.\n","base.dists.binomial.median":"\nbase.dists.binomial.median( n:integer, p:number )\n Returns the median of a binomial distribution.\n","base.dists.binomial.mgf":"\nbase.dists.binomial.mgf( t:number, n:integer, p:number )\n Evaluates the moment-generating function (MGF) for a binomial distribution\n with number of trials `n` and success probability `p` at a value `t`.\n","base.dists.binomial.mgf.factory":"\nbase.dists.binomial.mgf.factory( n:integer, p:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n binomial distribution with number of trials `n` and success probability `p`.\n","base.dists.binomial.mode":"\nbase.dists.binomial.mode( n:integer, p:number )\n Returns the mode of a binomial distribution.\n","base.dists.binomial.pmf":"\nbase.dists.binomial.pmf( x:number, n:integer, p:number )\n Evaluates the probability mass function (PMF) for a binomial distribution\n with number of trials `n` and success probability `p` at a value `x`.\n","base.dists.binomial.pmf.factory":"\nbase.dists.binomial.pmf.factory( n:integer, p:number )\n Returns a function for evaluating the probability mass function (PMF) of a\n binomial distribution with number of trials `n` and success probability `p`.\n","base.dists.binomial.quantile":"\nbase.dists.binomial.quantile( r:number, n:integer, p:number )\n Evaluates the quantile function for a binomial distribution with number of\n trials `n` and success probability `p` at a probability `r`.\n","base.dists.binomial.quantile.factory":"\nbase.dists.binomial.quantile.factory( n:integer, p:number )\n Returns a function for evaluating the quantile function of a binomial\n distribution with number of trials `n` and success probability `p`.\n","base.dists.binomial.skewness":"\nbase.dists.binomial.skewness( n:integer, p:number )\n Returns the skewness of a binomial distribution.\n","base.dists.binomial.stdev":"\nbase.dists.binomial.stdev( n:integer, p:number )\n Returns the standard deviation of a binomial distribution.\n","base.dists.binomial.variance":"\nbase.dists.binomial.variance( n:integer, p:number )\n Returns the variance of a binomial distribution.\n","base.dists.cauchy.Cauchy":"\nbase.dists.cauchy.Cauchy( [x0:number, Ɣ:number] )\n Returns a Cauchy distribution object.\n","base.dists.cauchy.cdf":"\nbase.dists.cauchy.cdf( x:number, x0:number, Ɣ:number )\n Evaluates the cumulative distribution function (CDF) for a Cauchy\n distribution with location parameter `x0` and scale parameter `Ɣ` at a value\n `x`.\n","base.dists.cauchy.cdf.factory":"\nbase.dists.cauchy.cdf.factory( x0:number, Ɣ:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Cauchy distribution with location parameter `x0` and scale parameter\n `Ɣ`.\n","base.dists.cauchy.entropy":"\nbase.dists.cauchy.entropy( x0:number, Ɣ:number )\n Returns the differential entropy of a Cauchy distribution (in nats).\n","base.dists.cauchy.logcdf":"\nbase.dists.cauchy.logcdf( x:number, x0:number, Ɣ:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (logCDF) for a Cauchy distribution with location parameter `x0` and scale\n parameter `Ɣ` at a value `x`.\n","base.dists.cauchy.logcdf.factory":"\nbase.dists.cauchy.logcdf.factory( x0:number, Ɣ:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (logCDF) of a Cauchy distribution with location\n parameter `x0` and scale parameter `Ɣ`.\n","base.dists.cauchy.logpdf":"\nbase.dists.cauchy.logpdf( x:number, x0:number, Ɣ:number )\n Evaluates the natural logarithm of the probability density function (logPDF)\n for a Cauchy distribution with location parameter `x0` and scale parameter\n `Ɣ` at a value `x`.\n","base.dists.cauchy.logpdf.factory":"\nbase.dists.cauchy.logpdf.factory( x0:number, Ɣ:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (logPDF) of a Cauchy distribution with location parameter\n `x0` and scale parameter `Ɣ`.\n","base.dists.cauchy.median":"\nbase.dists.cauchy.median( x0:number, Ɣ:number )\n Returns the median of a Cauchy distribution.\n","base.dists.cauchy.mode":"\nbase.dists.cauchy.mode( x0:number, Ɣ:number )\n Returns the mode of a Cauchy distribution.\n","base.dists.cauchy.pdf":"\nbase.dists.cauchy.pdf( x:number, x0:number, Ɣ:number )\n Evaluates the probability density function (PDF) for a Cauchy distribution\n with location parameter `x0` and scale parameter `Ɣ` at a value `x`.\n","base.dists.cauchy.pdf.factory":"\nbase.dists.cauchy.pdf.factory( x0:number, Ɣ:number )\n Returns a function for evaluating the probability density function (PDF) of\n a Cauchy distribution with location parameter `x0` and scale parameter `Ɣ`.\n","base.dists.cauchy.quantile":"\nbase.dists.cauchy.quantile( p:number, x0:number, Ɣ:number )\n Evaluates the quantile function for a Cauchy distribution with location\n parameter `x0` and scale parameter `Ɣ` at a probability `p`.\n","base.dists.cauchy.quantile.factory":"\nbase.dists.cauchy.quantile.factory( x0:number, Ɣ:number )\n Returns a function for evaluating the quantile function of a Cauchy\n distribution with location parameter `x0` and scale parameter `Ɣ`.\n","base.dists.chi.cdf":"\nbase.dists.chi.cdf( x:number, k:number )\n Evaluates the cumulative distribution function (CDF) for a chi distribution\n with degrees of freedom `k` at a value `x`.\n","base.dists.chi.cdf.factory":"\nbase.dists.chi.cdf.factory( k:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a chi distribution with degrees of freedom `k`.\n","base.dists.chi.Chi":"\nbase.dists.chi.Chi( [k:number] )\n Returns a chi distribution object.\n","base.dists.chi.entropy":"\nbase.dists.chi.entropy( k:number )\n Returns the differential entropy of a chi distribution (in nats).\n","base.dists.chi.kurtosis":"\nbase.dists.chi.kurtosis( k:number )\n Returns the excess kurtosis of a chi distribution.\n","base.dists.chi.logpdf":"\nbase.dists.chi.logpdf( x:number, k:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for a chi distribution with degrees of freedom `k` at a value `x`.\n","base.dists.chi.logpdf.factory":"\nbase.dists.chi.logpdf.factory( k:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of a chi distribution with degrees of freedom `k`.\n","base.dists.chi.mean":"\nbase.dists.chi.mean( k:number )\n Returns the expected value of a chi distribution.\n","base.dists.chi.mode":"\nbase.dists.chi.mode( k:number )\n Returns the mode of a chi distribution.\n","base.dists.chi.pdf":"\nbase.dists.chi.pdf( x:number, k:number )\n Evaluates the probability density function (PDF) for a chi distribution with\n degrees of freedom `k` at a value `x`.\n","base.dists.chi.pdf.factory":"\nbase.dists.chi.pdf.factory( k:number )\n Returns a function for evaluating the probability density function (PDF) of\n a chi distribution with degrees of freedom `k`.\n","base.dists.chi.quantile":"\nbase.dists.chi.quantile( p:number, k:number )\n Evaluates the quantile function for a chi distribution with degrees of\n freedom `k` at a probability `p`.\n","base.dists.chi.quantile.factory":"\nbase.dists.chi.quantile.factory( k:number )\n Returns a function for evaluating the quantile function of a chi\n distribution with degrees of freedom `k`.\n","base.dists.chi.skewness":"\nbase.dists.chi.skewness( k:number )\n Returns the skewness of a chi distribution.\n","base.dists.chi.stdev":"\nbase.dists.chi.stdev( k:number )\n Returns the standard deviation of a chi distribution.\n","base.dists.chi.variance":"\nbase.dists.chi.variance( k:number )\n Returns the variance of a chi distribution.\n","base.dists.chisquare.cdf":"\nbase.dists.chisquare.cdf( x:number, k:number )\n Evaluates the cumulative distribution function (CDF) for a chi-squared\n distribution with degrees of freedom `k` at a value `x`.\n","base.dists.chisquare.cdf.factory":"\nbase.dists.chisquare.cdf.factory( k:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a chi-squared distribution with degrees of freedom `k`.\n","base.dists.chisquare.ChiSquare":"\nbase.dists.chisquare.ChiSquare( [k:number] )\n Returns a chi-squared distribution object.\n","base.dists.chisquare.entropy":"\nbase.dists.chisquare.entropy( k:number )\n Returns the differential entropy of a chi-squared distribution (in nats).\n","base.dists.chisquare.kurtosis":"\nbase.dists.chisquare.kurtosis( k:number )\n Returns the excess kurtosis of a chi-squared distribution.\n","base.dists.chisquare.logpdf":"\nbase.dists.chisquare.logpdf( x:number, k:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for a chi-squared distribution with degrees of freedom `k` at a value `x`.\n","base.dists.chisquare.logpdf.factory":"\nbase.dists.chisquare.logpdf.factory( k:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of a chi-squared distribution with degrees of freedom\n `k`.\n","base.dists.chisquare.mean":"\nbase.dists.chisquare.mean( k:number )\n Returns the expected value of a chi-squared distribution.\n","base.dists.chisquare.median":"\nbase.dists.chisquare.median( k:number )\n Returns the median of a chi-squared distribution.\n","base.dists.chisquare.mgf":"\nbase.dists.chisquare.mgf( t:number, k:number )\n Evaluates the moment-generating function (MGF) for a chi-squared\n distribution with degrees of freedom `k` at a value `t`.\n","base.dists.chisquare.mgf.factory":"\nbase.dists.chisquare.mgf.factory( k:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n chi-squared distribution with degrees of freedom `k`.\n","base.dists.chisquare.mode":"\nbase.dists.chisquare.mode( k:number )\n Returns the mode of a chi-squared distribution.\n","base.dists.chisquare.pdf":"\nbase.dists.chisquare.pdf( x:number, k:number )\n Evaluates the probability density function (PDF) for a chi-squared\n distribution with degrees of freedom `k` at a value `x`.\n","base.dists.chisquare.pdf.factory":"\nbase.dists.chisquare.pdf.factory( k:number )\n Returns a function for evaluating the probability density function (PDF) of\n a chi-squared distribution with degrees of freedom `k`.\n","base.dists.chisquare.quantile":"\nbase.dists.chisquare.quantile( p:number, k:number )\n Evaluates the quantile function for a chi-squared distribution with degrees\n of freedom `k` at a probability `p`.\n","base.dists.chisquare.quantile.factory":"\nbase.dists.chisquare.quantile.factory( k:number )\n Returns a function for evaluating the quantile function of a chi-squared\n distribution with degrees of freedom `k`.\n","base.dists.chisquare.skewness":"\nbase.dists.chisquare.skewness( k:number )\n Returns the skewness of a chi-squared distribution.\n","base.dists.chisquare.stdev":"\nbase.dists.chisquare.stdev( k:number )\n Returns the standard deviation of a chi-squared distribution.\n","base.dists.chisquare.variance":"\nbase.dists.chisquare.variance( k:number )\n Returns the variance of a chi-squared distribution.\n","base.dists.cosine.cdf":"\nbase.dists.cosine.cdf( x:number, μ:number, s:number )\n Evaluates the cumulative distribution function (CDF) for a raised cosine\n distribution with location parameter `μ` and scale parameter `s` at a value\n `x`.\n","base.dists.cosine.cdf.factory":"\nbase.dists.cosine.cdf.factory( μ:number, s:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a raised cosine distribution with location parameter `μ` and scale\n parameter `s`.\n","base.dists.cosine.Cosine":"\nbase.dists.cosine.Cosine( [μ:number, s:number] )\n Returns a raised cosine distribution object.\n","base.dists.cosine.kurtosis":"\nbase.dists.cosine.kurtosis( μ:number, s:number )\n Returns the excess kurtosis of a raised cosine distribution with location\n parameter `μ` and scale parameter `s`.\n","base.dists.cosine.logcdf":"\nbase.dists.cosine.logcdf( x:number, μ:number, s:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for a raised cosine distribution with location parameter `μ` and scale\n parameter `s` at a value `x`.\n","base.dists.cosine.logcdf.factory":"\nbase.dists.cosine.logcdf.factory( μ:number, s:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a raised cosine distribution with location\n parameter `μ` and scale parameter `s`.\n","base.dists.cosine.logpdf":"\nbase.dists.cosine.logpdf( x:number, μ:number, s:number )\n Evaluates the logarithm of the probability density function (PDF) for a\n raised cosine distribution with location parameter `μ` and scale parameter\n `s` at a value `x`.\n","base.dists.cosine.logpdf.factory":"\nbase.dists.cosine.logpdf.factory( μ:number, s:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a raised cosine distribution with location parameter `μ`\n and scale parameter `s`.\n","base.dists.cosine.mean":"\nbase.dists.cosine.mean( μ:number, s:number )\n Returns the expected value of a raised cosine distribution with location\n parameter `μ` and scale parameter `s`.\n","base.dists.cosine.median":"\nbase.dists.cosine.median( μ:number, s:number )\n Returns the median of a raised cosine distribution with location parameter\n `μ` and scale parameter `s`.\n","base.dists.cosine.mgf":"\nbase.dists.cosine.mgf( t:number, μ:number, s:number )\n Evaluates the moment-generating function (MGF) for a raised cosine\n distribution with location parameter `μ` and scale parameter `s` at a value\n `t`.\n","base.dists.cosine.mgf.factory":"\nbase.dists.cosine.mgf.factory( μ:number, s:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n raised cosine distribution with location parameter `μ` and scale parameter\n `s`.\n","base.dists.cosine.mode":"\nbase.dists.cosine.mode( μ:number, s:number )\n Returns the mode of a raised cosine distribution with location parameter `μ`\n and scale parameter `s`.\n","base.dists.cosine.pdf":"\nbase.dists.cosine.pdf( x:number, μ:number, s:number )\n Evaluates the probability density function (PDF) for a raised cosine\n distribution with location parameter `μ` and scale parameter `s` at a value\n `x`.\n","base.dists.cosine.pdf.factory":"\nbase.dists.cosine.pdf.factory( μ:number, s:number )\n Returns a function for evaluating the probability density function (PDF) of\n a raised cosine distribution with location parameter `μ` and scale parameter\n `s`.\n","base.dists.cosine.quantile":"\nbase.dists.cosine.quantile( p:number, μ:number, s:number )\n Evaluates the quantile function for a raised cosine distribution with\n location parameter `μ` and scale parameter `s` at a probability `p`.\n","base.dists.cosine.quantile.factory":"\nbase.dists.cosine.quantile.factory( μ:number, s:number )\n Returns a function for evaluating the quantile function of a raised cosine\n distribution with location parameter `μ` and scale parameter `s`.\n","base.dists.cosine.skewness":"\nbase.dists.cosine.skewness( μ:number, s:number )\n Returns the skewness of a raised cosine distribution with location parameter\n `μ` and scale parameter `s`.\n","base.dists.cosine.stdev":"\nbase.dists.cosine.stdev( μ:number, s:number )\n Returns the standard deviation of a raised cosine distribution with location\n parameter `μ` and scale parameter `s`.\n","base.dists.cosine.variance":"\nbase.dists.cosine.variance( μ:number, s:number )\n Returns the variance of a raised cosine distribution with location parameter\n `μ` and scale parameter `s`.\n","base.dists.degenerate.cdf":"\nbase.dists.degenerate.cdf( x:number, μ:number )\n Evaluates the cumulative distribution function (CDF) for a degenerate\n distribution with mean value `μ`.\n","base.dists.degenerate.cdf.factory":"\nbase.dists.degenerate.cdf.factory( μ:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a degenerate distribution centered at a provided mean value.\n","base.dists.degenerate.Degenerate":"\nbase.dists.degenerate.Degenerate( [μ:number] )\n Returns a degenerate distribution object.\n","base.dists.degenerate.entropy":"\nbase.dists.degenerate.entropy( μ:number )\n Returns the entropy of a degenerate distribution with constant value `μ`.\n","base.dists.degenerate.logcdf":"\nbase.dists.degenerate.logcdf( x:number, μ:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (logCDF) for a degenerate distribution with mean `μ`.\n","base.dists.degenerate.logcdf.factory":"\nbase.dists.degenerate.logcdf.factory( μ:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (logCDF) of a degenerate distribution with mean `μ`.\n","base.dists.degenerate.logpdf":"\nbase.dists.degenerate.logpdf( x:number, μ:number )\n Evaluates the natural logarithm of the probability density function (logPDF)\n for a degenerate distribution with mean `μ`.\n","base.dists.degenerate.logpdf.factory":"\nbase.dists.degenerate.logpdf.factory( μ:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (logPDF) of a degenerate distribution with mean `μ`.\n","base.dists.degenerate.logpmf":"\nbase.dists.degenerate.logpmf( x:number, μ:number )\n Evaluates the natural logarithm of the probability mass function (PMF) for a\n degenerate distribution with mean `μ`.\n","base.dists.degenerate.logpmf.factory":"\nbase.dists.degenerate.logpmf.factory( μ:number )\n Returns a function for evaluating the natural logarithm of the probability\n mass function (PMF) of a degenerate distribution with mean `μ`.\n","base.dists.degenerate.mean":"\nbase.dists.degenerate.mean( μ:number )\n Returns the expected value of a degenerate distribution with constant value\n `μ`.\n","base.dists.degenerate.median":"\nbase.dists.degenerate.median( μ:number )\n Returns the median of a degenerate distribution with constant value `μ`.\n","base.dists.degenerate.mgf":"\nbase.dists.degenerate.mgf( x:number, μ:number )\n Evaluates the moment-generating function (MGF) for a degenerate distribution\n with mean `μ`.\n","base.dists.degenerate.mgf.factory":"\nbase.dists.degenerate.mgf.factory( μ:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n degenerate distribution with mean `μ`.\n","base.dists.degenerate.mode":"\nbase.dists.degenerate.mode( μ:number )\n Returns the mode of a degenerate distribution with constant value `μ`.\n","base.dists.degenerate.pdf":"\nbase.dists.degenerate.pdf( x:number, μ:number )\n Evaluates the probability density function (PDF) for a degenerate\n distribution with mean `μ`.\n","base.dists.degenerate.pdf.factory":"\nbase.dists.degenerate.pdf.factory( μ:number )\n Returns a function for evaluating the probability density function (PDF) of\n a degenerate distribution with mean `μ`.\n","base.dists.degenerate.pmf":"\nbase.dists.degenerate.pmf( x:number, μ:number )\n Evaluates the probability mass function (PMF) for a degenerate distribution\n with mean `μ`.\n","base.dists.degenerate.pmf.factory":"\nbase.dists.degenerate.pmf.factory( μ:number )\n Returns a function for evaluating the probability mass function (PMF) of a\n degenerate distribution with mean `μ`.\n","base.dists.degenerate.quantile":"\nbase.dists.degenerate.quantile( p:number, μ:number )\n Evaluates the quantile function for a degenerate distribution with mean `μ`.\n","base.dists.degenerate.quantile.factory":"\nbase.dists.degenerate.quantile.factory( μ:number )\n Returns a function for evaluating the quantile function of a degenerate\n distribution with mean `μ`.\n","base.dists.degenerate.stdev":"\nbase.dists.degenerate.stdev( μ:number )\n Returns the standard deviation of a degenerate distribution with constant\n value `μ`.\n","base.dists.degenerate.variance":"\nbase.dists.degenerate.variance( μ:number )\n Returns the variance of a degenerate distribution with constant value `μ`.\n","base.dists.discreteUniform.cdf":"\nbase.dists.discreteUniform.cdf( x:number, a:integer, b:integer )\n Evaluates the cumulative distribution function (CDF) for a discrete uniform\n distribution with minimum support `a` and maximum support `b` at a value\n `x`.\n","base.dists.discreteUniform.cdf.factory":"\nbase.dists.discreteUniform.cdf.factory( a:integer, b:integer )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a discrete uniform distribution with minimum support `a` and maximum\n support `b`.\n","base.dists.discreteUniform.DiscreteUniform":"\nbase.dists.discreteUniform.DiscreteUniform( [a:integer, b:integer] )\n Returns a discrete uniform distribution object.\n","base.dists.discreteUniform.kurtosis":"\nbase.dists.discreteUniform.kurtosis( a:integer, b:integer )\n Returns the excess kurtosis of a discrete uniform distribution.\n","base.dists.discreteUniform.logcdf":"\nbase.dists.discreteUniform.logcdf( x:number, a:integer, b:integer )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for a discrete uniform distribution with minimum support `a` and\n maximum support `b` at a value `x`.\n","base.dists.discreteUniform.logcdf.factory":"\nbase.dists.discreteUniform.logcdf.factory( a:integer, b:integer )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a discrete uniform distribution with minimum\n support `a` and maximum support `b`.\n","base.dists.discreteUniform.logpmf":"\nbase.dists.discreteUniform.logpmf( x:number, a:integer, b:integer )\n Evaluates the natural logarithm of the probability mass function (PMF) for a\n discrete uniform distribution with minimum support `a` and maximum support\n `b` at a value `x`.\n","base.dists.discreteUniform.logpmf.factory":"\nbase.dists.discreteUniform.logpmf.factory( a:integer, b:integer )\n Returns a function for evaluating the natural logarithm of the probability\n mass function (PMF) of a discrete uniform distribution with minimum support\n `a` and maximum support `b`.\n","base.dists.discreteUniform.mean":"\nbase.dists.discreteUniform.mean( a:integer, b:integer )\n Returns the expected value of a discrete uniform distribution.\n","base.dists.discreteUniform.median":"\nbase.dists.discreteUniform.median( a:integer, b:integer )\n Returns the median of a discrete uniform distribution.\n","base.dists.discreteUniform.mgf":"\nbase.dists.discreteUniform.mgf( t:number, a:integer, b:integer )\n Evaluates the moment-generating function (MGF) for a discrete uniform\n distribution with minimum support `a` and maximum support `b` at a value\n `t`.\n","base.dists.discreteUniform.mgf.factory":"\nbase.dists.discreteUniform.mgf.factory( a:integer, b:integer )\n Returns a function for evaluating the moment-generating function (MGF)\n of a discrete uniform distribution with minimum support `a` and maximum\n support `b`.\n","base.dists.discreteUniform.pmf":"\nbase.dists.discreteUniform.pmf( x:number, a:integer, b:integer )\n Evaluates the probability mass function (PMF) for a discrete uniform\n distribution with minimum support `a` and maximum support `b` at a value\n `x`.\n","base.dists.discreteUniform.pmf.factory":"\nbase.dists.discreteUniform.pmf.factory( a:integer, b:integer )\n Returns a function for evaluating the probability mass function (PMF) of\n a discrete uniform distribution with minimum support `a` and maximum support\n `b`.\n","base.dists.discreteUniform.quantile":"\nbase.dists.discreteUniform.quantile( p:number, a:integer, b:integer )\n Evaluates the quantile function for a discrete uniform distribution with\n minimum support `a` and maximum support `b` at a probability `p`.\n","base.dists.discreteUniform.quantile.factory":"\nbase.dists.discreteUniform.quantile.factory( a:integer, b:integer )\n Returns a function for evaluating the quantile function of a discrete\n uniform distribution with minimum support `a` and maximum support `b`.\n","base.dists.discreteUniform.skewness":"\nbase.dists.discreteUniform.skewness( a:integer, b:integer )\n Returns the skewness of a discrete uniform distribution.\n","base.dists.discreteUniform.stdev":"\nbase.dists.discreteUniform.stdev( a:integer, b:integer )\n Returns the standard deviation of a discrete uniform distribution.\n","base.dists.discreteUniform.variance":"\nbase.dists.discreteUniform.variance( a:integer, b:integer )\n Returns the variance of a discrete uniform distribution.\n","base.dists.erlang.cdf":"\nbase.dists.erlang.cdf( x:number, k:number, λ:number )\n Evaluates the cumulative distribution function (CDF) for an Erlang\n distribution with shape parameter `k` and rate parameter `λ` at a value\n `x`.\n","base.dists.erlang.cdf.factory":"\nbase.dists.erlang.cdf.factory( k:number, λ:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of an Erlang distribution with shape parameter `k` and rate parameter `λ`.\n","base.dists.erlang.entropy":"\nbase.dists.erlang.entropy( k:integer, λ:number )\n Returns the differential entropy of an Erlang distribution (in nats).\n","base.dists.erlang.Erlang":"\nbase.dists.erlang.Erlang( [k:number, λ:number] )\n Returns an Erlang distribution object.\n","base.dists.erlang.kurtosis":"\nbase.dists.erlang.kurtosis( k:integer, λ:number )\n Returns the excess kurtosis of an Erlang distribution.\n","base.dists.erlang.logpdf":"\nbase.dists.erlang.logpdf( x:number, k:number, λ:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for an Erlang distribution with shape parameter `k` and rate parameter `λ`\n at a value `x`.\n","base.dists.erlang.logpdf.factory":"\nbase.dists.erlang.logpdf.factory( k:number, λ:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of an Erlang distribution with shape parameter `k`\n and rate parameter `λ`.\n","base.dists.erlang.mean":"\nbase.dists.erlang.mean( k:integer, λ:number )\n Returns the expected value of an Erlang distribution.\n","base.dists.erlang.mgf":"\nbase.dists.erlang.mgf( t:number, k:number, λ:number )\n Evaluates the moment-generating function (MGF) for an Erlang distribution\n with shape parameter `k` and rate parameter `λ` at a value `t`.\n","base.dists.erlang.mgf.factory":"\nbase.dists.erlang.mgf.factory( k:number, λ:number )\n Returns a function for evaluating the moment-generating function (MGF) of an\n Erlang distribution with shape parameter `k` and rate parameter `λ`.\n","base.dists.erlang.mode":"\nbase.dists.erlang.mode( k:integer, λ:number )\n Returns the mode of an Erlang distribution.\n","base.dists.erlang.pdf":"\nbase.dists.erlang.pdf( x:number, k:number, λ:number )\n Evaluates the probability density function (PDF) for an Erlang distribution\n with shape parameter `k` and rate parameter `λ` at a value `x`.\n","base.dists.erlang.pdf.factory":"\nbase.dists.erlang.pdf.factory( k:number, λ:number )\n Returns a function for evaluating the probability density function (PDF)\n of an Erlang distribution with shape parameter `k` and rate parameter `λ`.\n","base.dists.erlang.quantile":"\nbase.dists.erlang.quantile( p:number, k:number, λ:number )\n Evaluates the quantile function for an Erlang distribution with shape\n parameter `k` and rate parameter `λ` at a probability `p`.\n","base.dists.erlang.quantile.factory":"\nbase.dists.erlang.quantile.factory( k:number, λ:number )\n Returns a function for evaluating the quantile function of an Erlang\n distribution with shape parameter `k` and rate parameter `λ`.\n","base.dists.erlang.skewness":"\nbase.dists.erlang.skewness( k:integer, λ:number )\n Returns the skewness of an Erlang distribution.\n","base.dists.erlang.stdev":"\nbase.dists.erlang.stdev( k:integer, λ:number )\n Returns the standard deviation of an Erlang distribution.\n","base.dists.erlang.variance":"\nbase.dists.erlang.variance( k:integer, λ:number )\n Returns the variance of an Erlang distribution.\n","base.dists.exponential.cdf":"\nbase.dists.exponential.cdf( x:number, λ:number )\n Evaluates the cumulative distribution function (CDF) for an exponential\n distribution with rate parameter `λ` at a value `x`.\n","base.dists.exponential.cdf.factory":"\nbase.dists.exponential.cdf.factory( λ:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n for an exponential distribution with rate parameter `λ`.\n","base.dists.exponential.entropy":"\nbase.dists.exponential.entropy( λ:number )\n Returns the differential entropy of an exponential distribution.\n","base.dists.exponential.Exponential":"\nbase.dists.exponential.Exponential( [λ:number] )\n Returns an exponential distribution object.\n","base.dists.exponential.kurtosis":"\nbase.dists.exponential.kurtosis( λ:number )\n Returns the excess kurtosis of an exponential distribution.\n","base.dists.exponential.logcdf":"\nbase.dists.exponential.logcdf( x:number, λ:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for an exponential distribution with rate parameter `λ` at a value\n `x`.\n","base.dists.exponential.logcdf.factory":"\nbase.dists.exponential.logcdf.factory( λ:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) for an exponential distribution with rate\n parameter `λ`.\n","base.dists.exponential.logpdf":"\nbase.dists.exponential.logpdf( x:number, λ:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for an exponential distribution with rate parameter `λ` at a value `x`.\n","base.dists.exponential.logpdf.factory":"\nbase.dists.exponential.logpdf.factory( λ:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) for an exponential distribution with rate parameter\n `λ`.\n","base.dists.exponential.mean":"\nbase.dists.exponential.mean( λ:number )\n Returns the expected value of an exponential distribution.\n","base.dists.exponential.median":"\nbase.dists.exponential.median( λ:number )\n Returns the median of an exponential distribution.\n","base.dists.exponential.mgf":"\nbase.dists.exponential.mgf( t:number, λ:number )\n Evaluates the moment-generating function (MGF) for an exponential\n distribution with rate parameter `λ` at a value `t`.\n","base.dists.exponential.mgf.factory":"\nbase.dists.exponential.mgf.factory( λ:number )\n Returns a function for evaluating the moment-generating function (MGF) for\n an exponential distribution with rate parameter `λ`.\n","base.dists.exponential.mode":"\nbase.dists.exponential.mode( λ:number )\n Returns the mode of an exponential distribution.\n","base.dists.exponential.pdf":"\nbase.dists.exponential.pdf( x:number, λ:number )\n Evaluates the probability density function (PDF) for an exponential\n distribution with rate parameter `λ` at a value `x`.\n","base.dists.exponential.pdf.factory":"\nbase.dists.exponential.pdf.factory( λ:number )\n Returns a function for evaluating the probability density function (PDF)\n for an exponential distribution with rate parameter `λ`.\n","base.dists.exponential.quantile":"\nbase.dists.exponential.quantile( p:number, λ:number )\n Evaluates the quantile function for an exponential distribution with rate\n parameter `λ` at a probability `p`.\n","base.dists.exponential.quantile.factory":"\nbase.dists.exponential.quantile.factory( λ:number )\n Returns a function for evaluating the quantile function for an exponential\n distribution with rate parameter `λ`.\n","base.dists.exponential.skewness":"\nbase.dists.exponential.skewness( λ:number )\n Returns the skewness of an exponential distribution.\n","base.dists.exponential.stdev":"\nbase.dists.exponential.stdev( λ:number )\n Returns the standard deviation of an exponential distribution.\n","base.dists.exponential.variance":"\nbase.dists.exponential.variance( λ:number )\n Returns the variance of an exponential distribution.\n","base.dists.f.cdf":"\nbase.dists.f.cdf( x:number, d1:number, d2:number )\n Evaluates the cumulative distribution function (CDF) for an F distribution\n with numerator degrees of freedom `d1` and denominator degrees of freedom\n `d2` at a value `x`.\n","base.dists.f.cdf.factory":"\nbase.dists.f.cdf.factory( d1:number, d2:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of an F distribution with numerator degrees of freedom `d1` and denominator\n degrees of freedom `d2`.\n","base.dists.f.entropy":"\nbase.dists.f.entropy( d1:number, d2:number )\n Returns the differential entropy of an F distribution (in nats).\n","base.dists.f.F":"\nbase.dists.f.F( [d1:number, d2:number] )\n Returns an F distribution object.\n","base.dists.f.kurtosis":"\nbase.dists.f.kurtosis( d1:number, d2:number )\n Returns the excess kurtosis of an F distribution.\n","base.dists.f.mean":"\nbase.dists.f.mean( d1:number, d2:number )\n Returns the expected value of an F distribution.\n","base.dists.f.mode":"\nbase.dists.f.mode( d1:number, d2:number )\n Returns the mode of an F distribution.\n","base.dists.f.pdf":"\nbase.dists.f.pdf( x:number, d1:number, d2:number )\n Evaluates the probability density function (PDF) for an F distribution with\n numerator degrees of freedom `d1` and denominator degrees of freedom `d2` at\n a value `x`.\n","base.dists.f.pdf.factory":"\nbase.dists.f.pdf.factory( d1:number, d2:number )\n Returns a function for evaluating the probability density function (PDF) of\n an F distribution with numerator degrees of freedom `d1` and denominator\n degrees of freedom `d2`.\n","base.dists.f.quantile":"\nbase.dists.f.quantile( p:number, d1:number, d2:number )\n Evaluates the quantile function for an F distribution with numerator degrees\n of freedom `d1` and denominator degrees of freedom `d2` at a probability\n `p`.\n","base.dists.f.quantile.factory":"\nbase.dists.f.quantile.factory( d1:number, d2:number )\n Returns a function for evaluating the quantile function of an F distribution\n with numerator degrees of freedom `d1` and denominator degrees of freedom\n `d2`.\n","base.dists.f.skewness":"\nbase.dists.f.skewness( d1:number, d2:number )\n Returns the skewness of an F distribution.\n","base.dists.f.stdev":"\nbase.dists.f.stdev( d1:number, d2:number )\n Returns the standard deviation of an F distribution.\n","base.dists.f.variance":"\nbase.dists.f.variance( d1:number, d2:number )\n Returns the variance of an F distribution.\n","base.dists.frechet.cdf":"\nbase.dists.frechet.cdf( x:number, α:number, s:number, m:number )\n Evaluates the cumulative distribution function (CDF) for a Fréchet\n distribution with shape parameter `α`, scale parameter `s`, and location\n `m`.\n","base.dists.frechet.cdf.factory":"\nbase.dists.frechet.cdf.factory( α:number, s:number, m:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Fréchet distribution with shape parameter `α`, scale parameter `s`, and\n location `m`.\n","base.dists.frechet.entropy":"\nbase.dists.frechet.entropy( α:number, s:number, m:number )\n Returns the differential entropy of a Fréchet distribution with shape\n parameter `α`, scale parameter `s`, and location `m` (in nats).\n","base.dists.frechet.Frechet":"\nbase.dists.frechet.Frechet( [α:number, s:number, m:number] )\n Returns a Fréchet distribution object.\n","base.dists.frechet.kurtosis":"\nbase.dists.frechet.kurtosis( α:number, s:number, m:number )\n Returns the excess kurtosis of a Fréchet distribution with shape parameter\n `α`, scale parameter `s`, and location `m`.\n","base.dists.frechet.logcdf":"\nbase.dists.frechet.logcdf( x:number, α:number, s:number, m:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for a Fréchet distribution with shape parameter `α`, scale parameter\n `s`, and location `m`.\n","base.dists.frechet.logcdf.factory":"\nbase.dists.frechet.logcdf.factory( α:number, s:number, m:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a Fréchet distribution with shape parameter\n `α`, scale parameter `s`, and location `m`.\n","base.dists.frechet.logpdf":"\nbase.dists.frechet.logpdf( x:number, α:number, s:number, m:number )\n Evaluates the logarithm of the probability density function (PDF) for a\n Fréchet distribution with shape parameter `α`, scale parameter `s`, and\n location `m`.\n","base.dists.frechet.logpdf.factory":"\nbase.dists.frechet.logpdf.factory( α:number, s:number, m:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a Fréchet distribution with shape parameter `α`, scale\n parameter `s`, and location `m`.\n","base.dists.frechet.mean":"\nbase.dists.frechet.mean( α:number, s:number, m:number )\n Returns the expected value of a Fréchet distribution with shape parameter\n `α`, scale parameter `s`, and location `m`.\n","base.dists.frechet.median":"\nbase.dists.frechet.median( α:number, s:number, m:number )\n Returns the median of a Fréchet distribution with shape parameter\n `α`, scale parameter `s`, and location `m`.\n","base.dists.frechet.mode":"\nbase.dists.frechet.mode( α:number, s:number, m:number )\n Returns the mode of a Fréchet distribution with shape parameter `α`, scale\n parameter `s`, and location `m`.\n","base.dists.frechet.pdf":"\nbase.dists.frechet.pdf( x:number, α:number, s:number, m:number )\n Evaluates the probability density function (PDF) for a Fréchet distribution\n with shape parameter `α`, scale parameter `s`, and location `m`.\n","base.dists.frechet.pdf.factory":"\nbase.dists.frechet.pdf.factory( α:number, s:number, m:number )\n Returns a function for evaluating the probability density function (PDF) of\n a Fréchet distribution with shape parameter `α`, scale parameter `s`, and\n location `m`.\n","base.dists.frechet.quantile":"\nbase.dists.frechet.quantile( p:number, α:number, s:number, m:number )\n Evaluates the quantile function for a Fréchet distribution with shape\n parameter `α`, scale parameter `s`, and location `m`.\n","base.dists.frechet.quantile.factory":"\nbase.dists.frechet.quantile.factory( α:number, s:number, m:number )\n Returns a function for evaluating the quantile function of a Fréchet\n distribution with shape parameter `α`, scale parameter `s`, and location\n `m`.\n","base.dists.frechet.skewness":"\nbase.dists.frechet.skewness( α:number, s:number, m:number )\n Returns the skewness of a Fréchet distribution with shape parameter `α`,\n scale parameter `s`, and location `m`.\n","base.dists.frechet.stdev":"\nbase.dists.frechet.stdev( α:number, s:number, m:number )\n Returns the standard deviation of a Fréchet distribution with shape\n parameter `α`, scale parameter `s`, and location `m`.\n","base.dists.frechet.variance":"\nbase.dists.frechet.variance( α:number, s:number, m:number )\n Returns the variance of a Fréchet distribution with shape parameter `α`,\n scale parameter `s`, and location `m`.\n","base.dists.gamma.cdf":"\nbase.dists.gamma.cdf( x:number, α:number, β:number )\n Evaluates the cumulative distribution function (CDF) for a gamma\n distribution with shape parameter `α` and rate parameter `β` at a value `x`.\n","base.dists.gamma.cdf.factory":"\nbase.dists.gamma.cdf.factory( α:number, β:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a gamma distribution with shape parameter `α` and rate parameter `β`.\n","base.dists.gamma.entropy":"\nbase.dists.gamma.entropy( α:number, β:number )\n Returns the differential entropy of a gamma distribution.\n","base.dists.gamma.Gamma":"\nbase.dists.gamma.Gamma( [α:number, β:number] )\n Returns a gamma distribution object.\n","base.dists.gamma.kurtosis":"\nbase.dists.gamma.kurtosis( α:number, β:number )\n Returns the excess kurtosis of a gamma distribution.\n","base.dists.gamma.logcdf":"\nbase.dists.gamma.logcdf( x:number, α:number, β:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for a\n gamma distribution with shape parameter `α` and rate parameter `β` at a\n value `x`.\n","base.dists.gamma.logcdf.factory":"\nbase.dists.gamma.logcdf.factory( α:number, β:number )\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of a gamma distribution with shape parameter `α`\n and rate parameter `β`.\n","base.dists.gamma.logpdf":"\nbase.dists.gamma.logpdf( x:number, α:number, β:number )\n Evaluates the logarithm of the probability density function (PDF) for a\n gamma distribution with shape parameter `α` and rate parameter `β` at a\n value `x`.\n","base.dists.gamma.logpdf.factory":"\nbase.dists.gamma.logpdf.factory( α:number, β:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a gamma distribution with shape parameter `α` and rate\n parameter `β`.\n","base.dists.gamma.mean":"\nbase.dists.gamma.mean( α:number, β:number )\n Returns the expected value of a gamma distribution.\n","base.dists.gamma.mgf":"\nbase.dists.gamma.mgf( t:number, α:number, β:number )\n Evaluates the moment-generating function (MGF) for a gamma distribution with\n shape parameter `α` and rate parameter `β` at a value `t`.\n","base.dists.gamma.mgf.factory":"\nbase.dists.gamma.mgf.factory( α:number, β:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n gamma distribution with shape parameter `α` and rate parameter `β`.\n","base.dists.gamma.mode":"\nbase.dists.gamma.mode( α:number, β:number )\n Returns the mode of a gamma distribution.\n","base.dists.gamma.pdf":"\nbase.dists.gamma.pdf( x:number, α:number, β:number )\n Evaluates the probability density function (PDF) for a gamma distribution\n with shape parameter `α` and rate parameter `β` at a value `x`.\n","base.dists.gamma.pdf.factory":"\nbase.dists.gamma.pdf.factory( α:number, β:number )\n Returns a function for evaluating the probability density function (PDF) of\n a gamma distribution with shape parameter `α` and rate parameter `β`.\n","base.dists.gamma.quantile":"\nbase.dists.gamma.quantile( p:number, α:number, β:number )\n Evaluates the quantile function for a gamma distribution with shape\n parameter `α` and rate parameter `β` at a probability `p`.\n","base.dists.gamma.quantile.factory":"\nbase.dists.gamma.quantile.factory( α:number, β:number )\n Returns a function for evaluating the quantile function of a gamma\n distribution with shape parameter `α` and rate parameter `β`.\n","base.dists.gamma.skewness":"\nbase.dists.gamma.skewness( α:number, β:number )\n Returns the skewness of a gamma distribution.\n","base.dists.gamma.stdev":"\nbase.dists.gamma.stdev( α:number, β:number )\n Returns the standard deviation of a gamma distribution.\n","base.dists.gamma.variance":"\nbase.dists.gamma.variance( α:number, β:number )\n Returns the variance of a gamma distribution.\n","base.dists.geometric.cdf":"\nbase.dists.geometric.cdf( x:number, p:number )\n Evaluates the cumulative distribution function (CDF) for a geometric\n distribution with success probability `p` at a value `x`.\n","base.dists.geometric.cdf.factory":"\nbase.dists.geometric.cdf.factory( p:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a geometric distribution with success probability `p`.\n","base.dists.geometric.entropy":"\nbase.dists.geometric.entropy( p:number )\n Returns the entropy of a geometric distribution with success probability\n `p` (in nats).\n","base.dists.geometric.Geometric":"\nbase.dists.geometric.Geometric( [p:number] )\n Returns a geometric distribution object.\n","base.dists.geometric.kurtosis":"\nbase.dists.geometric.kurtosis( p:number )\n Returns the excess kurtosis of a geometric distribution with success\n probability `p`.\n","base.dists.geometric.logcdf":"\nbase.dists.geometric.logcdf( x:number, p:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for a\n geometric distribution with success probability `p` at a value `x`.\n","base.dists.geometric.logcdf.factory":"\nbase.dists.geometric.logcdf.factory( p:number )\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of a geometric distribution with success\n probability `p`.\n","base.dists.geometric.logpmf":"\nbase.dists.geometric.logpmf( x:number, p:number )\n Evaluates the logarithm of the probability mass function (PMF) for a\n geometric distribution with success probability `p` at a value `x`.\n","base.dists.geometric.logpmf.factory":"\nbase.dists.geometric.logpmf.factory( p:number )\n Returns a function for evaluating the logarithm of the probability mass\n function (PMF) of a geometric distribution with success probability `p`.\n","base.dists.geometric.mean":"\nbase.dists.geometric.mean( p:number )\n Returns the expected value of a geometric distribution with success\n probability `p`.\n","base.dists.geometric.median":"\nbase.dists.geometric.median( p:number )\n Returns the median of a geometric distribution with success probability `p`.\n","base.dists.geometric.mgf":"\nbase.dists.geometric.mgf( t:number, p:number )\n Evaluates the moment-generating function (MGF) for a geometric\n distribution with success probability `p` at a value `t`.\n","base.dists.geometric.mgf.factory":"\nbase.dists.geometric.mgf.factory( p:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n geometric distribution with success probability `p`.\n","base.dists.geometric.mode":"\nbase.dists.geometric.mode( p:number )\n Returns the mode of a geometric distribution with success probability `p`.\n","base.dists.geometric.pmf":"\nbase.dists.geometric.pmf( x:number, p:number )\n Evaluates the probability mass function (PMF) for a geometric distribution\n with success probability `p` at a value `x`.\n","base.dists.geometric.pmf.factory":"\nbase.dists.geometric.pmf.factory( p:number )\n Returns a function for evaluating the probability mass function (PMF) of a\n geometric distribution with success probability `p`.\n","base.dists.geometric.quantile":"\nbase.dists.geometric.quantile( r:number, p:number )\n Evaluates the quantile function for a geometric distribution with success\n probability `p` at a probability `r`.\n","base.dists.geometric.quantile.factory":"\nbase.dists.geometric.quantile.factory( p:number )\n Returns a function for evaluating the quantile function of a geometric\n distribution with success probability `p`.\n","base.dists.geometric.skewness":"\nbase.dists.geometric.skewness( p:number )\n Returns the skewness of a geometric distribution with success probability\n `p`.\n","base.dists.geometric.stdev":"\nbase.dists.geometric.stdev( p:number )\n Returns the standard deviation of a geometric distribution with success\n probability `p`.\n","base.dists.geometric.variance":"\nbase.dists.geometric.variance( p:number )\n Returns the variance of a geometric distribution with success probability\n `p`.\n","base.dists.gumbel.cdf":"\nbase.dists.gumbel.cdf( x:number, μ:number, β:number )\n Evaluates the cumulative distribution function (CDF) for a Gumbel\n distribution with location parameter `μ` and scale parameter `β` at a value\n `x`.\n","base.dists.gumbel.cdf.factory":"\nbase.dists.gumbel.cdf.factory( μ:number, β:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Gumbel distribution with location parameter `μ` and scale parameter\n `β`.\n","base.dists.gumbel.entropy":"\nbase.dists.gumbel.entropy( μ:number, β:number )\n Returns the differential entropy of a Gumbel distribution with location\n parameter `μ` and scale parameter `β` (in nats).\n","base.dists.gumbel.Gumbel":"\nbase.dists.gumbel.Gumbel( [μ:number, β:number] )\n Returns a Gumbel distribution object.\n","base.dists.gumbel.kurtosis":"\nbase.dists.gumbel.kurtosis( μ:number, β:number )\n Returns the excess kurtosis of a Gumbel distribution with location parameter\n `μ` and scale parameter `β`.\n","base.dists.gumbel.logcdf":"\nbase.dists.gumbel.logcdf( x:number, μ:number, β:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for a\n Gumbel distribution with location parameter `μ` and scale parameter `β` at a\n value `x`.\n","base.dists.gumbel.logcdf.factory":"\nbase.dists.gumbel.logcdf.factory( μ:number, β:number )\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of a Gumbel distribution with location parameter\n `μ` and scale parameter `β`.\n","base.dists.gumbel.logpdf":"\nbase.dists.gumbel.logpdf( x:number, μ:number, β:number )\n Evaluates the logarithm of the probability density function (PDF) for a\n Gumbel distribution with location parameter `μ` and scale parameter `β` at a\n value `x`.\n","base.dists.gumbel.logpdf.factory":"\nbase.dists.gumbel.logpdf.factory( μ:number, β:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a Gumbel distribution with location parameter `μ` and\n scale parameter `β`.\n","base.dists.gumbel.mean":"\nbase.dists.gumbel.mean( μ:number, β:number )\n Returns the expected value of a Gumbel distribution with location parameter\n `μ` and scale parameter `β`.\n","base.dists.gumbel.median":"\nbase.dists.gumbel.median( μ:number, β:number )\n Returns the median of a Gumbel distribution with location parameter `μ` and\n scale parameter `β`.\n","base.dists.gumbel.mgf":"\nbase.dists.gumbel.mgf( t:number, μ:number, β:number )\n Evaluates the moment-generating function (MGF) for a Gumbel distribution\n with location parameter `μ` and scale parameter `β` at a value `t`.\n","base.dists.gumbel.mgf.factory":"\nbase.dists.gumbel.mgf.factory( μ:number, β:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n Gumbel distribution with location parameter `μ` and scale parameter `β`.\n","base.dists.gumbel.mode":"\nbase.dists.gumbel.mode( μ:number, β:number )\n Returns the mode of a Gumbel distribution with location parameter `μ` and\n scale parameter `β`.\n","base.dists.gumbel.pdf":"\nbase.dists.gumbel.pdf( x:number, μ:number, β:number )\n Evaluates the probability density function (PDF) for a Gumbel distribution\n with location parameter `μ` and scale parameter `β` at a value `x`.\n","base.dists.gumbel.pdf.factory":"\nbase.dists.gumbel.pdf.factory( μ:number, β:number )\n Returns a function for evaluating the probability density function (PDF)\n of a Gumbel distribution with location parameter `μ` and scale parameter\n `β`.\n","base.dists.gumbel.quantile":"\nbase.dists.gumbel.quantile( p:number, μ:number, β:number )\n Evaluates the quantile function for a Gumbel distribution with location\n parameter `μ` and scale parameter `β` at a probability `p`.\n","base.dists.gumbel.quantile.factory":"\nbase.dists.gumbel.quantile.factory( μ:number, β:number )\n Returns a function for evaluating the quantile function of a Gumbel\n distribution with location parameter `μ` and scale parameter `β`.\n","base.dists.gumbel.skewness":"\nbase.dists.gumbel.skewness( μ:number, β:number )\n Returns the skewness of a Gumbel distribution with location parameter `μ`\n and scale parameter `β`.\n","base.dists.gumbel.stdev":"\nbase.dists.gumbel.stdev( μ:number, β:number )\n Returns the standard deviation of a Gumbel distribution with location\n parameter `μ` and scale parameter `β`.\n","base.dists.gumbel.variance":"\nbase.dists.gumbel.variance( μ:number, β:number )\n Returns the variance of a Gumbel distribution with location parameter `μ`\n and scale parameter `β`.\n","base.dists.hypergeometric.cdf":"\nbase.dists.hypergeometric.cdf( x:number, N:integer, K:integer, n:integer )\n Evaluates the cumulative distribution function (CDF) for a hypergeometric\n distribution with population size `N`, subpopulation size `K`, and number of\n draws `n` at a value `x`.\n","base.dists.hypergeometric.cdf.factory":"\nbase.dists.hypergeometric.cdf.factory( N:integer, K:integer, n:integer )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a hypergeometric distribution with population size `N`, subpopulation\n size `K`, and number of draws `n`.\n","base.dists.hypergeometric.Hypergeometric":"\nbase.dists.hypergeometric.Hypergeometric( [N:integer, K:integer, n:integer] )\n Returns a hypergeometric distribution object.\n","base.dists.hypergeometric.kurtosis":"\nbase.dists.hypergeometric.kurtosis( N:integer, K:integer, n:integer )\n Returns the excess kurtosis of a hypergeometric distribution.\n","base.dists.hypergeometric.logpmf":"\nbase.dists.hypergeometric.logpmf( x:number, N:integer, K:integer, n:integer )\n Evaluates the natural logarithm of the probability mass function (PMF) for a\n hypergeometric distribution with population size `N`, subpopulation size\n `K`, and number of draws `n` at a value `x`.\n","base.dists.hypergeometric.logpmf.factory":"\nbase.dists.hypergeometric.logpmf.factory( N:integer, K:integer, n:integer )\n Returns a function for evaluating the natural logarithm of the probability\n mass function (PMF) of a hypergeometric distribution with population size\n `N`, subpopulation size `K`, and number of draws `n`.\n","base.dists.hypergeometric.mean":"\nbase.dists.hypergeometric.mean( N:integer, K:integer, n:integer )\n Returns the expected value of a hypergeometric distribution.\n","base.dists.hypergeometric.mode":"\nbase.dists.hypergeometric.mode( N:integer, K:integer, n:integer )\n Returns the mode of a hypergeometric distribution.\n","base.dists.hypergeometric.pmf":"\nbase.dists.hypergeometric.pmf( x:number, N:integer, K:integer, n:integer )\n Evaluates the probability mass function (PMF) for a hypergeometric\n distribution with population size `N`, subpopulation size `K`, and number of\n draws `n` at a value `x`.\n","base.dists.hypergeometric.pmf.factory":"\nbase.dists.hypergeometric.pmf.factory( N:integer, K:integer, n:integer )\n Returns a function for evaluating the probability mass function (PMF) of a\n hypergeometric distribution with population size `N`, subpopulation size\n `K`, and number of draws `n`.\n","base.dists.hypergeometric.quantile":"\nbase.dists.hypergeometric.quantile( p:number, N:integer, K:integer, n:integer )\n Evaluates the quantile function for a hypergeometric distribution with\n population size `N`, subpopulation size `K`, and number of draws `n` at a\n probability `p`.\n","base.dists.hypergeometric.quantile.factory":"\nbase.dists.hypergeometric.quantile.factory( N:integer, K:integer, n:integer )\n Returns a function for evaluating the quantile function of a hypergeometric\n distribution with population size `N`, subpopulation size `K`, and number of\n draws `n`.\n","base.dists.hypergeometric.skewness":"\nbase.dists.hypergeometric.skewness( N:integer, K:integer, n:integer )\n Returns the skewness of a hypergeometric distribution.\n","base.dists.hypergeometric.stdev":"\nbase.dists.hypergeometric.stdev( N:integer, K:integer, n:integer )\n Returns the standard deviation of a hypergeometric distribution.\n","base.dists.hypergeometric.variance":"\nbase.dists.hypergeometric.variance( N:integer, K:integer, n:integer )\n Returns the variance of a hypergeometric distribution.\n","base.dists.invgamma.cdf":"\nbase.dists.invgamma.cdf( x:number, α:number, β:number )\n Evaluates the cumulative distribution function (CDF) for an inverse gamma\n distribution with shape parameter `α` and scale parameter `β` at a value\n `x`.\n","base.dists.invgamma.cdf.factory":"\nbase.dists.invgamma.cdf.factory( α:number, β:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of an inverse gamma distribution with shape parameter `α` and scale\n parameter `β`.\n","base.dists.invgamma.entropy":"\nbase.dists.invgamma.entropy( α:number, β:number )\n Returns the differential entropy of an inverse gamma distribution.\n","base.dists.invgamma.InvGamma":"\nbase.dists.invgamma.InvGamma( [α:number, β:number] )\n Returns an inverse gamma distribution object.\n","base.dists.invgamma.kurtosis":"\nbase.dists.invgamma.kurtosis( α:number, β:number )\n Returns the excess kurtosis of an inverse gamma distribution.\n","base.dists.invgamma.logpdf":"\nbase.dists.invgamma.logpdf( x:number, α:number, β:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for an inverse gamma distribution with shape parameter `α` and scale\n parameter `β` at a value `x`.\n","base.dists.invgamma.logpdf.factory":"\nbase.dists.invgamma.logpdf.factory( α:number, β:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) for an inverse gamma distribution with shape\n parameter `α` and scale parameter `β`.\n","base.dists.invgamma.mean":"\nbase.dists.invgamma.mean( α:number, β:number )\n Returns the expected value of an inverse gamma distribution.\n","base.dists.invgamma.mode":"\nbase.dists.invgamma.mode( α:number, β:number )\n Returns the mode of an inverse gamma distribution.\n","base.dists.invgamma.pdf":"\nbase.dists.invgamma.pdf( x:number, α:number, β:number )\n Evaluates the probability density function (PDF) for an inverse gamma\n distribution with shape parameter `α` and scale parameter `β` at a value\n `x`.\n","base.dists.invgamma.pdf.factory":"\nbase.dists.invgamma.pdf.factory( α:number, β:number )\n Returns a function for evaluating the probability density function (PDF)\n of an inverse gamma distribution with shape parameter `α` and scale\n parameter `β`.\n","base.dists.invgamma.quantile":"\nbase.dists.invgamma.quantile( p:number, α:number, β:number )\n Evaluates the quantile function for an inverse gamma distribution with shape\n parameter `α` and scale parameter `β` at a probability `p`.\n","base.dists.invgamma.quantile.factory":"\nbase.dists.invgamma.quantile.factory( α:number, β:number )\n Returns a function for evaluating the quantile function of an inverse gamma\n distribution with shape parameter `α` and scale parameter `β`.\n","base.dists.invgamma.skewness":"\nbase.dists.invgamma.skewness( α:number, β:number )\n Returns the skewness of an inverse gamma distribution.\n","base.dists.invgamma.stdev":"\nbase.dists.invgamma.stdev( α:number, β:number )\n Returns the standard deviation of an inverse gamma distribution.\n","base.dists.invgamma.variance":"\nbase.dists.invgamma.variance( α:number, β:number )\n Returns the variance of an inverse gamma distribution.\n","base.dists.kumaraswamy.cdf":"\nbase.dists.kumaraswamy.cdf( x:number, a:number, b:number )\n Evaluates the cumulative distribution function (CDF) for Kumaraswamy's\n double bounded distribution with first shape parameter `a` and second shape\n parameter `b` at a value `x`.\n","base.dists.kumaraswamy.cdf.factory":"\nbase.dists.kumaraswamy.cdf.factory( a:number, b:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Kumaraswamy's double bounded distribution with first shape parameter\n `a` and second shape parameter `b`.\n","base.dists.kumaraswamy.Kumaraswamy":"\nbase.dists.kumaraswamy.Kumaraswamy( [a:number, b:number] )\n Returns a Kumaraswamy's double bounded distribution object.\n","base.dists.kumaraswamy.kurtosis":"\nbase.dists.kumaraswamy.kurtosis( a:number, b:number )\n Returns the excess kurtosis of a Kumaraswamy's double bounded distribution.\n","base.dists.kumaraswamy.logcdf":"\nbase.dists.kumaraswamy.logcdf( x:number, a:number, b:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for Kumaraswamy's double bounded distribution with first shape\n parameter `a` and second shape parameter `b` at a value `x`.\n","base.dists.kumaraswamy.logcdf.factory":"\nbase.dists.kumaraswamy.logcdf.factory( a:number, b:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a Kumaraswamy's double bounded distribution\n with first shape parameter `a` and second shape parameter `b`.\n","base.dists.kumaraswamy.logpdf":"\nbase.dists.kumaraswamy.logpdf( x:number, a:number, b:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for Kumaraswamy's double bounded distribution with first shape parameter `a`\n and second shape parameter `b` at a value `x`.\n","base.dists.kumaraswamy.logpdf.factory":"\nbase.dists.kumaraswamy.logpdf.factory( a:number, b:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of a Kumaraswamy's double bounded distribution with\n first shape parameter `a` and second shape parameter `b`.\n","base.dists.kumaraswamy.mean":"\nbase.dists.kumaraswamy.mean( a:number, b:number )\n Returns the mean of a Kumaraswamy's double bounded distribution.\n","base.dists.kumaraswamy.median":"\nbase.dists.kumaraswamy.median( a:number, b:number )\n Returns the median of a Kumaraswamy's double bounded distribution.\n","base.dists.kumaraswamy.mode":"\nbase.dists.kumaraswamy.mode( a:number, b:number )\n Returns the mode of a Kumaraswamy's double bounded distribution.\n","base.dists.kumaraswamy.pdf":"\nbase.dists.kumaraswamy.pdf( x:number, a:number, b:number )\n Evaluates the probability density function (PDF) for Kumaraswamy's double\n bounded distribution with first shape parameter `a` and second shape\n parameter `b` at a value `x`.\n","base.dists.kumaraswamy.pdf.factory":"\nbase.dists.kumaraswamy.pdf.factory( a:number, b:number )\n Returns a function for evaluating the probability density function (PDF)\n of a Kumaraswamy's double bounded distribution with first shape parameter\n `a` and second shape parameter `b`.\n","base.dists.kumaraswamy.quantile":"\nbase.dists.kumaraswamy.quantile( p:number, a:number, b:number )\n Evaluates the quantile function for a Kumaraswamy's double bounded\n distribution with first shape parameter `a` and second shape parameter `b`\n at a probability `p`.\n","base.dists.kumaraswamy.quantile.factory":"\nbase.dists.kumaraswamy.quantile.factory( a:number, b:number )\n Returns a function for evaluating the quantile function of a Kumaraswamy's\n double bounded distribution with first shape parameter `a` and second shape\n parameter `b`.\n","base.dists.kumaraswamy.skewness":"\nbase.dists.kumaraswamy.skewness( a:number, b:number )\n Returns the skewness of a Kumaraswamy's double bounded distribution.\n","base.dists.kumaraswamy.stdev":"\nbase.dists.kumaraswamy.stdev( a:number, b:number )\n Returns the standard deviation of a Kumaraswamy's double bounded\n distribution.\n","base.dists.kumaraswamy.variance":"\nbase.dists.kumaraswamy.variance( a:number, b:number )\n Returns the variance of a Kumaraswamy's double bounded distribution.\n","base.dists.laplace.cdf":"\nbase.dists.laplace.cdf( x:number, μ:number, b:number )\n Evaluates the cumulative distribution function (CDF) for a Laplace\n distribution with scale parameter `b` and location parameter `μ` at a\n value `x`.\n","base.dists.laplace.cdf.factory":"\nbase.dists.laplace.cdf.factory( μ:number, b:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Laplace distribution with scale parameter `b` and location parameter\n `μ`.\n","base.dists.laplace.entropy":"\nbase.dists.laplace.entropy( μ:number, b:number )\n Returns the differential entropy of a Laplace distribution with location\n parameter `μ` and scale parameter `b`.\n","base.dists.laplace.kurtosis":"\nbase.dists.laplace.kurtosis( μ:number, b:number )\n Returns the excess kurtosis of a Laplace distribution with location\n parameter `μ` and scale parameter `b`.\n","base.dists.laplace.Laplace":"\nbase.dists.laplace.Laplace( [μ:number, b:number] )\n Returns a Laplace distribution object.\n","base.dists.laplace.logcdf":"\nbase.dists.laplace.logcdf( x:number, μ:number, b:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for a\n Laplace distribution with scale parameter `b` and location parameter `μ` at\n a value `x`.\n","base.dists.laplace.logcdf.factory":"\nbase.dists.laplace.logcdf.factory( μ:number, b:number )\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of a Laplace distribution with scale parameter\n `b` and location parameter `μ`.\n","base.dists.laplace.logpdf":"\nbase.dists.laplace.logpdf( x:number, μ:number, b:number )\n Evaluates the logarithm of the probability density function (PDF) for a\n Laplace distribution with scale parameter `b` and location parameter `μ` at\n a value `x`.\n","base.dists.laplace.logpdf.factory":"\nbase.dists.laplace.logpdf.factory( μ:number, b:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a Laplace distribution with scale parameter `b` and\n location parameter `μ`.\n","base.dists.laplace.mean":"\nbase.dists.laplace.mean( μ:number, b:number )\n Returns the expected value of a Laplace distribution with location parameter\n `μ` and scale parameter `b`.\n","base.dists.laplace.median":"\nbase.dists.laplace.median( μ:number, b:number )\n Returns the median of a Laplace distribution with location parameter `μ` and\n scale parameter `b`.\n","base.dists.laplace.mgf":"\nbase.dists.laplace.mgf( t:number, μ:number, b:number )\n Evaluates the moment-generating function (MGF) for a Laplace\n distribution with scale parameter `b` and location parameter `μ` at a\n value `t`.\n","base.dists.laplace.mgf.factory":"\nbase.dists.laplace.mgf.factory( μ:number, b:number )\n Returns a function for evaluating the moment-generating function (MGF)\n of a Laplace distribution with scale parameter `b` and location parameter\n `μ`.\n","base.dists.laplace.mode":"\nbase.dists.laplace.mode( μ:number, b:number )\n Returns the mode of a Laplace distribution with location parameter `μ` and\n scale parameter `b`.\n","base.dists.laplace.pdf":"\nbase.dists.laplace.pdf( x:number, μ:number, b:number )\n Evaluates the probability density function (PDF) for a Laplace\n distribution with scale parameter `b` and location parameter `μ` at a\n value `x`.\n","base.dists.laplace.pdf.factory":"\nbase.dists.laplace.pdf.factory( μ:number, b:number )\n Returns a function for evaluating the probability density function (PDF)\n of a Laplace distribution with scale parameter `b` and location parameter\n `μ`.\n","base.dists.laplace.quantile":"\nbase.dists.laplace.quantile( p:number, μ:number, b:number )\n Evaluates the quantile function for a Laplace distribution with scale\n parameter `b` and location parameter `μ` at a probability `p`.\n","base.dists.laplace.quantile.factory":"\nbase.dists.laplace.quantile.factory( μ:number, b:number )\n Returns a function for evaluating the quantile function of a Laplace\n distribution with scale parameter `b` and location parameter `μ`.\n","base.dists.laplace.skewness":"\nbase.dists.laplace.skewness( μ:number, b:number )\n Returns the skewness of a Laplace distribution with location parameter `μ`\n and scale parameter `b`.\n","base.dists.laplace.stdev":"\nbase.dists.laplace.stdev( μ:number, b:number )\n Returns the standard deviation of a Laplace distribution with location\n parameter `μ` and scale parameter `b`.\n","base.dists.laplace.variance":"\nbase.dists.laplace.variance( μ:number, b:number )\n Returns the variance of a Laplace distribution with location parameter `μ`\n and scale parameter `b`.\n","base.dists.levy.cdf":"\nbase.dists.levy.cdf( x:number, μ:number, c:number )\n Evaluates the cumulative distribution function (CDF) for a Lévy distribution\n with location parameter `μ` and scale parameter `c` at a value `x`.\n","base.dists.levy.cdf.factory":"\nbase.dists.levy.cdf.factory( μ:number, c:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Lévy distribution with location parameter `μ` and scale parameter `c`.\n","base.dists.levy.entropy":"\nbase.dists.levy.entropy( μ:number, c:number )\n Returns the entropy of a Lévy distribution with location parameter `μ` and\n scale parameter `c`.\n","base.dists.levy.Levy":"\nbase.dists.levy.Levy( [μ:number, c:number] )\n Returns a Lévy distribution object.\n","base.dists.levy.logcdf":"\nbase.dists.levy.logcdf( x:number, μ:number, c:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for a\n Lévy distribution with location parameter `μ` and scale parameter `c` at a\n value `x`.\n","base.dists.levy.logcdf.factory":"\nbase.dists.levy.logcdf.factory( μ:number, c:number )\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of a Lévy distribution with location parameter\n `μ` and scale parameter `c`.\n","base.dists.levy.logpdf":"\nbase.dists.levy.logpdf( x:number, μ:number, c:number )\n Evaluates the logarithm of the probability density function (PDF) for a Lévy\n distribution with location parameter `μ` and scale parameter `c` at a value\n `x`.\n","base.dists.levy.logpdf.factory":"\nbase.dists.levy.logpdf.factory( μ:number, c:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a Lévy distribution with location parameter `μ` and scale\n parameter `c`.\n","base.dists.levy.mean":"\nbase.dists.levy.mean( μ:number, c:number )\n Returns the expected value of a Lévy distribution with location parameter\n `μ` and scale parameter `c`.\n","base.dists.levy.median":"\nbase.dists.levy.median( μ:number, c:number )\n Returns the median of a Lévy distribution with location parameter `μ` and\n scale parameter `c`.\n","base.dists.levy.mode":"\nbase.dists.levy.mode( μ:number, c:number )\n Returns the mode of a Lévy distribution with location parameter `μ` and\n scale parameter `c`.\n","base.dists.levy.pdf":"\nbase.dists.levy.pdf( x:number, μ:number, c:number )\n Evaluates the probability density function (PDF) for a Lévy distribution\n with location parameter `μ` and scale parameter `c` at a value `x`.\n","base.dists.levy.pdf.factory":"\nbase.dists.levy.pdf.factory( μ:number, c:number )\n Returns a function for evaluating the probability density function (PDF) of\n a Lévy distribution with location parameter `μ` and scale parameter `c`.\n","base.dists.levy.quantile":"\nbase.dists.levy.quantile( p:number, μ:number, c:number )\n Evaluates the quantile function for a Lévy distribution with location\n parameter `μ` and scale parameter `c` at a probability `p`.\n","base.dists.levy.quantile.factory":"\nbase.dists.levy.quantile.factory( μ:number, c:number )\n Returns a function for evaluating the quantile function of a Lévy\n distribution with location parameter `μ` and scale parameter `c`.\n","base.dists.levy.stdev":"\nbase.dists.levy.stdev( μ:number, c:number )\n Returns the standard deviation of a Lévy distribution with location\n parameter `μ` and scale parameter `c`.\n","base.dists.levy.variance":"\nbase.dists.levy.variance( μ:number, c:number )\n Returns the variance of a Lévy distribution with location parameter `μ` and\n scale parameter `c`.\n","base.dists.logistic.cdf":"\nbase.dists.logistic.cdf( x:number, μ:number, s:number )\n Evaluates the cumulative distribution function (CDF) for a logistic\n distribution with location parameter `μ` and scale parameter `s` at a value\n `x`.\n","base.dists.logistic.cdf.factory":"\nbase.dists.logistic.cdf.factory( μ:number, s:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a logistic distribution with location parameter `μ` and scale parameter\n `s`.\n","base.dists.logistic.entropy":"\nbase.dists.logistic.entropy( μ:number, s:number )\n Returns the entropy of a logistic distribution with location parameter `μ`\n and scale parameter `s`.\n","base.dists.logistic.kurtosis":"\nbase.dists.logistic.kurtosis( μ:number, s:number )\n Returns the excess kurtosis of a logistic distribution with location\n parameter `μ` and scale parameter `s`.\n","base.dists.logistic.logcdf":"\nbase.dists.logistic.logcdf( x:number, μ:number, s:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for a\n logistic distribution with location parameter `μ` and scale parameter `s` at\n a value `x`.\n","base.dists.logistic.logcdf.factory":"\nbase.dists.logistic.logcdf.factory( μ:number, s:number )\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of a Logistic distribution with location\n parameter `μ` and scale parameter `s`.\n","base.dists.logistic.Logistic":"\nbase.dists.logistic.Logistic( [μ:number, s:number] )\n Returns a logistic distribution object.\n","base.dists.logistic.logpdf":"\nbase.dists.logistic.logpdf( x:number, μ:number, s:number )\n Evaluates the logarithm of the probability density function (PDF) for a\n logistic distribution with location parameter `μ` and scale parameter `s` at\n a value `x`.\n","base.dists.logistic.logpdf.factory":"\nbase.dists.logistic.logpdf.factory( μ:number, s:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a Logistic distribution with location parameter `μ` and\n scale parameter `s`.\n","base.dists.logistic.mean":"\nbase.dists.logistic.mean( μ:number, s:number )\n Returns the expected value of a logistic distribution with location\n parameter `μ` and scale parameter `s`.\n","base.dists.logistic.median":"\nbase.dists.logistic.median( μ:number, s:number )\n Returns the median of a logistic distribution with location parameter `μ`\n and scale parameter `s`.\n","base.dists.logistic.mgf":"\nbase.dists.logistic.mgf( t:number, μ:number, s:number )\n Evaluates the moment-generating function (MGF) for a logistic distribution\n with location parameter `μ` and scale parameter `s` at a value `t`.\n","base.dists.logistic.mgf.factory":"\nbase.dists.logistic.mgf.factory( μ:number, s:number )\n Returns a function for evaluating the moment-generating function (MGF)\n of a Logistic distribution with location parameter `μ` and scale parameter\n `s`.\n","base.dists.logistic.mode":"\nbase.dists.logistic.mode( μ:number, s:number )\n Returns the mode of a logistic distribution with location parameter `μ` and\n scale parameter `s`.\n","base.dists.logistic.pdf":"\nbase.dists.logistic.pdf( x:number, μ:number, s:number )\n Evaluates the probability density function (PDF) for a logistic distribution\n with location parameter `μ` and scale parameter `s` at a value `x`.\n","base.dists.logistic.pdf.factory":"\nbase.dists.logistic.pdf.factory( μ:number, s:number )\n Returns a function for evaluating the probability density function (PDF) of\n a Logistic distribution with location parameter `μ` and scale parameter `s`.\n","base.dists.logistic.quantile":"\nbase.dists.logistic.quantile( p:number, μ:number, s:number )\n Evaluates the quantile function for a logistic distribution with location\n parameter `μ` and scale parameter `s` at a probability `p`.\n","base.dists.logistic.quantile.factory":"\nbase.dists.logistic.quantile.factory( μ:number, s:number )\n Returns a function for evaluating the quantile function of a logistic\n distribution with location parameter `μ` and scale parameter `s`.\n","base.dists.logistic.skewness":"\nbase.dists.logistic.skewness( μ:number, s:number )\n Returns the skewness of a logistic distribution with location parameter `μ`\n and scale parameter `s`.\n","base.dists.logistic.stdev":"\nbase.dists.logistic.stdev( μ:number, s:number )\n Returns the standard deviation of a logistic distribution with location\n parameter `μ` and scale parameter `s`.\n","base.dists.logistic.variance":"\nbase.dists.logistic.variance( μ:number, s:number )\n Returns the variance of a logistic distribution with location parameter `μ`\n and scale parameter `s`.\n","base.dists.lognormal.cdf":"\nbase.dists.lognormal.cdf( x:number, μ:number, σ:number )\n Evaluates the cumulative distribution function (CDF) for a lognormal\n distribution with location parameter `μ` and scale parameter `σ` at a value\n `x`.\n","base.dists.lognormal.cdf.factory":"\nbase.dists.lognormal.cdf.factory( μ:number, σ:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a lognormal distribution with location parameter `μ` and scale parameter\n `σ`.\n","base.dists.lognormal.entropy":"\nbase.dists.lognormal.entropy( μ:number, σ:number )\n Returns the differential entropy of a lognormal distribution with location\n `μ` and scale `σ` (in nats).\n","base.dists.lognormal.kurtosis":"\nbase.dists.lognormal.kurtosis( μ:number, σ:number )\n Returns the excess kurtosis of a lognormal distribution with location `μ`\n and scale `σ`.\n","base.dists.lognormal.LogNormal":"\nbase.dists.lognormal.LogNormal( [μ:number, σ:number] )\n Returns a lognormal distribution object.\n","base.dists.lognormal.logcdf":"\nbase.dists.lognormal.logcdf( x:number, μ:number, σ:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for a lognormal distribution with mean `μ` and standard deviation `σ`\n at a value `x`.\n","base.dists.lognormal.logcdf.factory":"\nbase.dists.lognormal.logcdf.factory( μ:number, σ:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a lognormal distribution with mean `μ` and\n standard deviation `σ`.\n","base.dists.lognormal.logpdf":"\nbase.dists.lognormal.logpdf( x:number, μ:number, σ:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for a lognormal distribution with location parameter `μ` and scale parameter\n `σ` at a value `x`.\n","base.dists.lognormal.logpdf.factory":"\nbase.dists.lognormal.logpdf.factory( μ:number, σ:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of a lognormal distribution with location parameter\n `μ` and scale parameter `σ`.\n","base.dists.lognormal.mean":"\nbase.dists.lognormal.mean( μ:number, σ:number )\n Returns the expected value of a lognormal distribution with location `μ` and\n scale `σ`.\n","base.dists.lognormal.median":"\nbase.dists.lognormal.median( μ:number, σ:number )\n Returns the median of a lognormal distribution with location `μ` and scale\n `σ`.\n","base.dists.lognormal.mode":"\nbase.dists.lognormal.mode( μ:number, σ:number )\n Returns the mode of a lognormal distribution with location `μ` and scale\n `σ`.\n","base.dists.lognormal.pdf":"\nbase.dists.lognormal.pdf( x:number, μ:number, σ:number )\n Evaluates the probability density function (PDF) for a lognormal\n distribution with location parameter `μ` and scale parameter `σ` at a value\n `x`.\n","base.dists.lognormal.pdf.factory":"\nbase.dists.lognormal.pdf.factory( μ:number, σ:number )\n Returns a function for evaluating the probability density function (PDF) of\n a lognormal distribution with location parameter `μ` and scale parameter\n `σ`.\n","base.dists.lognormal.quantile":"\nbase.dists.lognormal.quantile( p:number, μ:number, σ:number )\n Evaluates the quantile function for a lognormal distribution with location\n parameter `μ` and scale parameter `σ` at a probability `p`.\n","base.dists.lognormal.quantile.factory":"\nbase.dists.lognormal.quantile.factory( μ:number, σ:number )\n Returns a function for evaluating the quantile function of a lognormal\n distribution with location parameter `μ` and scale parameter `σ`.\n","base.dists.lognormal.skewness":"\nbase.dists.lognormal.skewness( μ:number, σ:number )\n Returns the skewness of a lognormal distribution with location `μ` and scale\n `σ`.\n","base.dists.lognormal.stdev":"\nbase.dists.lognormal.stdev( μ:number, σ:number )\n Returns the standard deviation of a lognormal distribution with location `μ`\n and scale `σ`.\n","base.dists.lognormal.variance":"\nbase.dists.lognormal.variance( μ:number, σ:number )\n Returns the variance of a lognormal distribution with location `μ` and scale\n `σ`.\n","base.dists.negativeBinomial.cdf":"\nbase.dists.negativeBinomial.cdf( x:number, r:number, p:number )\n Evaluates the cumulative distribution function (CDF) for a negative binomial\n distribution with number of successes until experiment is stopped `r` and\n success probability `p` at a value `x`.\n","base.dists.negativeBinomial.cdf.factory":"\nbase.dists.negativeBinomial.cdf.factory( r:number, p:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a negative binomial distribution with number of successes until\n experiment is stopped `r` and success probability `p`.\n","base.dists.negativeBinomial.kurtosis":"\nbase.dists.negativeBinomial.kurtosis( r:integer, p:number )\n Returns the excess kurtosis of a negative binomial distribution.\n","base.dists.negativeBinomial.logpmf":"\nbase.dists.negativeBinomial.logpmf( x:number, r:number, p:number )\n Evaluates the natural logarithm of the probability mass function (PMF) for a\n negative binomial distribution with number of successes until experiment is\n stopped `r` and success probability `p` at a value `x`.\n","base.dists.negativeBinomial.logpmf.factory":"\nbase.dists.negativeBinomial.logpmf.factory( r:number, p:number )\n Returns a function for evaluating the natural logarithm of the probability\n mass function (PMF) of a negative binomial distribution with number of\n successes until experiment is stopped `r` and success probability `p`.\n","base.dists.negativeBinomial.mean":"\nbase.dists.negativeBinomial.mean( r:integer, p:number )\n Returns the expected value of a negative binomial distribution.\n","base.dists.negativeBinomial.mgf":"\nbase.dists.negativeBinomial.mgf( x:number, r:number, p:number )\n Evaluates the moment-generating function (MGF) for a negative binomial\n distribution with number of successes until experiment is stopped `r` and\n success probability `p` at a value `t`.\n","base.dists.negativeBinomial.mgf.factory":"\nbase.dists.negativeBinomial.mgf.factory( r:number, p:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n negative binomial distribution with number of successes until experiment is\n stopped `r` and success probability `p`.\n","base.dists.negativeBinomial.mode":"\nbase.dists.negativeBinomial.mode( r:integer, p:number )\n Returns the mode of a negative binomial distribution.\n","base.dists.negativeBinomial.NegativeBinomial":"\nbase.dists.negativeBinomial.NegativeBinomial( [r:number, p:number] )\n Returns a negative binomial distribution object.\n","base.dists.negativeBinomial.pmf":"\nbase.dists.negativeBinomial.pmf( x:number, r:number, p:number )\n Evaluates the probability mass function (PMF) for a negative binomial\n distribution with number of successes until experiment is stopped `r` and\n success probability `p` at a value `x`.\n","base.dists.negativeBinomial.pmf.factory":"\nbase.dists.negativeBinomial.pmf.factory( r:number, p:number )\n Returns a function for evaluating the probability mass function (PMF) of a\n negative binomial distribution with number of successes until experiment is\n stopped `r` and success probability `p`.\n","base.dists.negativeBinomial.quantile":"\nbase.dists.negativeBinomial.quantile( k:number, r:number, p:number )\n Evaluates the quantile function for a negative binomial distribution with\n number of successes until experiment is stopped `r` and success probability\n `p` at a probability `k`.\n","base.dists.negativeBinomial.quantile.factory":"\nbase.dists.negativeBinomial.quantile.factory( r:number, p:number )\n Returns a function for evaluating the quantile function of a negative\n binomial distribution with number of successes until experiment is stopped\n `r` and success probability `p`.\n","base.dists.negativeBinomial.skewness":"\nbase.dists.negativeBinomial.skewness( r:integer, p:number )\n Returns the skewness of a negative binomial distribution.\n","base.dists.negativeBinomial.stdev":"\nbase.dists.negativeBinomial.stdev( r:integer, p:number )\n Returns the standard deviation of a negative binomial distribution.\n","base.dists.negativeBinomial.variance":"\nbase.dists.negativeBinomial.variance( r:integer, p:number )\n Returns the variance of a negative binomial distribution.\n","base.dists.normal.cdf":"\nbase.dists.normal.cdf( x:number, μ:number, σ:number )\n Evaluates the cumulative distribution function (CDF) for a normal\n distribution with mean `μ` and standard deviation `σ` at a value `x`.\n","base.dists.normal.cdf.factory":"\nbase.dists.normal.cdf.factory( μ:number, σ:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a normal distribution with mean `μ` and standard deviation `σ`.\n","base.dists.normal.entropy":"\nbase.dists.normal.entropy( μ:number, σ:number )\n Returns the differential entropy of a normal distribution with mean `μ` and\n standard deviation `σ`.\n","base.dists.normal.kurtosis":"\nbase.dists.normal.kurtosis( μ:number, σ:number )\n Returns the excess kurtosis of a normal distribution with mean `μ` and\n standard deviation `σ`.\n","base.dists.normal.logcdf":"\nbase.dists.normal.logcdf( x:number, μ:number, σ:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for a normal distribution with mean `μ` and standard deviation `σ` at\n a value `x`.\n","base.dists.normal.logcdf.factory":"\nbase.dists.normal.logcdf.factory( μ:number, σ:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a normal distribution with mean `μ` and\n standard deviation `σ`.\n","base.dists.normal.logpdf":"\nbase.dists.normal.logpdf( x:number, μ:number, σ:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for a normal distribution with mean `μ` and standard deviation `σ` at a\n value `x`.\n","base.dists.normal.logpdf.factory":"\nbase.dists.normal.logpdf.factory( μ:number, σ:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of a normal distribution with mean `μ` and standard\n deviation `σ`.\n","base.dists.normal.mean":"\nbase.dists.normal.mean( μ:number, σ:number )\n Returns the expected value of a normal distribution with mean `μ` and\n standard deviation `σ`.\n","base.dists.normal.median":"\nbase.dists.normal.median( μ:number, σ:number )\n Returns the median of a normal distribution with mean `μ` and standard\n deviation `σ`.\n","base.dists.normal.mgf":"\nbase.dists.normal.mgf( x:number, μ:number, σ:number )\n Evaluates the moment-generating function (MGF) for a normal distribution\n with mean `μ` and standard deviation `σ` at a value `t`.\n","base.dists.normal.mgf.factory":"\nbase.dists.normal.mgf.factory( μ:number, σ:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n normal distribution with mean `μ` and standard deviation `σ`.\n","base.dists.normal.mode":"\nbase.dists.normal.mode( μ:number, σ:number )\n Returns the mode of a normal distribution with mean `μ` and standard\n deviation `σ`.\n","base.dists.normal.Normal":"\nbase.dists.normal.Normal( [μ:number, σ:number] )\n Returns a normal distribution object.\n","base.dists.normal.pdf":"\nbase.dists.normal.pdf( x:number, μ:number, σ:number )\n Evaluates the probability density function (PDF) for a normal distribution\n with mean `μ` and standard deviation `σ` at a value `x`.\n","base.dists.normal.pdf.factory":"\nbase.dists.normal.pdf.factory( μ:number, σ:number )\n Returns a function for evaluating the probability density function (PDF) of\n a normal distribution with mean `μ` and standard deviation `σ`.\n","base.dists.normal.quantile":"\nbase.dists.normal.quantile( p:number, μ:number, σ:number )\n Evaluates the quantile function for a normal distribution with mean `μ` and\n standard deviation `σ` at a probability `p`.\n","base.dists.normal.quantile.factory":"\nbase.dists.normal.quantile.factory( μ:number, σ:number )\n Returns a function for evaluating the quantile function\n of a normal distribution with mean `μ` and standard deviation `σ`.\n","base.dists.normal.skewness":"\nbase.dists.normal.skewness( μ:number, σ:number )\n Returns the skewness of a normal distribution with mean `μ` and standard\n deviation `σ`.\n","base.dists.normal.stdev":"\nbase.dists.normal.stdev( μ:number, σ:number )\n Returns the standard deviation of a normal distribution with mean `μ` and\n standard deviation `σ`.\n","base.dists.normal.variance":"\nbase.dists.normal.variance( μ:number, σ:number )\n Returns the variance of a normal distribution with mean `μ` and standard\n deviation `σ`.\n","base.dists.pareto1.cdf":"\nbase.dists.pareto1.cdf( x:number, α:number, β:number )\n Evaluates the cumulative distribution function (CDF) for a Pareto (Type I)\n distribution with shape parameter `α` and scale parameter `β` at a value\n `x`.\n","base.dists.pareto1.cdf.factory":"\nbase.dists.pareto1.cdf.factory( α:number, β:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Pareto (Type I) distribution with shape parameter `α` and scale\n parameter `β`.\n","base.dists.pareto1.entropy":"\nbase.dists.pareto1.entropy( α:number, β:number )\n Returns the differential entropy of a Pareto (Type I) distribution\n (in nats).\n","base.dists.pareto1.kurtosis":"\nbase.dists.pareto1.kurtosis( α:number, β:number )\n Returns the excess kurtosis of a Pareto (Type I) distribution.\n","base.dists.pareto1.logcdf":"\nbase.dists.pareto1.logcdf( x:number, α:number, β:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for a Pareto (Type I) distribution with shape parameter `α` and scale\n parameter `β` at a value `x`.\n","base.dists.pareto1.logcdf.factory":"\nbase.dists.pareto1.logcdf.factory( α:number, β:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a Pareto (Type I) distribution with shape\n parameter `α` and scale parameter `β`.\n","base.dists.pareto1.logpdf":"\nbase.dists.pareto1.logpdf( x:number, α:number, β:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for a Pareto (Type I) distribution with shape parameter `α` and scale\n parameter `β` at a value `x`.\n","base.dists.pareto1.logpdf.factory":"\nbase.dists.pareto1.logpdf.factory( α:number, β:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of a Pareto (Type I) distribution with shape\n parameter `α` and scale parameter `β`.\n","base.dists.pareto1.mean":"\nbase.dists.pareto1.mean( α:number, β:number )\n Returns the expected value of a Pareto (Type I) distribution.\n","base.dists.pareto1.median":"\nbase.dists.pareto1.median( α:number, β:number )\n Returns the median of a Pareto (Type I) distribution.\n","base.dists.pareto1.mode":"\nbase.dists.pareto1.mode( α:number, β:number )\n Returns the mode of a Pareto (Type I) distribution.\n","base.dists.pareto1.Pareto1":"\nbase.dists.pareto1.Pareto1( [α:number, β:number] )\n Returns a Pareto (Type I) distribution object.\n","base.dists.pareto1.pdf":"\nbase.dists.pareto1.pdf( x:number, α:number, β:number )\n Evaluates the probability density function (PDF) for a Pareto (Type I)\n distribution with shape parameter `α` and scale parameter `β` at a value\n `x`.\n","base.dists.pareto1.pdf.factory":"\nbase.dists.pareto1.pdf.factory( α:number, β:number )\n Returns a function for evaluating the probability density function (PDF) of\n a Pareto (Type I) distribution with shape parameter `α` and scale parameter\n `β`.\n","base.dists.pareto1.quantile":"\nbase.dists.pareto1.quantile( p:number, α:number, β:number )\n Evaluates the quantile function for a Pareto (Type I) distribution with\n shape parameter `α` and scale parameter `β` at a probability `p`.\n","base.dists.pareto1.quantile.factory":"\nbase.dists.pareto1.quantile.factory( α:number, β:number )\n Returns a function for evaluating the quantile function of a Pareto (Type I)\n distribution with shape parameter `α` and scale parameter `β`.\n","base.dists.pareto1.skewness":"\nbase.dists.pareto1.skewness( α:number, β:number )\n Returns the skewness of a Pareto (Type I) distribution.\n","base.dists.pareto1.stdev":"\nbase.dists.pareto1.stdev( α:number, β:number )\n Returns the standard deviation of a Pareto (Type I) distribution.\n","base.dists.pareto1.variance":"\nbase.dists.pareto1.variance( α:number, β:number )\n Returns the variance of a Pareto (Type I) distribution.\n","base.dists.poisson.cdf":"\nbase.dists.poisson.cdf( x:number, λ:number )\n Evaluates the cumulative distribution function (CDF) for a Poisson\n distribution with mean parameter `λ` at a value `x`.\n","base.dists.poisson.cdf.factory":"\nbase.dists.poisson.cdf.factory( λ:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Poisson distribution with mean parameter `λ`.\n","base.dists.poisson.entropy":"\nbase.dists.poisson.entropy( λ:number )\n Returns the entropy of a Poisson distribution.\n","base.dists.poisson.kurtosis":"\nbase.dists.poisson.kurtosis( λ:number )\n Returns the excess kurtosis of a Poisson distribution.\n","base.dists.poisson.logpmf":"\nbase.dists.poisson.logpmf( x:number, λ:number )\n Evaluates the natural logarithm of the probability mass function (PMF) for a\n Poisson distribution with mean parameter `λ` at a value `x`.\n","base.dists.poisson.logpmf.factory":"\nbase.dists.poisson.logpmf.factory( λ:number )\n Returns a function for evaluating the natural logarithm of the probability\n mass function (PMF) of a Poisson distribution with mean parameter `λ`.\n","base.dists.poisson.mean":"\nbase.dists.poisson.mean( λ:number )\n Returns the expected value of a Poisson distribution.\n","base.dists.poisson.median":"\nbase.dists.poisson.median( λ:number )\n Returns the median of a Poisson distribution.\n","base.dists.poisson.mgf":"\nbase.dists.poisson.mgf( x:number, λ:number )\n Evaluates the moment-generating function (MGF) for a Poisson distribution\n with mean parameter `λ` at a value `x`.\n","base.dists.poisson.mgf.factory":"\nbase.dists.poisson.mgf.factory( λ:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n Poisson distribution with mean parameter `λ`.\n","base.dists.poisson.mode":"\nbase.dists.poisson.mode( λ:number )\n Returns the mode of a Poisson distribution.\n","base.dists.poisson.pmf":"\nbase.dists.poisson.pmf( x:number, λ:number )\n Evaluates the probability mass function (PMF) for a Poisson\n distribution with mean parameter `λ` at a value `x`.\n","base.dists.poisson.pmf.factory":"\nbase.dists.poisson.pmf.factory( λ:number )\n Returns a function for evaluating the probability mass function (PMF)\n of a Poisson distribution with mean parameter `λ`.\n","base.dists.poisson.Poisson":"\nbase.dists.poisson.Poisson( [λ:number] )\n Returns a Poisson distribution object.\n","base.dists.poisson.quantile":"\nbase.dists.poisson.quantile( p:number, λ:number )\n Evaluates the quantile function for a Poisson distribution with mean\n parameter `λ` at a probability `p`.\n","base.dists.poisson.quantile.factory":"\nbase.dists.poisson.quantile.factory( λ:number )\n Returns a function for evaluating the quantile function of a Poisson\n distribution with mean parameter `λ`.\n","base.dists.poisson.skewness":"\nbase.dists.poisson.skewness( λ:number )\n Returns the skewness of a Poisson distribution.\n","base.dists.poisson.stdev":"\nbase.dists.poisson.stdev( λ:number )\n Returns the standard deviation of a Poisson distribution.\n","base.dists.poisson.variance":"\nbase.dists.poisson.variance( λ:number )\n Returns the variance of a Poisson distribution.\n","base.dists.rayleigh.cdf":"\nbase.dists.rayleigh.cdf( x:number, sigma:number )\n Evaluates the cumulative distribution function (CDF) for a Rayleigh\n distribution with scale parameter `sigma` at a value `x`.\n","base.dists.rayleigh.cdf.factory":"\nbase.dists.rayleigh.cdf.factory( sigma:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Rayleigh distribution with scale parameter `sigma`.\n","base.dists.rayleigh.entropy":"\nbase.dists.rayleigh.entropy( σ:number )\n Returns the differential entropy of a Rayleigh distribution.\n","base.dists.rayleigh.kurtosis":"\nbase.dists.rayleigh.kurtosis( σ:number )\n Returns the excess kurtosis of a Rayleigh distribution.\n","base.dists.rayleigh.logcdf":"\nbase.dists.rayleigh.logcdf( x:number, sigma:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for a\n Rayleigh distribution with scale parameter `sigma` at a value `x`.\n","base.dists.rayleigh.logcdf.factory":"\nbase.dists.rayleigh.logcdf.factory( sigma:number )\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of a Rayleigh distribution with scale parameter\n `sigma`.\n","base.dists.rayleigh.logpdf":"\nbase.dists.rayleigh.logpdf( x:number, sigma:number )\n Evaluates the logarithm of the probability density function (PDF) for a\n Rayleigh distribution with scale parameter `sigma` at a value `x`.\n","base.dists.rayleigh.logpdf.factory":"\nbase.dists.rayleigh.logpdf.factory( sigma:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a Rayleigh distribution with scale parameter `sigma`.\n","base.dists.rayleigh.mean":"\nbase.dists.rayleigh.mean( σ:number )\n Returns the expected value of a Rayleigh distribution.\n","base.dists.rayleigh.median":"\nbase.dists.rayleigh.median( σ:number )\n Returns the median of a Rayleigh distribution.\n","base.dists.rayleigh.mgf":"\nbase.dists.rayleigh.mgf( t:number, sigma:number )\n Evaluates the moment-generating function (MGF) for a Rayleigh distribution\n with scale parameter `sigma` at a value `t`.\n","base.dists.rayleigh.mgf.factory":"\nbase.dists.rayleigh.mgf.factory( sigma:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n Rayleigh distribution with scale parameter `sigma`.\n","base.dists.rayleigh.mode":"\nbase.dists.rayleigh.mode( σ:number )\n Returns the mode of a Rayleigh distribution.\n","base.dists.rayleigh.pdf":"\nbase.dists.rayleigh.pdf( x:number, sigma:number )\n Evaluates the probability density function (PDF) for a Rayleigh\n distribution with scale parameter `sigma` at a value `x`.\n","base.dists.rayleigh.pdf.factory":"\nbase.dists.rayleigh.pdf.factory( sigma:number )\n Returns a function for evaluating the probability density function (PDF) of\n a Rayleigh distribution with scale parameter `sigma`.\n","base.dists.rayleigh.quantile":"\nbase.dists.rayleigh.quantile( p:number, sigma:number )\n Evaluates the quantile function for a Rayleigh distribution with scale\n parameter `sigma` at a probability `p`.\n","base.dists.rayleigh.quantile.factory":"\nbase.dists.rayleigh.quantile.factory( sigma:number )\n Returns a function for evaluating the quantile function of a Rayleigh\n distribution with scale parameter `sigma`.\n","base.dists.rayleigh.Rayleigh":"\nbase.dists.rayleigh.Rayleigh( [σ:number] )\n Returns a Rayleigh distribution object.\n","base.dists.rayleigh.skewness":"\nbase.dists.rayleigh.skewness( σ:number )\n Returns the skewness of a Rayleigh distribution.\n","base.dists.rayleigh.stdev":"\nbase.dists.rayleigh.stdev( σ:number )\n Returns the standard deviation of a Rayleigh distribution.\n","base.dists.rayleigh.variance":"\nbase.dists.rayleigh.variance( σ:number )\n Returns the variance of a Rayleigh distribution.\n","base.dists.signrank.cdf":"\nbase.dists.signrank.cdf( x:number, n:integer )\n Evaluates the cumulative distribution function (CDF) for the distribution of\n the Wilcoxon signed rank test statistic with `n` observations.\n","base.dists.signrank.cdf.factory":"\nbase.dists.signrank.cdf.factory( n:integer )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of the distribution of the Wilcoxon signed rank test statistic.\n","base.dists.signrank.pdf":"\nbase.dists.signrank.pdf( x:number, n:integer )\n Evaluates the probability density function (PDF) for the distribution of\n the Wilcoxon signed rank test statistic with `n` observations.\n","base.dists.signrank.pdf.factory":"\nbase.dists.signrank.pdf.factory( n:integer )\n Returns a function for evaluating the probability density function (PDF)\n of the distribution of the Wilcoxon signed rank test statistic.\n","base.dists.signrank.quantile":"\nbase.dists.signrank.quantile( p:number, n:integer )\n Evaluates the quantile function for the Wilcoxon signed rank test statistic\n with `n` observations at a probability `p`.\n","base.dists.signrank.quantile.factory":"\nbase.dists.signrank.quantile.factory( n:integer )\n Returns a function for evaluating the quantile function of the Wilcoxon\n signed rank test statistic with `n` observations.\n","base.dists.t.cdf":"\nbase.dists.t.cdf( x:number, v:number )\n Evaluates the cumulative distribution function (CDF) for a Student's t\n distribution with degrees of freedom `v` at a value `x`.\n","base.dists.t.cdf.factory":"\nbase.dists.t.cdf.factory( v:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Student's t distribution with degrees of freedom `v`.\n","base.dists.t.entropy":"\nbase.dists.t.entropy( v:number )\n Returns the differential entropy of a Student's t distribution.\n","base.dists.t.kurtosis":"\nbase.dists.t.kurtosis( v:number )\n Returns the excess kurtosis of a Student's t distribution.\n","base.dists.t.mean":"\nbase.dists.t.mean( v:number )\n Returns the expected value of a Student's t distribution.\n","base.dists.t.median":"\nbase.dists.t.median( v:number )\n Returns the median of a Student's t distribution.\n","base.dists.t.mode":"\nbase.dists.t.mode( v:number )\n Returns the mode of a Student's t distribution.\n","base.dists.t.pdf":"\nbase.dists.t.pdf( x:number, v:number )\n Evaluates the probability density function (PDF) for a Student's t\n distribution with degrees of freedom `v` at a value `x`.\n","base.dists.t.pdf.factory":"\nbase.dists.t.pdf.factory( v:number )\n Returns a function for evaluating the probability density function (PDF)\n of a Student's t distribution with degrees of freedom `v`.\n","base.dists.t.quantile":"\nbase.dists.t.quantile( p:number, v:number )\n Evaluates the quantile function for a Student's t distribution with degrees\n of freedom `v` at a probability `p`.\n","base.dists.t.quantile.factory":"\nbase.dists.t.quantile.factory( v:number )\n Returns a function for evaluating the quantile function of a Student's t\n distribution with degrees of freedom `v`.\n","base.dists.t.skewness":"\nbase.dists.t.skewness( v:number )\n Returns the skewness of a Student's t distribution.\n","base.dists.t.stdev":"\nbase.dists.t.stdev( v:number )\n Returns the standard deviation of a Student's t distribution.\n","base.dists.t.T":"\nbase.dists.t.T( [v:number] )\n Returns a Student's t distribution object.\n","base.dists.t.variance":"\nbase.dists.t.variance( v:number )\n Returns the variance of a Student's t distribution.\n","base.dists.triangular.cdf":"\nbase.dists.triangular.cdf( x:number, a:number, b:number, c:number )\n Evaluates the cumulative distribution function (CDF) for a triangular\n distribution with minimum support `a`, maximum support `b`, and mode `c` at\n a value `x`.\n","base.dists.triangular.cdf.factory":"\nbase.dists.triangular.cdf.factory( a:number, b:number, c:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a triangular distribution with minimum support `a`, maximum support `b`,\n and mode `c`.\n","base.dists.triangular.entropy":"\nbase.dists.triangular.entropy( a:number, b:number, c:number )\n Returns the differential entropy of a triangular distribution (in nats).\n","base.dists.triangular.kurtosis":"\nbase.dists.triangular.kurtosis( a:number, b:number, c:number )\n Returns the excess kurtosis of a triangular distribution.\n","base.dists.triangular.logcdf":"\nbase.dists.triangular.logcdf( x:number, a:number, b:number, c:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for a triangular distribution with minimum support `a`, maximum\n support `b`, and mode `c` at a value `x`.\n","base.dists.triangular.logcdf.factory":"\nbase.dists.triangular.logcdf.factory( a:number, b:number, c:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a triangular distribution with minimum\n support `a`, maximum support `b`, and mode `c`.\n","base.dists.triangular.logpdf":"\nbase.dists.triangular.logpdf( x:number, a:number, b:number, c:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for a triangular distribution with minimum support `a`, maximum support `b`,\n and mode `c` at a value `x`.\n","base.dists.triangular.logpdf.factory":"\nbase.dists.triangular.logpdf.factory( a:number, b:number, c:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of a triangular distribution with minimum support\n `a`, maximum support `b`, and mode `c`.\n","base.dists.triangular.mean":"\nbase.dists.triangular.mean( a:number, b:number, c:number )\n Returns the expected value of a triangular distribution.\n","base.dists.triangular.median":"\nbase.dists.triangular.median( a:number, b:number, c:number )\n Returns the median of a triangular distribution.\n","base.dists.triangular.mgf":"\nbase.dists.triangular.mgf( t:number, a:number, b:number, c:number )\n Evaluates the moment-generating function (MGF) for a triangular distribution\n with minimum support `a`, maximum support `b`, and mode `c` at a value `t`.\n","base.dists.triangular.mgf.factory":"\nbase.dists.triangular.mgf.factory( a:number, b:number, c:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n triangular distribution with minimum support `a`, maximum support `b`, and\n mode `c`.\n","base.dists.triangular.mode":"\nbase.dists.triangular.mode( a:number, b:number, c:number )\n Returns the mode of a triangular distribution.\n","base.dists.triangular.pdf":"\nbase.dists.triangular.pdf( x:number, a:number, b:number, c:number )\n Evaluates the probability density function (PDF) for a triangular\n distribution with minimum support `a`, maximum support `b`, and mode `c` at\n a value `x`.\n","base.dists.triangular.pdf.factory":"\nbase.dists.triangular.pdf.factory( a:number, b:number, c:number )\n Returns a function for evaluating the probability density function (PDF) of\n a triangular distribution with minimum support `a`, maximum support `b`, and\n mode `c`.\n","base.dists.triangular.quantile":"\nbase.dists.triangular.quantile( p:number, a:number, b:number, c:number )\n Evaluates the quantile function for a triangular distribution with minimum\n support `a`, maximum support `b`, and mode `c` at a value `x`.\n","base.dists.triangular.quantile.factory":"\nbase.dists.triangular.quantile.factory( a:number, b:number, c:number )\n Returns a function for evaluating the quantile function of a triangular\n distribution with minimum support `a`, maximum support `b`, and mode `c`.\n","base.dists.triangular.skewness":"\nbase.dists.triangular.skewness( a:number, b:number, c:number )\n Returns the skewness of a triangular distribution.\n","base.dists.triangular.stdev":"\nbase.dists.triangular.stdev( a:number, b:number, c:number )\n Returns the standard deviation of a triangular distribution.\n","base.dists.triangular.Triangular":"\nbase.dists.triangular.Triangular( [a:number, b:number, c:number] )\n Returns a triangular distribution object.\n","base.dists.triangular.variance":"\nbase.dists.triangular.variance( a:number, b:number, c:number )\n Returns the variance of a triangular distribution.\n","base.dists.uniform.cdf":"\nbase.dists.uniform.cdf( x:number, a:number, b:number )\n Evaluates the cumulative distribution function (CDF) for a uniform\n distribution with minimum support `a` and maximum support `b` at a value\n `x`.\n","base.dists.uniform.cdf.factory":"\nbase.dists.uniform.cdf.factory( a:number, b:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a uniform distribution with minimum support `a` and maximum support `b`.\n","base.dists.uniform.entropy":"\nbase.dists.uniform.entropy( a:number, b:number )\n Returns the differential entropy of a uniform distribution.\n","base.dists.uniform.kurtosis":"\nbase.dists.uniform.kurtosis( a:number, b:number )\n Returns the excess kurtosis of a uniform distribution.\n","base.dists.uniform.logcdf":"\nbase.dists.uniform.logcdf( x:number, a:number, b:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for a\n uniform distribution with minimum support `a` and maximum support `b` at a\n value `x`.\n","base.dists.uniform.logcdf.factory":"\nbase.dists.uniform.logcdf.factory( a:number, b:number )\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of a uniform distribution with minimum support\n `a` and maximum support `b`.\n","base.dists.uniform.logpdf":"\nbase.dists.uniform.logpdf( x:number, a:number, b:number )\n Evaluates the logarithm of the probability density function (PDF) for a\n uniform distribution with minimum support `a` and maximum support `b` at a\n value `x`.\n","base.dists.uniform.logpdf.factory":"\nbase.dists.uniform.logpdf.factory( a:number, b:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a uniform distribution with minimum support `a` and\n maximum support `b`.\n","base.dists.uniform.mean":"\nbase.dists.uniform.mean( a:number, b:number )\n Returns the expected value of a uniform distribution.\n","base.dists.uniform.median":"\nbase.dists.uniform.median( a:number, b:number )\n Returns the median of a uniform distribution.\n","base.dists.uniform.mgf":"\nbase.dists.uniform.mgf( t:number, a:number, b:number )\n Evaluates the moment-generating function (MGF) for a uniform\n distribution with minimum support `a` and maximum support `b` at a value\n `t`.\n","base.dists.uniform.mgf.factory":"\nbase.dists.uniform.mgf.factory( a:number, b:number )\n Returns a function for evaluating the moment-generating function (MGF)\n of a uniform distribution with minimum support `a` and maximum support `b`.\n","base.dists.uniform.pdf":"\nbase.dists.uniform.pdf( x:number, a:number, b:number )\n Evaluates the probability density function (PDF) for a uniform distribution\n with minimum support `a` and maximum support `b` at a value `x`.\n","base.dists.uniform.pdf.factory":"\nbase.dists.uniform.pdf.factory( a:number, b:number )\n Returns a function for evaluating the probability density function (PDF) of\n a uniform distribution with minimum support `a` and maximum support `b`.\n","base.dists.uniform.quantile":"\nbase.dists.uniform.quantile( p:number, a:number, b:number )\n Evaluates the quantile function for a uniform distribution with minimum\n support `a` and maximum support `b` at a probability `p`.\n","base.dists.uniform.quantile.factory":"\nbase.dists.uniform.quantile.factory( a:number, b:number )\n Returns a function for evaluating the quantile function of a uniform\n distribution with minimum support `a` and maximum support `b`.\n","base.dists.uniform.skewness":"\nbase.dists.uniform.skewness( a:number, b:number )\n Returns the skewness of a uniform distribution.\n","base.dists.uniform.stdev":"\nbase.dists.uniform.stdev( a:number, b:number )\n Returns the standard deviation of a uniform distribution.\n","base.dists.uniform.Uniform":"\nbase.dists.uniform.Uniform( [a:number, b:number] )\n Returns a uniform distribution object.\n","base.dists.uniform.variance":"\nbase.dists.uniform.variance( a:number, b:number )\n Returns the variance of a uniform distribution.\n","base.dists.weibull.cdf":"\nbase.dists.weibull.cdf( x:number, k:number, λ:number )\n Evaluates the cumulative distribution function (CDF) for a Weibull\n distribution with shape parameter `k` and scale parameter `λ` at a value\n `x`.\n","base.dists.weibull.cdf.factory":"\nbase.dists.weibull.cdf.factory( k:number, λ:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Weibull distribution with shape parameter `k` and scale parameter `λ`.\n","base.dists.weibull.entropy":"\nbase.dists.weibull.entropy( k:number, λ:number )\n Returns the differential entropy of a Weibull distribution (in nats).\n","base.dists.weibull.kurtosis":"\nbase.dists.weibull.kurtosis( k:number, λ:number )\n Returns the excess kurtosis of a Weibull distribution.\n","base.dists.weibull.logcdf":"\nbase.dists.weibull.logcdf( x:number, k:number, λ:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for a\n Weibull distribution with shape parameter `k` and scale parameter `λ` at a\n value `x`.\n","base.dists.weibull.logcdf.factory":"\nbase.dists.weibull.logcdf.factory( k:number, λ:number)\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of a Weibull distribution with scale parameter\n `λ` and shape parameter `k`.\n","base.dists.weibull.logpdf":"\nbase.dists.weibull.logpdf( x:number, k:number, λ:number )\n Evaluates the logarithm of the probability density function (PDF) for a\n Weibull distribution with shape parameter `k` and scale parameter `λ` at a\n value `x`.\n","base.dists.weibull.logpdf.factory":"\nbase.dists.weibull.logpdf.factory( k:number, λ:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a Weibull distribution with shape parameter `k` and scale\n parameter `λ`.\n","base.dists.weibull.mean":"\nbase.dists.weibull.mean( k:number, λ:number )\n Returns the expected value of a Weibull distribution.\n","base.dists.weibull.median":"\nbase.dists.weibull.median( k:number, λ:number )\n Returns the median of a Weibull distribution.\n","base.dists.weibull.mgf":"\nbase.dists.weibull.mgf( x:number, k:number, λ:number )\n Evaluates the moment-generating function (MGF) for a Weibull distribution\n with shape parameter `k` and scale parameter `λ` at a value `t`.\n","base.dists.weibull.mgf.factory":"\nbase.dists.weibull.mgf.factory( k:number, λ:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n Weibull distribution with shape parameter `k` and scale parameter `λ`.\n","base.dists.weibull.mode":"\nbase.dists.weibull.mode( k:number, λ:number )\n Returns the mode of a Weibull distribution.\n","base.dists.weibull.pdf":"\nbase.dists.weibull.pdf( x:number, k:number, λ:number )\n Evaluates the probability density function (PDF) for a Weibull distribution\n with shape parameter `k` and scale parameter `λ` at a value `x`.\n","base.dists.weibull.pdf.factory":"\nbase.dists.weibull.pdf.factory( k:number, λ:number )\n Returns a function for evaluating the probability density function (PDF) of\n a Weibull distribution with shape parameter `k` and scale parameter `λ`.\n","base.dists.weibull.quantile":"\nbase.dists.weibull.quantile( p:number, k:number, λ:number )\n Evaluates the quantile function for a Weibull distribution with scale\n parameter `k` and shape parameter `λ` at a probability `p`.\n","base.dists.weibull.quantile.factory":"\nbase.dists.weibull.quantile.factory( k:number, λ:number )\n Returns a function for evaluating the quantile function of a Weibull\n distribution with scale parameter `k` and shape parameter `λ`.\n","base.dists.weibull.skewness":"\nbase.dists.weibull.skewness( k:number, λ:number )\n Returns the skewness of a Weibull distribution.\n","base.dists.weibull.stdev":"\nbase.dists.weibull.stdev( k:number, λ:number )\n Returns the standard deviation of a Weibull distribution.\n","base.dists.weibull.variance":"\nbase.dists.weibull.variance( k:number, λ:number )\n Returns the variance of a Weibull distribution.\n","base.dists.weibull.Weibull":"\nbase.dists.weibull.Weibull( [k:number, λ:number] )\n Returns a Weibull distribution object.\n","base.ellipe":"\nbase.ellipe( m:number )\n Computes the complete elliptic integral of the second kind.\n","base.ellipk":"\nbase.ellipk( m:number )\n Computes the complete elliptic integral of the first kind.\n","base.epsdiff":"\nbase.epsdiff( x:number, y:number[, scale:string|Function] )\n Computes the relative difference of two real numbers in units of double-\n precision floating-point epsilon.\n","base.erf":"\nbase.erf( x:number )\n Evaluates the error function.\n","base.erfc":"\nbase.erfc( x:number )\n Evaluates the complementary error function.\n","base.erfcinv":"\nbase.erfcinv( x:number )\n Evaluates the inverse complementary error function.\n","base.erfcx":"\nbase.erfcx( x:number )\n Evaluates the scaled complementary error function.\n\nbase.erfcx( x:number )\n Evaluates the scaled complementary error function.\n","base.erfinv":"\nbase.erfinv( x:number )\n Evaluates the inverse error function.\n","base.eta":"\nbase.eta( s:number )\n Evaluates the Dirichlet eta function as a function of a real variable `s`.\n","base.evalpoly":"\nbase.evalpoly( c:Array, x:number )\n Evaluates a polynomial.\n","base.evalpoly.factory":"\nbase.evalpoly.factory( c:Array )\n Returns a function for evaluating a polynomial.\n","base.evalrational":"\nbase.evalrational( P:Array, Q:Array, x:number )\n Evaluates a rational function.\n","base.evalrational.factory":"\nbase.evalrational.factory( P:Array, Q:Array )\n Returns a function for evaluating a rational function.\n","base.exp":"\nbase.exp( x:number )\n Evaluates the natural exponential function.\n","base.exp2":"\nbase.exp2( x:number )\n Evaluates the base 2 exponential function.\n","base.exp10":"\nbase.exp10( x:number )\n Evaluates the base 10 exponential function.\n","base.expit":"\nbase.expit( x:number )\n Evaluates the standard logistic function.\n","base.expm1":"\nbase.expm1( x:number )\n Computes `exp(x)-1`, where `exp(x)` is the natural exponential function.\n","base.expm1rel":"\nbase.expm1rel( x:number )\n Relative error exponential.\n","base.exponent":"\nbase.exponent( x:number )\n Returns an integer corresponding to the unbiased exponent of a double-\n precision floating-point number.\n","base.exponentf":"\nbase.exponentf( x:float )\n Returns an integer corresponding to the unbiased exponent of a single-\n precision floating-point number.\n","base.factorial":"\nbase.factorial( x:number )\n Evaluates the factorial of `x`.\n","base.factorialln":"\nbase.factorialln( x:number )\n Evaluates the natural logarithm of the factorial of `x`.\n","base.fallingFactorial":"\nbase.fallingFactorial( x:number, n:integer )\n Computes the falling factorial of `x` and `n`.\n","base.fibonacci":"\nbase.fibonacci( n:integer )\n Computes the nth Fibonacci number.\n","base.fibonacciIndex":"\nbase.fibonacciIndex( F:integer )\n Computes the Fibonacci number index.\n","base.fibpoly":"\nbase.fibpoly( n:integer, x:number )\n Evaluates a Fibonacci polynomial.\n","base.fibpoly.factory":"\nbase.fibpoly.factory( n:integer )\n Returns a function for evaluating a Fibonacci polynomial.\n","base.flipsign":"\nbase.flipsign( x:number, y:number )\n Returns a double-precision floating-point number with the magnitude of `x`\n and the sign of `x*y`.\n","base.flipsignf":"\nbase.flipsignf( x:number, y:number )\n Returns a single-precision floating-point number with the magnitude of `x`\n and the sign of `x*y`.\n","base.float32ToInt32":"\nbase.float32ToInt32( x:float )\n Converts a single-precision floating-point number to a signed 32-bit\n integer.\n","base.float32ToUint32":"\nbase.float32ToUint32( x:float )\n Converts a single-precision floating-point number to a unsigned 32-bit\n integer.\n","base.float64ToFloat32":"\nbase.float64ToFloat32( x:number )\n Converts a double-precision floating-point number to the nearest single-\n precision floating-point number.\n","base.float64ToInt32":"\nbase.float64ToInt32( x:number )\n Converts a double-precision floating-point number to a signed 32-bit\n integer.\n","base.float64ToInt64Bytes":"\nbase.float64ToInt64Bytes( x:integer )\n Converts an integer-valued double-precision floating-point number to a\n signed 64-bit integer byte array according to host byte order (endianness).\n","base.float64ToInt64Bytes.assign":"\nbase.float64ToInt64Bytes.assign( x:integer, out:Array|TypedArray|Object, \n stride:integer, offset:integer )\n Converts an integer-valued double-precision floating-point number to a\n signed 64-bit integer byte array according to host byte order (endianness)\n and assigns results to a provided output array.\n","base.float64ToUint32":"\nbase.float64ToUint32( x:number )\n Converts a double-precision floating-point number to a unsigned 32-bit\n integer.\n","base.floor":"\nbase.floor( x:number )\n Rounds a double-precision floating-point number toward negative infinity.\n","base.floor2":"\nbase.floor2( x:number )\n Rounds a numeric value to the nearest power of two toward negative infinity.\n","base.floor10":"\nbase.floor10( x:number )\n Rounds a numeric value to the nearest power of ten toward negative infinity.\n","base.floorb":"\nbase.floorb( x:number, n:integer, b:integer )\n Rounds a numeric value to the nearest multiple of `b^n` toward negative\n infinity.\n","base.floorf":"\nbase.floorf( x:number )\n Rounds a single-precision floating-point number toward negative infinity.\n","base.floorn":"\nbase.floorn( x:number, n:integer )\n Rounds a numeric value to the nearest multiple of `10^n` toward negative\n infinity.\n","base.floorsd":"\nbase.floorsd( x:number, n:integer[, b:integer] )\n Rounds a numeric value to the nearest number toward negative infinity with\n `n` significant figures.\n","base.fresnel":"\nbase.fresnel( [out:Array|TypedArray|Object,] x:number )\n Computes the Fresnel integrals S(x) and C(x).\n","base.fresnelc":"\nbase.fresnelc( x:number )\n Computes the Fresnel integral C(x).\n","base.fresnels":"\nbase.fresnels( x:number )\n Computes the Fresnel integral S(x).\n","base.frexp":"\nbase.frexp( [out:Array|TypedArray|Object,] x:number )\n Splits a double-precision floating-point number into a normalized fraction\n and an integer power of two.\n","base.fromBinaryString":"\nbase.fromBinaryString( bstr:string )\n Creates a double-precision floating-point number from a literal bit\n representation.\n","base.fromBinaryStringf":"\nbase.fromBinaryStringf( bstr:string )\n Creates a single-precision floating-point number from an IEEE 754 literal\n bit representation.\n","base.fromBinaryStringUint8":"\nbase.fromBinaryStringUint8( bstr:string )\n Creates an unsigned 8-bit integer from a literal bit representation.\n","base.fromBinaryStringUint16":"\nbase.fromBinaryStringUint16( bstr:string )\n Creates an unsigned 16-bit integer from a literal bit representation.\n","base.fromBinaryStringUint32":"\nbase.fromBinaryStringUint32( bstr:string )\n Creates an unsigned 32-bit integer from a literal bit representation.\n","base.fromInt64Bytes":"\nbase.fromInt64Bytes( bytes:Array|TypedArray|Object, stride:integer, \n offset:integer )\n Converts a signed 64-bit integer byte array to a double-precision floating-\n point number.\n","base.fromWordf":"\nbase.fromWordf( word:integer )\n Creates a single-precision floating-point number from an unsigned integer\n corresponding to an IEEE 754 binary representation.\n","base.fromWords":"\nbase.fromWords( high:integer, low:integer )\n Creates a double-precision floating-point number from a higher order word\n (unsigned 32-bit integer) and a lower order word (unsigned 32-bit integer).\n","base.gamma":"\nbase.gamma( x:number )\n Evaluates the gamma function.\n","base.gamma1pm1":"\nbase.gamma1pm1( x:number )\n Computes `gamma(x+1) - 1` without cancellation errors, where `gamma(x)` is\n the gamma function.\n","base.gammaDeltaRatio":"\nbase.gammaDeltaRatio( z:number, delta:number )\n Computes the ratio of two gamma functions.\n","base.gammainc":"\nbase.gammainc( x:number, s:number[, regularized:boolean[, upper:boolean]] )\n Computes the regularized incomplete gamma function.\n","base.gammaincinv":"\nbase.gammaincinv( p:number, a:number[, upper:boolean] )\n Computes the inverse of the lower incomplete gamma function.\n","base.gammaLanczosSum":"\nbase.gammaLanczosSum( x:number )\n Calculates the Lanczos sum for the approximation of the gamma function.\n","base.gammaLanczosSumExpGScaled":"\nbase.gammaLanczosSumExpGScaled( x:number )\n Calculates the scaled Lanczos sum for the approximation of the gamma\n function.\n","base.gammaln":"\nbase.gammaln( x:number )\n Evaluates the natural logarithm of the gamma function.\n","base.gcd":"\nbase.gcd( a:integer, b:integer )\n Computes the greatest common divisor (gcd).\n","base.getHighWord":"\nbase.getHighWord( x:number )\n Returns an unsigned 32-bit integer corresponding to the more significant 32\n bits of a double-precision floating-point number.\n","base.getLowWord":"\nbase.getLowWord( x:number )\n Returns an unsigned 32-bit integer corresponding to the less significant 32\n bits of a double-precision floating-point number.\n","base.hacovercos":"\nbase.hacovercos( x:number )\n Computes the half-value coversed cosine.\n","base.hacoversin":"\nbase.hacoversin( x:number )\n Computes the half-value coversed sine.\n","base.havercos":"\nbase.havercos( x:number )\n Computes the half-value versed cosine.\n","base.haversin":"\nbase.haversin( x:number )\n Computes the half-value versed sine.\n","base.heaviside":"\nbase.heaviside( x:number[, continuity:string] )\n Evaluates the Heaviside function.\n","base.hermitepoly":"\nbase.hermitepoly( n:integer, x:number )\n Evaluates a physicist's Hermite polynomial.\n","base.hermitepoly.factory":"\nbase.hermitepoly.factory( n:integer )\n Returns a function for evaluating a physicist's Hermite polynomial.\n","base.hypot":"\nbase.hypot( x:number, y:number )\n Computes the hypotenuse avoiding overflow and underflow.\n","base.hypotf":"\nbase.hypotf( x:number, y:number )\n Computes the hypotenuse avoiding overflow and underflow (single-precision).\n","base.identity":"\nbase.identity( x:number )\n Evaluates the identity function for a double-precision floating-point number\n `x`.\n","base.identityf":"\nbase.identityf( x:number )\n Evaluates the identity function for a single-precision floating-point number\n `x`.\n","base.imul":"\nbase.imul( a:integer, b:integer )\n Performs C-like multiplication of two signed 32-bit integers.\n","base.imuldw":"\nbase.imuldw( [out:ArrayLikeObject,] a:integer, b:integer )\n Multiplies two signed 32-bit integers and returns an array of two signed 32-\n bit integers which represents the signed 64-bit integer product.\n","base.int32ToUint32":"\nbase.int32ToUint32( x:integer )\n Converts a signed 32-bit integer to an unsigned 32-bit integer.\n","base.inv":"\nbase.inv( x:number )\n Computes the multiplicative inverse of a double-precision floating-point\n number `x`.\n","base.invf":"\nbase.invf( x:number )\n Computes the multiplicative inverse of a single-precision floating-point\n number `x`.\n","base.isComposite":"\nbase.isComposite( x:number )\n Tests if a number is composite.\n","base.isCoprime":"\nbase.isCoprime( a:number, b:number )\n Tests if two numbers are coprime.\n","base.isEven":"\nbase.isEven( x:number )\n Tests if a finite numeric value is an even number.\n","base.isEvenInt32":"\nbase.isEvenInt32( x:integer )\n Tests if a 32-bit integer is even.\n","base.isFinite":"\nbase.isFinite( x:number )\n Tests if a double-precision floating-point numeric value is finite.\n","base.isFinitef":"\nbase.isFinitef( x:number )\n Tests if a single-precision floating-point numeric value is finite.\n","base.isInfinite":"\nbase.isInfinite( x:number )\n Tests if a double-precision floating-point numeric value is infinite.\n","base.isInfinitef":"\nbase.isInfinitef( x:number )\n Tests if a single-precision floating-point numeric value is infinite.\n","base.isInteger":"\nbase.isInteger( x:number )\n Tests if a finite double-precision floating-point number is an integer.\n","base.isnan":"\nbase.isnan( x:number )\n Tests if a double-precision floating-point numeric value is `NaN`.\n","base.isnanf":"\nbase.isnanf( x:number )\n Tests if a single-precision floating-point numeric value is `NaN`.\n","base.isNegativeInteger":"\nbase.isNegativeInteger( x:number )\n Tests if a finite double-precision floating-point number is a negative\n integer.\n","base.isNegativeZero":"\nbase.isNegativeZero( x:number )\n Tests if a double-precision floating-point numeric value is negative zero.\n","base.isNegativeZerof":"\nbase.isNegativeZerof( x:number )\n Tests if a single-precision floating-point numeric value is negative zero.\n","base.isNonNegativeInteger":"\nbase.isNonNegativeInteger( x:number )\n Tests if a finite double-precision floating-point number is a nonnegative\n integer.\n","base.isNonPositiveInteger":"\nbase.isNonPositiveInteger( x:number )\n Tests if a finite double-precision floating-point number is a nonpositive\n integer.\n","base.isOdd":"\nbase.isOdd( x:number )\n Tests if a finite numeric value is an odd number.\n","base.isOddInt32":"\nbase.isOddInt32( x:integer )\n Tests if a 32-bit integer is odd.\n","base.isPositiveInteger":"\nbase.isPositiveInteger( x:number )\n Tests if a finite double-precision floating-point number is a positive\n integer.\n","base.isPositiveZero":"\nbase.isPositiveZero( x:number )\n Tests if a double-precision floating-point numeric value is positive zero.\n","base.isPositiveZerof":"\nbase.isPositiveZerof( x:number )\n Tests if a single-precision floating-point numeric value is positive zero.\n","base.isPow2Uint32":"\nbase.isPow2Uint32( x:integer )\n Tests whether an unsigned integer is a power of 2.\n","base.isPrime":"\nbase.isPrime( x:number )\n Tests if a number is prime.\n","base.isProbability":"\nbase.isProbability( x:number )\n Tests if a numeric value is a probability.\n","base.isSafeInteger":"\nbase.isSafeInteger( x:number )\n Tests if a finite double-precision floating-point number is a safe integer.\n","base.kernelBetainc":"\nbase.kernelBetainc( x:number, a:number, b:number, regularized:boolean, \n upper:boolean )\n Computes the kernel function for the regularized incomplete beta function.\n","base.kernelBetainc.assign":"\nbase.kernelBetainc.assign( x:number, a:number, b:number, regularized:boolean, \n upper:boolean, out:Array|TypedArray|Object, stride:integer, offset:integer )\n Computes the kernel function for the regularized incomplete beta function.\n","base.kernelBetaincinv":"\nbase.kernelBetaincinv( a:number, b:number, p:number, q:number )\n Computes the inverse of the lower incomplete beta function.\n","base.kernelCos":"\nbase.kernelCos( x:number, y:number )\n Computes the cosine of a number on `[-π/4, π/4]`.\n","base.kernelSin":"\nbase.kernelSin( x:number, y:number )\n Computes the sine of a number on `[-π/4, π/4]`.\n","base.kernelTan":"\nbase.kernelTan( x:number, y:number, k:integer )\n Computes the tangent of a number on `[-π/4, π/4]`.\n","base.kroneckerDelta":"\nbase.kroneckerDelta( i:number, j:number )\n Evaluates the Kronecker delta.\n","base.kroneckerDeltaf":"\nbase.kroneckerDeltaf( i:number, j:number )\n Evaluates the Kronecker delta (single-precision).\n","base.labs":"\nbase.labs( x:integer )\n Computes an absolute value of a signed 32-bit integer in two's complement\n format.\n","base.lcm":"\nbase.lcm( a:integer, b:integer )\n Computes the least common multiple (lcm).\n","base.ldexp":"\nbase.ldexp( frac:number, exp:number )\n Multiplies a double-precision floating-point number by an integer power of\n two; i.e., `x = frac * 2^exp`.\n","base.ln":"\nbase.ln( x:number )\n Evaluates the natural logarithm.\n","base.log":"\nbase.log( x:number, b:number )\n Computes the base `b` logarithm of `x`.\n","base.log1mexp":"\nbase.log1mexp( x:number )\n Evaluates the natural logarithm of `1-exp(-|x|)`.\n","base.log1p":"\nbase.log1p( x:number )\n Evaluates the natural logarithm of `1+x`.\n","base.log1pexp":"\nbase.log1pexp( x:number )\n Evaluates the natural logarithm of `1+exp(x)`.\n","base.log2":"\nbase.log2( x:number )\n Evaluates the binary logarithm (base two).\n","base.log10":"\nbase.log10( x:number )\n Evaluates the common logarithm (base 10).\n","base.logaddexp":"\nbase.logaddexp( x:number, y:number )\n Computes the natural logarithm of `exp(x) + exp(y)`.\n","base.logit":"\nbase.logit( p:number )\n Evaluates the logit function.\n","base.lucas":"\nbase.lucas( n:integer )\n Computes the nth Lucas number.\n","base.lucaspoly":"\nbase.lucaspoly( n:integer, x:number )\n Evaluates a Lucas polynomial.\n","base.lucaspoly.factory":"\nbase.lucaspoly.factory( n:integer )\n Returns a function for evaluating a Lucas polynomial.\n","base.max":"\nbase.max( [x:number[, y:number[, ...args:number]]] )\n Returns the maximum value.\n","base.maxabs":"\nbase.maxabs( [x:number[, y:number[, ...args:number]]] )\n Returns the maximum absolute value.\n","base.min":"\nbase.min( [x:number[, y:number[, ...args:number]]] )\n Returns the minimum value.\n","base.minabs":"\nbase.minabs( [x:number[, y:number[, ...args:number]]] )\n Returns the minimum absolute value.\n","base.minmax":"\nbase.minmax( [out:Array|TypedArray|Object,] x:number[, y:number[, \n ...args:number]] )\n Returns the minimum and maximum values.\n","base.minmaxabs":"\nbase.minmaxabs( [out:Array|TypedArray|Object,] x:number[, y:number[, \n ...args:number]] )\n Returns the minimum and maximum absolute values.\n","base.modf":"\nbase.modf( [out:Array|TypedArray|Object,] x:number )\n Decomposes a double-precision floating-point number into integral and\n fractional parts, each having the same type and sign as the input value.\n","base.mul":"\nbase.mul( x:number, y:number )\n Multiplies two double-precision floating-point numbers `x` and `y`.\n","base.mulf":"\nbase.mulf( x:number, y:number )\n Multiplies two single-precision floating-point numbers `x` and `y`.\n","base.ndarray":"\nbase.ndarray( dtype:string, buffer:ArrayLikeObject|TypedArray|Buffer, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n offset:integer, order:string )\n Returns an ndarray.\n","base.ndarray.prototype.byteLength":"\nbase.ndarray.prototype.byteLength\n Size (in bytes) of the array (if known).\n","base.ndarray.prototype.BYTES_PER_ELEMENT":"\nbase.ndarray.prototype.BYTES_PER_ELEMENT\n Size (in bytes) of each array element (if known).\n","base.ndarray.prototype.data":"\nbase.ndarray.prototype.data\n Pointer to the underlying data buffer.\n","base.ndarray.prototype.dtype":"\nbase.ndarray.prototype.dtype\n Underlying data type.\n","base.ndarray.prototype.flags":"\nbase.ndarray.prototype.flags\n Meta information, such as information concerning the memory layout of the\n array.\n","base.ndarray.prototype.length":"\nbase.ndarray.prototype.length\n Length of the array (i.e., number of elements).\n","base.ndarray.prototype.ndims":"\nbase.ndarray.prototype.ndims\n Number of dimensions.\n","base.ndarray.prototype.offset":"\nbase.ndarray.prototype.offset\n Index offset which specifies the buffer index at which to start iterating\n over array elements.\n","base.ndarray.prototype.order: string":"\nbase.ndarray.prototype.order: string\n Array order.\n","base.ndarray.prototype.shape":"\nbase.ndarray.prototype.shape\n Array shape.\n","base.ndarray.prototype.strides":"\nbase.ndarray.prototype.strides\n Index strides which specify how to access data along corresponding array\n dimensions.\n","base.ndarray.prototype.get":"\nbase.ndarray.prototype.get( ...idx:integer )\n Returns an array element specified according to provided subscripts.\n","base.ndarray.prototype.iget":"\nbase.ndarray.prototype.iget( idx:integer )\n Returns an array element located at a specified linear index.\n","base.ndarray.prototype.set":"\nbase.ndarray.prototype.set( ...idx:integer, v:any )\n Sets an array element specified according to provided subscripts.\n","base.ndarray.prototype.iset":"\nbase.ndarray.prototype.iset( idx:integer, v:any )\n Sets an array element located at a specified linear index.\n","base.ndarray.prototype.toString":"\nbase.ndarray.prototype.toString()\n Serializes an ndarray as a string.\n","base.ndarray.prototype.toJSON":"\nbase.ndarray.prototype.toJSON()\n Serializes an ndarray as a JSON object.\n","base.ndarrayUnary":"\nbase.ndarrayUnary( arrays:ArrayLikeObject, fcn:Function )\n Applies a unary callback to elements in an input ndarray and assigns results\n to elements in an output ndarray.\n","base.ndzeros":"\nbase.ndzeros( dtype:string, shape:ArrayLikeObject, order:string )\n Returns a zero-filled ndarray having a specified shape and data type.\n","base.ndzerosLike":"\nbase.ndzerosLike( x:ndarray )\n Returns a zero-filled ndarray having the same shape and data type as a\n provided input ndarray.\n","base.negafibonacci":"\nbase.negafibonacci( n:integer )\n Computes the nth negaFibonacci number.\n","base.negalucas":"\nbase.negalucas( n:integer )\n Computes the nth negaLucas number.\n","base.nonfibonacci":"\nbase.nonfibonacci( n:integer )\n Computes the nth non-Fibonacci number.\n","base.normalize":"\nbase.normalize( x:number )\n Returns a normal number and exponent satisfying `x = y * 2^exp` as an array.\n","base.normalize.assign":"\nbase.normalize.assign( x:number, out:Array|TypedArray|Object, stride:integer, \n offset:integer )\n Returns a normal number and exponent satisfying `x = y * 2^exp` and assigns\n results to a provided output array.\n","base.normalizef":"\nbase.normalizef( [out:Array|TypedArray|Object,] x:float )\n Returns a normal number `y` and exponent `exp` satisfying `x = y * 2^exp` as\n an array.\n","base.normhermitepoly":"\nbase.normhermitepoly( n:integer, x:number )\n Evaluates a normalized Hermite polynomial.\n","base.normhermitepoly.factory":"\nbase.normhermitepoly.factory( n:integer )\n Returns a function for evaluating a normalized Hermite polynomial.\n","base.pdiff":"\nbase.pdiff( x:number, y:number )\n Returns the positive difference between `x` and `y` if `x > y`; otherwise,\n returns `0`.\n","base.pdifff":"\nbase.pdifff( x:number, y:number )\n Returns the positive difference between `x` and `y` if `x > y`; otherwise,\n returns `0`.\n","base.polygamma":"\nbase.polygamma( n:integer, x:number )\n Evaluates the polygamma function of order `n`; i.e., the (n+1)th derivative\n of the natural logarithm of the gamma function.\n","base.pow":"\nbase.pow( b:number, x:number )\n Evaluates the exponential function `bˣ`.\n","base.powm1":"\nbase.powm1( b:number, x:number )\n Evaluates `bˣ - 1`.\n","base.rad2deg":"\nbase.rad2deg( x:number )\n Converts an angle from radians to degrees.\n","base.ramp":"\nbase.ramp( x:number )\n Evaluates the ramp function.\n","base.rampf":"\nbase.rampf( x:number )\n Evaluates the ramp function (single-precision).\n","base.random.arcsine":"\nbase.random.arcsine( a:number, b:number )\n Returns a pseudorandom number drawn from an arcsine distribution.\n","base.random.arcsine.factory":"\nbase.random.arcsine.factory( [a:number, b:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from an arcsine distribution.\n","base.random.arcsine.NAME":"\nbase.random.arcsine.NAME\n Generator name.\n","base.random.arcsine.PRNG":"\nbase.random.arcsine.PRNG\n Underlying pseudorandom number generator.\n","base.random.arcsine.seed":"\nbase.random.arcsine.seed\n Pseudorandom number generator seed.\n","base.random.arcsine.seedLength":"\nbase.random.arcsine.seedLength\n Length of generator seed.\n","base.random.arcsine.state":"\nbase.random.arcsine.state\n Generator state.\n","base.random.arcsine.stateLength":"\nbase.random.arcsine.stateLength\n Length of generator state.\n","base.random.arcsine.byteLength":"\nbase.random.arcsine.byteLength\n Size (in bytes) of generator state.\n","base.random.arcsine.toJSON":"\nbase.random.arcsine.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.bernoulli":"\nbase.random.bernoulli( p:number )\n Returns a pseudorandom number drawn from a Bernoulli distribution.\n","base.random.bernoulli.factory":"\nbase.random.bernoulli.factory( [p:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Bernoulli distribution.\n","base.random.bernoulli.NAME":"\nbase.random.bernoulli.NAME\n Generator name.\n","base.random.bernoulli.PRNG":"\nbase.random.bernoulli.PRNG\n Underlying pseudorandom number generator.\n","base.random.bernoulli.seed":"\nbase.random.bernoulli.seed\n Pseudorandom number generator seed.\n","base.random.bernoulli.seedLength":"\nbase.random.bernoulli.seedLength\n Length of generator seed.\n","base.random.bernoulli.state":"\nbase.random.bernoulli.state\n Generator state.\n","base.random.bernoulli.stateLength":"\nbase.random.bernoulli.stateLength\n Length of generator state.\n","base.random.bernoulli.byteLength":"\nbase.random.bernoulli.byteLength\n Size (in bytes) of generator state.\n","base.random.bernoulli.toJSON":"\nbase.random.bernoulli.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.beta":"\nbase.random.beta( α:number, β:number )\n Returns a pseudorandom number drawn from a beta distribution.\n","base.random.beta.factory":"\nbase.random.beta.factory( [α:number, β:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a beta distribution.\n","base.random.beta.NAME":"\nbase.random.beta.NAME\n Generator name.\n","base.random.beta.PRNG":"\nbase.random.beta.PRNG\n Underlying pseudorandom number generator.\n","base.random.beta.seed":"\nbase.random.beta.seed\n Pseudorandom number generator seed.\n","base.random.beta.seedLength":"\nbase.random.beta.seedLength\n Length of generator seed.\n","base.random.beta.state":"\nbase.random.beta.state\n Generator state.\n","base.random.beta.stateLength":"\nbase.random.beta.stateLength\n Length of generator state.\n","base.random.beta.byteLength":"\nbase.random.beta.byteLength\n Size (in bytes) of generator state.\n","base.random.beta.toJSON":"\nbase.random.beta.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.betaprime":"\nbase.random.betaprime( α:number, β:number )\n Returns a pseudorandom number drawn from a beta prime distribution.\n","base.random.betaprime.factory":"\nbase.random.betaprime.factory( [α:number, β:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a beta prime distribution.\n","base.random.betaprime.NAME":"\nbase.random.betaprime.NAME\n Generator name.\n","base.random.betaprime.PRNG":"\nbase.random.betaprime.PRNG\n Underlying pseudorandom number generator.\n","base.random.betaprime.seed":"\nbase.random.betaprime.seed\n Pseudorandom number generator seed.\n","base.random.betaprime.seedLength":"\nbase.random.betaprime.seedLength\n Length of generator seed.\n","base.random.betaprime.state":"\nbase.random.betaprime.state\n Generator state.\n","base.random.betaprime.stateLength":"\nbase.random.betaprime.stateLength\n Length of generator state.\n","base.random.betaprime.byteLength":"\nbase.random.betaprime.byteLength\n Size (in bytes) of generator state.\n","base.random.betaprime.toJSON":"\nbase.random.betaprime.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.binomial":"\nbase.random.binomial( n:integer, p:number )\n Returns a pseudorandom number drawn from a binomial distribution.\n","base.random.binomial.factory":"\nbase.random.binomial.factory( [n:integer, p:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a binomial distribution.\n","base.random.binomial.NAME":"\nbase.random.binomial.NAME\n Generator name.\n","base.random.binomial.PRNG":"\nbase.random.binomial.PRNG\n Underlying pseudorandom number generator.\n","base.random.binomial.seed":"\nbase.random.binomial.seed\n Pseudorandom number generator seed.\n","base.random.binomial.seedLength":"\nbase.random.binomial.seedLength\n Length of generator seed.\n","base.random.binomial.state":"\nbase.random.binomial.state\n Generator state.\n","base.random.binomial.stateLength":"\nbase.random.binomial.stateLength\n Length of generator state.\n","base.random.binomial.byteLength":"\nbase.random.binomial.byteLength\n Size of generator state.\n","base.random.binomial.toJSON":"\nbase.random.binomial.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.boxMuller":"\nbase.random.boxMuller()\n Returns a pseudorandom number drawn from a standard normal distribution.\n","base.random.boxMuller.factory":"\nbase.random.boxMuller.factory( [options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a standard normal distribution.\n","base.random.boxMuller.NAME":"\nbase.random.boxMuller.NAME\n Generator name.\n","base.random.boxMuller.PRNG":"\nbase.random.boxMuller.PRNG\n Underlying pseudorandom number generator.\n","base.random.boxMuller.seed":"\nbase.random.boxMuller.seed\n Pseudorandom number generator seed.\n","base.random.boxMuller.seedLength":"\nbase.random.boxMuller.seedLength\n Length of generator seed.\n","base.random.boxMuller.state":"\nbase.random.boxMuller.state\n Generator state.\n","base.random.boxMuller.stateLength":"\nbase.random.boxMuller.stateLength\n Length of generator state.\n","base.random.boxMuller.byteLength":"\nbase.random.boxMuller.byteLength\n Size (in bytes) of generator state.\n","base.random.boxMuller.toJSON":"\nbase.random.boxMuller.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.cauchy":"\nbase.random.cauchy( x0:number, Ɣ:number )\n Returns a pseudorandom number drawn from a Cauchy distribution.\n","base.random.cauchy.factory":"\nbase.random.cauchy.factory( [x0:number, Ɣ:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Cauchy distribution.\n","base.random.cauchy.NAME":"\nbase.random.cauchy.NAME\n Generator name.\n","base.random.cauchy.PRNG":"\nbase.random.cauchy.PRNG\n Underlying pseudorandom number generator.\n","base.random.cauchy.seed":"\nbase.random.cauchy.seed\n Pseudorandom number generator seed.\n","base.random.cauchy.seedLength":"\nbase.random.cauchy.seedLength\n Length of generator seed.\n","base.random.cauchy.state":"\nbase.random.cauchy.state\n Generator state.\n","base.random.cauchy.stateLength":"\nbase.random.cauchy.stateLength\n Length of generator state.\n","base.random.cauchy.byteLength":"\nbase.random.cauchy.byteLength\n Size (in bytes) of generator state.\n","base.random.cauchy.toJSON":"\nbase.random.cauchy.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.chi":"\nbase.random.chi( k:number )\n Returns a pseudorandom number drawn from a chi distribution.\n","base.random.chi.factory":"\nbase.random.chi.factory( [k:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a chi distribution.\n","base.random.chi.NAME":"\nbase.random.chi.NAME\n Generator name.\n","base.random.chi.PRNG":"\nbase.random.chi.PRNG\n Underlying pseudorandom number generator.\n","base.random.chi.seed":"\nbase.random.chi.seed\n Pseudorandom number generator seed.\n","base.random.chi.seedLength":"\nbase.random.chi.seedLength\n Length of generator seed.\n","base.random.chi.state":"\nbase.random.chi.state\n Generator state.\n","base.random.chi.stateLength":"\nbase.random.chi.stateLength\n Length of generator state.\n","base.random.chi.byteLength":"\nbase.random.chi.byteLength\n Size (in bytes) of generator state.\n","base.random.chi.toJSON":"\nbase.random.chi.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.chisquare":"\nbase.random.chisquare( k:number )\n Returns a pseudorandom number drawn from a chi-square distribution.\n","base.random.chisquare.factory":"\nbase.random.chisquare.factory( [k:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a chi-square distribution.\n","base.random.chisquare.NAME":"\nbase.random.chisquare.NAME\n Generator name.\n","base.random.chisquare.PRNG":"\nbase.random.chisquare.PRNG\n Underlying pseudorandom number generator.\n","base.random.chisquare.seed":"\nbase.random.chisquare.seed\n Pseudorandom number generator seed.\n","base.random.chisquare.seedLength":"\nbase.random.chisquare.seedLength\n Length of generator seed.\n","base.random.chisquare.state":"\nbase.random.chisquare.state\n Generator state.\n","base.random.chisquare.stateLength":"\nbase.random.chisquare.stateLength\n Length of generator state.\n","base.random.chisquare.byteLength":"\nbase.random.chisquare.byteLength\n Size (in bytes) of generator state.\n","base.random.chisquare.toJSON":"\nbase.random.chisquare.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.cosine":"\nbase.random.cosine( μ:number, s:number )\n Returns a pseudorandom number drawn from a raised cosine distribution.\n","base.random.cosine.factory":"\nbase.random.cosine.factory( [μ:number, s:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a raised cosine distribution.\n","base.random.cosine.NAME":"\nbase.random.cosine.NAME\n Generator name.\n","base.random.cosine.PRNG":"\nbase.random.cosine.PRNG\n Underlying pseudorandom number generator.\n","base.random.cosine.seed":"\nbase.random.cosine.seed\n Pseudorandom number generator seed.\n","base.random.cosine.seedLength":"\nbase.random.cosine.seedLength\n Length of generator seed.\n","base.random.cosine.state":"\nbase.random.cosine.state\n Generator state.\n","base.random.cosine.stateLength":"\nbase.random.cosine.stateLength\n Length of generator state.\n","base.random.cosine.byteLength":"\nbase.random.cosine.byteLength\n Size (in bytes) of generator state.\n","base.random.cosine.toJSON":"\nbase.random.cosine.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.discreteUniform":"\nbase.random.discreteUniform( a:integer, b:integer )\n Returns a pseudorandom number drawn from a discrete uniform distribution.\n","base.random.discreteUniform.factory":"\nbase.random.discreteUniform.factory( [a:integer, b:integer, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a discrete uniform distribution.\n","base.random.discreteUniform.NAME":"\nbase.random.discreteUniform.NAME\n Generator name.\n","base.random.discreteUniform.PRNG":"\nbase.random.discreteUniform.PRNG\n Underlying pseudorandom number generator.\n","base.random.discreteUniform.seed":"\nbase.random.discreteUniform.seed\n Pseudorandom number generator seed.\n","base.random.discreteUniform.seedLength":"\nbase.random.discreteUniform.seedLength\n Length of generator seed.\n","base.random.discreteUniform.state":"\nbase.random.discreteUniform.state\n Generator state.\n","base.random.discreteUniform.stateLength":"\nbase.random.discreteUniform.stateLength\n Length of generator state.\n","base.random.discreteUniform.byteLength":"\nbase.random.discreteUniform.byteLength\n Size (in bytes) of generator state.\n","base.random.discreteUniform.toJSON":"\nbase.random.discreteUniform.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.erlang":"\nbase.random.erlang( k:integer, λ:number )\n Returns a pseudorandom number drawn from an Erlang distribution.\n","base.random.erlang.factory":"\nbase.random.erlang.factory( [k:integer, λ:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from an Erlang distribution.\n","base.random.erlang.NAME":"\nbase.random.erlang.NAME\n Generator name.\n","base.random.erlang.PRNG":"\nbase.random.erlang.PRNG\n Underlying pseudorandom number generator.\n","base.random.erlang.seed":"\nbase.random.erlang.seed\n Pseudorandom number generator seed.\n","base.random.erlang.seedLength":"\nbase.random.erlang.seedLength\n Length of generator seed.\n","base.random.erlang.state":"\nbase.random.erlang.state\n Generator state.\n","base.random.erlang.stateLength":"\nbase.random.erlang.stateLength\n Length of generator state.\n","base.random.erlang.byteLength":"\nbase.random.erlang.byteLength\n Size (in bytes) of generator state.\n","base.random.erlang.toJSON":"\nbase.random.erlang.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.exponential":"\nbase.random.exponential( λ:number )\n Returns a pseudorandom number drawn from an exponential distribution.\n","base.random.exponential.factory":"\nbase.random.exponential.factory( [λ:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from an exponential distribution.\n","base.random.exponential.NAME":"\nbase.random.exponential.NAME\n Generator name.\n","base.random.exponential.PRNG":"\nbase.random.exponential.PRNG\n Underlying pseudorandom number generator.\n","base.random.exponential.seed":"\nbase.random.exponential.seed\n Pseudorandom number generator seed.\n","base.random.exponential.seedLength":"\nbase.random.exponential.seedLength\n Length of generator seed.\n","base.random.exponential.state":"\nbase.random.exponential.state\n Generator state.\n","base.random.exponential.stateLength":"\nbase.random.exponential.stateLength\n Length of generator state.\n","base.random.exponential.byteLength":"\nbase.random.exponential.byteLength\n Size (in bytes) of generator state.\n","base.random.exponential.toJSON":"\nbase.random.exponential.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.f":"\nbase.random.f( d1:number, d2:number )\n Returns a pseudorandom number drawn from an F distribution.\n","base.random.f.factory":"\nbase.random.f.factory( [d1:number, d2:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from an F distribution.\n","base.random.f.NAME":"\nbase.random.f.NAME\n Generator name.\n","base.random.f.PRNG":"\nbase.random.f.PRNG\n Underlying pseudorandom number generator.\n","base.random.f.seed":"\nbase.random.f.seed\n Pseudorandom number generator seed.\n","base.random.f.seedLength":"\nbase.random.f.seedLength\n Length of generator seed.\n","base.random.f.state":"\nbase.random.f.state\n Generator state.\n","base.random.f.stateLength":"\nbase.random.f.stateLength\n Length of generator state.\n","base.random.f.byteLength":"\nbase.random.f.byteLength\n Size (in bytes) of generator state.\n","base.random.f.toJSON":"\nbase.random.f.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.frechet":"\nbase.random.frechet( α:number, s:number, m:number )\n Returns a pseudorandom number drawn from a Fréchet distribution.\n","base.random.frechet.factory":"\nbase.random.frechet.factory( [α:number, s:number, m:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a triangular distribution.\n","base.random.frechet.NAME":"\nbase.random.frechet.NAME\n Generator name.\n","base.random.frechet.PRNG":"\nbase.random.frechet.PRNG\n Underlying pseudorandom number generator.\n","base.random.frechet.seed":"\nbase.random.frechet.seed\n Pseudorandom number generator seed.\n","base.random.frechet.seedLength":"\nbase.random.frechet.seedLength\n Length of generator seed.\n","base.random.frechet.state":"\nbase.random.frechet.state\n Generator state.\n","base.random.frechet.stateLength":"\nbase.random.frechet.stateLength\n Length of generator state.\n","base.random.frechet.byteLength":"\nbase.random.frechet.byteLength\n Size (in bytes) of generator state.\n","base.random.frechet.toJSON":"\nbase.random.frechet.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.gamma":"\nbase.random.gamma( α:number, β:number )\n Returns a pseudorandom number drawn from a gamma distribution.\n","base.random.gamma.factory":"\nbase.random.gamma.factory( [α:number, β:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a gamma distribution.\n","base.random.gamma.NAME":"\nbase.random.gamma.NAME\n Generator name.\n","base.random.gamma.PRNG":"\nbase.random.gamma.PRNG\n Underlying pseudorandom number generator.\n","base.random.gamma.seed":"\nbase.random.gamma.seed\n Pseudorandom number generator seed.\n","base.random.gamma.seedLength":"\nbase.random.gamma.seedLength\n Length of generator seed.\n","base.random.gamma.state":"\nbase.random.gamma.state\n Generator state.\n","base.random.gamma.stateLength":"\nbase.random.gamma.stateLength\n Length of generator state.\n","base.random.gamma.byteLength":"\nbase.random.gamma.byteLength\n Size of generator state.\n","base.random.gamma.toJSON":"\nbase.random.gamma.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.geometric":"\nbase.random.geometric( p:number )\n Returns a pseudorandom number drawn from a geometric distribution.\n","base.random.geometric.factory":"\nbase.random.geometric.factory( [p:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a geometric distribution.\n","base.random.geometric.NAME":"\nbase.random.geometric.NAME\n Generator name.\n","base.random.geometric.PRNG":"\nbase.random.geometric.PRNG\n Underlying pseudorandom number generator.\n","base.random.geometric.seed":"\nbase.random.geometric.seed\n Pseudorandom number generator seed.\n","base.random.geometric.seedLength":"\nbase.random.geometric.seedLength\n Length of generator seed.\n","base.random.geometric.state":"\nbase.random.geometric.state\n Generator state.\n","base.random.geometric.stateLength":"\nbase.random.geometric.stateLength\n Length of generator state.\n","base.random.geometric.byteLength":"\nbase.random.geometric.byteLength\n Size (in bytes) of generator state.\n","base.random.geometric.toJSON":"\nbase.random.geometric.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.gumbel":"\nbase.random.gumbel( μ:number, β:number )\n Returns a pseudorandom number drawn from a Gumbel distribution.\n","base.random.gumbel.factory":"\nbase.random.gumbel.factory( [μ:number, β:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Gumbel distribution.\n","base.random.gumbel.NAME":"\nbase.random.gumbel.NAME\n Generator name.\n","base.random.gumbel.PRNG":"\nbase.random.gumbel.PRNG\n Underlying pseudorandom number generator.\n","base.random.gumbel.seed":"\nbase.random.gumbel.seed\n Pseudorandom number generator seed.\n","base.random.gumbel.seedLength":"\nbase.random.gumbel.seedLength\n Length of generator seed.\n","base.random.gumbel.state":"\nbase.random.gumbel.state\n Generator state.\n","base.random.gumbel.stateLength":"\nbase.random.gumbel.stateLength\n Length of generator state.\n","base.random.gumbel.byteLength":"\nbase.random.gumbel.byteLength\n Size (in bytes) of generator state.\n","base.random.gumbel.toJSON":"\nbase.random.gumbel.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.hypergeometric":"\nbase.random.hypergeometric( N:integer, K:integer, n:integer )\n Returns a pseudorandom number drawn from a hypergeometric distribution.\n","base.random.hypergeometric.factory":"\nbase.random.hypergeometric.factory( [N:integer, K:integer, n:integer, ]\n [options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a hypergeometric distribution.\n","base.random.hypergeometric.NAME":"\nbase.random.hypergeometric.NAME\n Generator name.\n","base.random.hypergeometric.PRNG":"\nbase.random.hypergeometric.PRNG\n Underlying pseudorandom number generator.\n","base.random.hypergeometric.seed":"\nbase.random.hypergeometric.seed\n Pseudorandom number generator seed.\n","base.random.hypergeometric.seedLength":"\nbase.random.hypergeometric.seedLength\n Length of generator seed.\n","base.random.hypergeometric.state":"\nbase.random.hypergeometric.state\n Generator state.\n","base.random.hypergeometric.stateLength":"\nbase.random.hypergeometric.stateLength\n Length of generator state.\n","base.random.hypergeometric.byteLength":"\nbase.random.hypergeometric.byteLength\n Size (in bytes) of generator state.\n","base.random.hypergeometric.toJSON":"\nbase.random.hypergeometric.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.improvedZiggurat":"\nbase.random.improvedZiggurat()\n Returns a pseudorandom number drawn from a standard normal distribution.\n","base.random.improvedZiggurat.factory":"\nbase.random.improvedZiggurat.factory( [options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a standard normal distribution.\n","base.random.improvedZiggurat.NAME":"\nbase.random.improvedZiggurat.NAME\n Generator name.\n","base.random.improvedZiggurat.PRNG":"\nbase.random.improvedZiggurat.PRNG\n Underlying pseudorandom number generator.\n","base.random.improvedZiggurat.seed":"\nbase.random.improvedZiggurat.seed\n Pseudorandom number generator seed.\n","base.random.improvedZiggurat.seedLength":"\nbase.random.improvedZiggurat.seedLength\n Length of generator seed.\n","base.random.improvedZiggurat.state":"\nbase.random.improvedZiggurat.state\n Generator state.\n","base.random.improvedZiggurat.stateLength":"\nbase.random.improvedZiggurat.stateLength\n Length of generator state.\n","base.random.improvedZiggurat.byteLength":"\nbase.random.improvedZiggurat.byteLength\n Size (in bytes) of generator state.\n","base.random.improvedZiggurat.toJSON":"\nbase.random.improvedZiggurat.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.invgamma":"\nbase.random.invgamma( α:number, β:number )\n Returns a pseudorandom number drawn from an inverse gamma distribution.\n","base.random.invgamma.factory":"\nbase.random.invgamma.factory( [α:number, β:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from an inverse gamma distribution.\n","base.random.invgamma.NAME":"\nbase.random.invgamma.NAME\n Generator name.\n","base.random.invgamma.PRNG":"\nbase.random.invgamma.PRNG\n Underlying pseudorandom number generator.\n","base.random.invgamma.seed":"\nbase.random.invgamma.seed\n Pseudorandom number generator seed.\n","base.random.invgamma.seedLength":"\nbase.random.invgamma.seedLength\n Length of generator seed.\n","base.random.invgamma.state":"\nbase.random.invgamma.state\n Generator state.\n","base.random.invgamma.stateLength":"\nbase.random.invgamma.stateLength\n Length of generator state.\n","base.random.invgamma.byteLength":"\nbase.random.invgamma.byteLength\n Size of generator state.\n","base.random.invgamma.toJSON":"\nbase.random.invgamma.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.kumaraswamy":"\nbase.random.kumaraswamy( a:number, b:number )\n Returns a pseudorandom number drawn from Kumaraswamy's double bounded\n distribution.\n","base.random.kumaraswamy.factory":"\nbase.random.kumaraswamy.factory( [a:number, b:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from Kumaraswamy's double bounded distribution.\n","base.random.kumaraswamy.NAME":"\nbase.random.kumaraswamy.NAME\n Generator name.\n","base.random.kumaraswamy.PRNG":"\nbase.random.kumaraswamy.PRNG\n Underlying pseudorandom number generator.\n","base.random.kumaraswamy.seed":"\nbase.random.kumaraswamy.seed\n Pseudorandom number generator seed.\n","base.random.kumaraswamy.seedLength":"\nbase.random.kumaraswamy.seedLength\n Length of generator seed.\n","base.random.kumaraswamy.state":"\nbase.random.kumaraswamy.state\n Generator state.\n","base.random.kumaraswamy.stateLength":"\nbase.random.kumaraswamy.stateLength\n Length of generator state.\n","base.random.kumaraswamy.byteLength":"\nbase.random.kumaraswamy.byteLength\n Size (in bytes) of generator state.\n","base.random.kumaraswamy.toJSON":"\nbase.random.kumaraswamy.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.laplace":"\nbase.random.laplace( μ:number, b:number )\n Returns a pseudorandom number drawn from a Laplace distribution.\n","base.random.laplace.factory":"\nbase.random.laplace.factory( [μ:number, b:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Laplace distribution.\n","base.random.laplace.NAME":"\nbase.random.laplace.NAME\n Generator name.\n","base.random.laplace.PRNG":"\nbase.random.laplace.PRNG\n Underlying pseudorandom number generator.\n","base.random.laplace.seed":"\nbase.random.laplace.seed\n Pseudorandom number generator seed.\n","base.random.laplace.seedLength":"\nbase.random.laplace.seedLength\n Length of generator seed.\n","base.random.laplace.state":"\nbase.random.laplace.state\n Generator state.\n","base.random.laplace.stateLength":"\nbase.random.laplace.stateLength\n Length of generator state.\n","base.random.laplace.byteLength":"\nbase.random.laplace.byteLength\n Size (in bytes) of generator state.\n","base.random.laplace.toJSON":"\nbase.random.laplace.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.levy":"\nbase.random.levy( μ:number, c:number )\n Returns a pseudorandom number drawn from a Lévy distribution.\n","base.random.levy.factory":"\nbase.random.levy.factory( [μ:number, c:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Lévy distribution.\n","base.random.levy.NAME":"\nbase.random.levy.NAME\n Generator name.\n","base.random.levy.PRNG":"\nbase.random.levy.PRNG\n Underlying pseudorandom number generator.\n","base.random.levy.seed":"\nbase.random.levy.seed\n Pseudorandom number generator seed.\n","base.random.levy.seedLength":"\nbase.random.levy.seedLength\n Length of generator seed.\n","base.random.levy.state":"\nbase.random.levy.state\n Generator state.\n","base.random.levy.stateLength":"\nbase.random.levy.stateLength\n Length of generator state.\n","base.random.levy.byteLength":"\nbase.random.levy.byteLength\n Size (in bytes) of generator state.\n","base.random.levy.toJSON":"\nbase.random.levy.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.logistic":"\nbase.random.logistic( μ:number, s:number )\n Returns a pseudorandom number drawn from a logistic distribution.\n","base.random.logistic.factory":"\nbase.random.logistic.factory( [μ:number, s:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a logistic distribution.\n","base.random.logistic.NAME":"\nbase.random.logistic.NAME\n Generator name.\n","base.random.logistic.PRNG":"\nbase.random.logistic.PRNG\n Underlying pseudorandom number generator.\n","base.random.logistic.seed":"\nbase.random.logistic.seed\n Pseudorandom number generator seed.\n","base.random.logistic.seedLength":"\nbase.random.logistic.seedLength\n Length of generator seed.\n","base.random.logistic.state":"\nbase.random.logistic.state\n Generator state.\n","base.random.logistic.stateLength":"\nbase.random.logistic.stateLength\n Length of generator state.\n","base.random.logistic.byteLength":"\nbase.random.logistic.byteLength\n Size (in bytes) of generator state.\n","base.random.logistic.toJSON":"\nbase.random.logistic.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.lognormal":"\nbase.random.lognormal( μ:number, σ:number )\n Returns a pseudorandom number drawn from a lognormal distribution.\n","base.random.lognormal.factory":"\nbase.random.lognormal.factory( [μ:number, σ:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a lognormal distribution.\n","base.random.lognormal.NAME":"\nbase.random.lognormal.NAME\n Generator name.\n","base.random.lognormal.PRNG":"\nbase.random.lognormal.PRNG\n Underlying pseudorandom number generator.\n","base.random.lognormal.seed":"\nbase.random.lognormal.seed\n Pseudorandom number generator seed.\n","base.random.lognormal.seedLength":"\nbase.random.lognormal.seedLength\n Length of generator seed.\n","base.random.lognormal.state":"\nbase.random.lognormal.state\n Generator state.\n","base.random.lognormal.stateLength":"\nbase.random.lognormal.stateLength\n Length of generator state.\n","base.random.lognormal.byteLength":"\nbase.random.lognormal.byteLength\n Size (in bytes) of generator state.\n","base.random.lognormal.toJSON":"\nbase.random.lognormal.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.minstd":"\nbase.random.minstd()\n Returns a pseudorandom integer on the interval `[1, 2147483646]`.\n","base.random.minstd.normalized":"\nbase.random.minstd.normalized()\n Returns a pseudorandom number on the interval `[0,1)`.\n","base.random.minstd.factory":"\nbase.random.minstd.factory( [options:Object] )\n Returns a linear congruential pseudorandom number generator (LCG).\n","base.random.minstd.NAME":"\nbase.random.minstd.NAME\n Generator name.\n","base.random.minstd.MIN":"\nbase.random.minstd.MIN\n Minimum possible value.\n","base.random.minstd.MAX":"\nbase.random.minstd.MAX\n Maximum possible value.\n","base.random.minstd.seed":"\nbase.random.minstd.seed\n Pseudorandom number generator seed.\n","base.random.minstd.seedLength":"\nbase.random.minstd.seedLength\n Length of generator seed.\n","base.random.minstd.state":"\nbase.random.minstd.state\n Generator state.\n","base.random.minstd.stateLength":"\nbase.random.minstd.stateLength\n Length of generator state.\n","base.random.minstd.byteLength":"\nbase.random.minstd.byteLength\n Size (in bytes) of generator state.\n","base.random.minstd.toJSON":"\nbase.random.minstd.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.minstdShuffle":"\nbase.random.minstdShuffle()\n Returns a pseudorandom integer on the interval `[1, 2147483646]`.\n","base.random.minstdShuffle.normalized":"\nbase.random.minstdShuffle.normalized()\n Returns a pseudorandom number on the interval `[0,1)`.\n","base.random.minstdShuffle.factory":"\nbase.random.minstdShuffle.factory( [options:Object] )\n Returns a linear congruential pseudorandom number generator (LCG) whose\n output is shuffled.\n","base.random.minstdShuffle.NAME":"\nbase.random.minstdShuffle.NAME\n Generator name.\n","base.random.minstdShuffle.MIN":"\nbase.random.minstdShuffle.MIN\n Minimum possible value.\n","base.random.minstdShuffle.MAX":"\nbase.random.minstdShuffle.MAX\n Maximum possible value.\n","base.random.minstdShuffle.seed":"\nbase.random.minstdShuffle.seed\n Pseudorandom number generator seed.\n","base.random.minstdShuffle.seedLength":"\nbase.random.minstdShuffle.seedLength\n Length of generator seed.\n","base.random.minstdShuffle.state":"\nbase.random.minstdShuffle.state\n Generator state.\n","base.random.minstdShuffle.stateLength":"\nbase.random.minstdShuffle.stateLength\n Length of generator state.\n","base.random.minstdShuffle.byteLength":"\nbase.random.minstdShuffle.byteLength\n Size (in bytes) of generator state.\n","base.random.minstdShuffle.toJSON":"\nbase.random.minstdShuffle.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.mt19937":"\nbase.random.mt19937()\n Returns a pseudorandom integer on the interval `[0, 4294967295]`.\n","base.random.mt19937.normalized":"\nbase.random.mt19937.normalized()\n Returns a pseudorandom number on the interval `[0,1)` with 53-bit precision.\n","base.random.mt19937.factory":"\nbase.random.mt19937.factory( [options:Object] )\n Returns a 32-bit Mersenne Twister pseudorandom number generator.\n","base.random.mt19937.NAME":"\nbase.random.mt19937.NAME\n Generator name.\n","base.random.mt19937.MIN":"\nbase.random.mt19937.MIN\n Minimum possible value.\n","base.random.mt19937.MAX":"\nbase.random.mt19937.MAX\n Maximum possible value.\n","base.random.mt19937.seed":"\nbase.random.mt19937.seed\n Pseudorandom number generator seed.\n","base.random.mt19937.seedLength":"\nbase.random.mt19937.seedLength\n Length of generator seed.\n","base.random.mt19937.state":"\nbase.random.mt19937.state\n Generator state.\n","base.random.mt19937.stateLength":"\nbase.random.mt19937.stateLength\n Length of generator state.\n","base.random.mt19937.byteLength":"\nbase.random.mt19937.byteLength\n Size (in bytes) of generator state.\n","base.random.mt19937.toJSON":"\nbase.random.mt19937.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.negativeBinomial":"\nbase.random.negativeBinomial( r:number, p:number )\n Returns a pseudorandom number drawn from a negative binomial distribution.\n","base.random.negativeBinomial.factory":"\nbase.random.negativeBinomial.factory( [r:number, p:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a negative binomial distribution.\n","base.random.negativeBinomial.NAME":"\nbase.random.negativeBinomial.NAME\n Generator name.\n","base.random.negativeBinomial.PRNG":"\nbase.random.negativeBinomial.PRNG\n Underlying pseudorandom number generator.\n","base.random.negativeBinomial.seed":"\nbase.random.negativeBinomial.seed\n Pseudorandom number generator seed.\n","base.random.negativeBinomial.seedLength":"\nbase.random.negativeBinomial.seedLength\n Length of generator seed.\n","base.random.negativeBinomial.state":"\nbase.random.negativeBinomial.state\n Generator state.\n","base.random.negativeBinomial.stateLength":"\nbase.random.negativeBinomial.stateLength\n Length of generator state.\n","base.random.negativeBinomial.byteLength":"\nbase.random.negativeBinomial.byteLength\n Size (in bytes) of generator state.\n","base.random.negativeBinomial.toJSON":"\nbase.random.negativeBinomial.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.normal":"\nbase.random.normal( μ:number, σ:number )\n Returns a pseudorandom number drawn from a normal distribution.\n","base.random.normal.factory":"\nbase.random.normal.factory( [μ:number, σ:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a normal distribution.\n","base.random.normal.NAME":"\nbase.random.normal.NAME\n Generator name.\n","base.random.normal.PRNG":"\nbase.random.normal.PRNG\n Underlying pseudorandom number generator.\n","base.random.normal.seed":"\nbase.random.normal.seed\n Pseudorandom number generator seed.\n","base.random.normal.seedLength":"\nbase.random.normal.seedLength\n Length of generator seed.\n","base.random.normal.state":"\nbase.random.normal.state\n Generator state.\n","base.random.normal.stateLength":"\nbase.random.normal.stateLength\n Length of generator state.\n","base.random.normal.byteLength":"\nbase.random.normal.byteLength\n Size of generator state.\n","base.random.normal.toJSON":"\nbase.random.normal.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.pareto1":"\nbase.random.pareto1( α:number, β:number )\n Returns a pseudorandom number drawn from a Pareto (Type I) distribution.\n","base.random.pareto1.factory":"\nbase.random.pareto1.factory( [α:number, β:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Pareto (Type I) distribution.\n","base.random.pareto1.NAME":"\nbase.random.pareto1.NAME\n Generator name.\n","base.random.pareto1.PRNG":"\nbase.random.pareto1.PRNG\n Underlying pseudorandom number generator.\n","base.random.pareto1.seed":"\nbase.random.pareto1.seed\n Pseudorandom number generator seed.\n","base.random.pareto1.seedLength":"\nbase.random.pareto1.seedLength\n Length of generator seed.\n","base.random.pareto1.state":"\nbase.random.pareto1.state\n Generator state.\n","base.random.pareto1.stateLength":"\nbase.random.pareto1.stateLength\n Length of generator state.\n","base.random.pareto1.byteLength":"\nbase.random.pareto1.byteLength\n Size (in bytes) of generator state.\n","base.random.pareto1.toJSON":"\nbase.random.pareto1.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.poisson":"\nbase.random.poisson( λ:number )\n Returns a pseudorandom number drawn from a Poisson distribution.\n","base.random.poisson.factory":"\nbase.random.poisson.factory( [λ:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Poisson distribution.\n","base.random.poisson.NAME":"\nbase.random.poisson.NAME\n Generator name.\n","base.random.poisson.PRNG":"\nbase.random.poisson.PRNG\n Underlying pseudorandom number generator.\n","base.random.poisson.seed":"\nbase.random.poisson.seed\n Pseudorandom number generator seed.\n","base.random.poisson.seedLength":"\nbase.random.poisson.seedLength\n Length of generator seed.\n","base.random.poisson.state":"\nbase.random.poisson.state\n Generator state.\n","base.random.poisson.stateLength":"\nbase.random.poisson.stateLength\n Length of generator state.\n","base.random.poisson.byteLength":"\nbase.random.poisson.byteLength\n Size (in bytes) of generator state.\n","base.random.poisson.toJSON":"\nbase.random.poisson.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.randi":"\nbase.random.randi()\n Returns a pseudorandom number having an integer value.\n","base.random.randi.factory":"\nbase.random.randi.factory( [options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers having integer values.\n","base.random.randi.NAME":"\nbase.random.randi.NAME\n Generator name.\n","base.random.randi.PRNG":"\nbase.random.randi.PRNG\n Underlying pseudorandom number generator.\n","base.random.randi.MIN":"\nbase.random.randi.MIN\n Minimum possible value (specific to underlying PRNG).\n","base.random.randi.MAX":"\nbase.random.randi.MAX\n Maximum possible value (specific to underlying PRNG).\n","base.random.randi.seed":"\nbase.random.randi.seed\n Pseudorandom number generator seed.\n","base.random.randi.seedLength":"\nbase.random.randi.seedLength\n Length of generator seed.\n","base.random.randi.state":"\nbase.random.randi.state\n Generator state.\n","base.random.randi.stateLength":"\nbase.random.randi.stateLength\n Length of generator state.\n","base.random.randi.byteLength":"\nbase.random.randi.byteLength\n Size (in bytes) of generator state.\n","base.random.randi.toJSON":"\nbase.random.randi.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.randn":"\nbase.random.randn()\n Returns a pseudorandom number drawn from a standard normal distribution.\n","base.random.randn.factory":"\nbase.random.randn.factory( [options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a standard normal distribution.\n","base.random.randn.NAME":"\nbase.random.randn.NAME\n Generator name.\n","base.random.randn.PRNG":"\nbase.random.randn.PRNG\n Underlying pseudorandom number generator.\n","base.random.randn.seed":"\nbase.random.randn.seed\n Pseudorandom number generator seed.\n","base.random.randn.seedLength":"\nbase.random.randn.seedLength\n Length of generator seed.\n","base.random.randn.state":"\nbase.random.randn.state\n Generator state.\n","base.random.randn.stateLength":"\nbase.random.randn.stateLength\n Length of generator state.\n","base.random.randn.byteLength":"\nbase.random.randn.byteLength\n Size (in bytes) of generator state.\n","base.random.randn.toJSON":"\nbase.random.randn.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.randu":"\nbase.random.randu()\n Returns a pseudorandom number drawn from a uniform distribution.\n","base.random.randu.factory":"\nbase.random.randu.factory( [options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a uniform distribution.\n","base.random.randu.NAME":"\nbase.random.randu.NAME\n Generator name.\n","base.random.randu.PRNG":"\nbase.random.randu.PRNG\n Underlying pseudorandom number generator.\n","base.random.randu.MIN":"\nbase.random.randu.MIN\n Minimum possible value (specific to underlying PRNG).\n","base.random.randu.MAX":"\nbase.random.randu.MAX\n Maximum possible value (specific to underlying PRNG).\n","base.random.randu.seed":"\nbase.random.randu.seed\n Pseudorandom number generator seed.\n","base.random.randu.seedLength":"\nbase.random.randu.seedLength\n Length of generator seed.\n","base.random.randu.state":"\nbase.random.randu.state\n Generator state.\n","base.random.randu.stateLength":"\nbase.random.randu.stateLength\n Length of generator state.\n","base.random.randu.byteLength":"\nbase.random.randu.byteLength\n Size (in bytes) of generator state.\n","base.random.randu.toJSON":"\nbase.random.randu.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.rayleigh":"\nbase.random.rayleigh( σ:number )\n Returns a pseudorandom number drawn from a Rayleigh distribution.\n","base.random.rayleigh.factory":"\nbase.random.rayleigh.factory( [σ:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Rayleigh distribution.\n","base.random.rayleigh.NAME":"\nbase.random.rayleigh.NAME\n Generator name.\n","base.random.rayleigh.PRNG":"\nbase.random.rayleigh.PRNG\n Underlying pseudorandom number generator.\n","base.random.rayleigh.seed":"\nbase.random.rayleigh.seed\n Pseudorandom number generator seed.\n","base.random.rayleigh.seedLength":"\nbase.random.rayleigh.seedLength\n Length of generator seed.\n","base.random.rayleigh.state":"\nbase.random.rayleigh.state\n Generator state.\n","base.random.rayleigh.stateLength":"\nbase.random.rayleigh.stateLength\n Length of generator state.\n","base.random.rayleigh.byteLength":"\nbase.random.rayleigh.byteLength\n Size (in bytes) of generator state.\n","base.random.rayleigh.toJSON":"\nbase.random.rayleigh.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.t":"\nbase.random.t( v:number )\n Returns a pseudorandom number drawn from a Student's t distribution.\n","base.random.t.factory":"\nbase.random.t.factory( [v:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Student's t distribution.\n","base.random.t.NAME":"\nbase.random.t.NAME\n Generator name.\n","base.random.t.PRNG":"\nbase.random.t.PRNG\n Underlying pseudorandom number generator.\n","base.random.t.seed":"\nbase.random.t.seed\n Pseudorandom number generator seed.\n","base.random.t.seedLength":"\nbase.random.t.seedLength\n Length of generator seed.\n","base.random.t.state":"\nbase.random.t.state\n Generator state.\n","base.random.t.stateLength":"\nbase.random.t.stateLength\n Length of generator state.\n","base.random.t.byteLength":"\nbase.random.t.byteLength\n Size (in bytes) of generator state.\n","base.random.t.toJSON":"\nbase.random.t.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.triangular":"\nbase.random.triangular( a:number, b:number, c:number )\n Returns a pseudorandom number drawn from a triangular distribution.\n","base.random.triangular.factory":"\nbase.random.triangular.factory( [a:number, b:number, c:number, ]\n [options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a triangular distribution.\n","base.random.triangular.NAME":"\nbase.random.triangular.NAME\n Generator name.\n","base.random.triangular.PRNG":"\nbase.random.triangular.PRNG\n Underlying pseudorandom number generator.\n","base.random.triangular.seed":"\nbase.random.triangular.seed\n Pseudorandom number generator seed.\n","base.random.triangular.seedLength":"\nbase.random.triangular.seedLength\n Length of generator seed.\n","base.random.triangular.state":"\nbase.random.triangular.state\n Generator state.\n","base.random.triangular.stateLength":"\nbase.random.triangular.stateLength\n Length of generator state.\n","base.random.triangular.byteLength":"\nbase.random.triangular.byteLength\n Size (in bytes) of generator state.\n","base.random.triangular.toJSON":"\nbase.random.triangular.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.uniform":"\nbase.random.uniform( a:number, b:number )\n Returns a pseudorandom number drawn from a continuous uniform distribution.\n","base.random.uniform.factory":"\nbase.random.uniform.factory( [a:number, b:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a continuous uniform distribution.\n","base.random.uniform.NAME":"\nbase.random.uniform.NAME\n Generator name.\n","base.random.uniform.PRNG":"\nbase.random.uniform.PRNG\n Underlying pseudorandom number generator.\n","base.random.uniform.seed":"\nbase.random.uniform.seed\n Pseudorandom number generator seed.\n","base.random.uniform.seedLength":"\nbase.random.uniform.seedLength\n Length of generator seed.\n","base.random.uniform.state":"\nbase.random.uniform.state\n Generator state.\n","base.random.uniform.stateLength":"\nbase.random.uniform.stateLength\n Length of generator state.\n","base.random.uniform.byteLength":"\nbase.random.uniform.byteLength\n Size (in bytes) of generator state.\n","base.random.uniform.toJSON":"\nbase.random.uniform.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.weibull":"\nbase.random.weibull( k:number, λ:number )\n Returns a pseudorandom number drawn from a Weibull distribution.\n","base.random.weibull.factory":"\nbase.random.weibull.factory( [k:number, λ:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Weibull distribution.\n","base.random.weibull.NAME":"\nbase.random.weibull.NAME\n Generator name.\n","base.random.weibull.PRNG":"\nbase.random.weibull.PRNG\n Underlying pseudorandom number generator.\n","base.random.weibull.seed":"\nbase.random.weibull.seed\n Pseudorandom number generator seed.\n","base.random.weibull.seedLength":"\nbase.random.weibull.seedLength\n Length of generator seed.\n","base.random.weibull.state":"\nbase.random.weibull.state\n Generator state.\n","base.random.weibull.stateLength":"\nbase.random.weibull.stateLength\n Length of generator state.\n","base.random.weibull.byteLength":"\nbase.random.weibull.byteLength\n Size (in bytes) of generator state.\n","base.random.weibull.toJSON":"\nbase.random.weibull.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.reldiff":"\nbase.reldiff( x:number, y:number[, scale:string|Function] )\n Computes the relative difference of two real numbers.\n","base.rempio2":"\nbase.rempio2( x:number, y:Array|TypedArray|Object )\n Computes `x - nπ/2 = r`.\n","base.risingFactorial":"\nbase.risingFactorial( x:number, n:integer )\n Computes the rising factorial of `x` and `n`.\n","base.rotl32":"\nbase.rotl32( x:integer, shift:integer )\n Performs a bitwise rotation to the left.\n","base.rotr32":"\nbase.rotr32( x:integer, shift:integer )\n Performs a bitwise rotation to the right.\n","base.round":"\nbase.round( x:number )\n Rounds a numeric value to the nearest integer.\n","base.round2":"\nbase.round2( x:number )\n Rounds a numeric value to the nearest power of two on a linear scale.\n","base.round10":"\nbase.round10( x:number )\n Rounds a numeric value to the nearest power of ten on a linear scale.\n","base.roundb":"\nbase.roundb( x:number, n:integer, b:integer )\n Rounds a numeric value to the nearest multiple of `b^n` on a linear scale.\n","base.roundn":"\nbase.roundn( x:number, n:integer )\n Rounds a numeric value to the nearest multiple of `10^n`.\n","base.roundsd":"\nbase.roundsd( x:number, n:integer[, b:integer] )\n Rounds a numeric value to the nearest number with `n` significant figures.\n","base.rsqrt":"\nbase.rsqrt( x:number )\n Computes the reciprocal square root of a double-precision floating-point\n number.\n","base.rsqrtf":"\nbase.rsqrtf( x:number )\n Computes the reciprocal square root of a single-precision floating-point\n number.\n","base.scalar2ndarray":"\nbase.scalar2ndarray( value:any, dtype:string )\n Returns a zero-dimensional ndarray containing a provided scalar value.\n","base.setHighWord":"\nbase.setHighWord( x:number, high:integer )\n Sets the more significant 32 bits of a double-precision floating-point\n number.\n","base.setLowWord":"\nbase.setLowWord( x:number, low:integer )\n Sets the less significant 32 bits of a double-precision floating-point\n number.\n","base.sici":"\nbase.sici( [out:Array|TypedArray|Object,] x:number )\n Computes the sine and cosine integrals.\n","base.signbit":"\nbase.signbit( x:number )\n Returns a boolean indicating if the sign bit is on (true) or off (false).\n","base.signbitf":"\nbase.signbitf( x:float )\n Returns a boolean indicating if the sign bit is on (true) or off (false).\n","base.significandf":"\nbase.significandf( x:float )\n Returns an integer corresponding to the significand of a single-precision\n floating-point number.\n","base.signum":"\nbase.signum( x:number )\n Evaluates the signum function for a double-precision floating-point number.\n","base.signumf":"\nbase.signumf( x:number )\n Evaluates the signum function for a single-precision floating-point number.\n","base.sin":"\nbase.sin( x:number )\n Computes the sine of a number.\n","base.sinc":"\nbase.sinc( x:number )\n Computes the normalized cardinal sine of a number.\n","base.sincos":"\nbase.sincos( [out:Array|TypedArray|Object,] x:number )\n Simultaneously computes the sine and cosine of a number.\n","base.sincospi":"\nbase.sincospi( [out:Array|TypedArray|Object,] x:number )\n Simultaneously computes the sine and cosine of a number times π.\n","base.sinh":"\nbase.sinh( x:number )\n Computes the hyperbolic sine of a number.\n","base.sinpi":"\nbase.sinpi( x:number )\n Computes the value of `sin(πx)`.\n","base.spence":"\nbase.spence( x:number )\n Evaluates Spence’s function, which is also known as the dilogarithm.\n","base.sqrt":"\nbase.sqrt( x:number )\n Computes the principal square root of a double-precision floating-point\n number.\n","base.sqrt1pm1":"\nbase.sqrt1pm1( x:number )\n Computes the principal square root of `1+x` minus one.\n","base.sqrtf":"\nbase.sqrtf( x:number )\n Computes the principal square root of a single-precision floating-point\n number.\n","base.sqrtpi":"\nbase.sqrtpi( x:number )\n Computes the principal square root of the product of π and a positive\n number.\n","base.strided.binary":"\nbase.strided.binary( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n fcn:Function )\n Applies a binary callback to strided input array elements and assigns\n results to elements in a strided output array.\n","base.strided.binary.ndarray":"\nbase.strided.binary.ndarray( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n offsets:ArrayLikeObject, fcn:Function )\n Applies a binary callback to strided input array elements and assigns\n results to elements in a strided output array using alternative indexing\n semantics.\n","base.strided.ccopy":"\nbase.strided.ccopy( N:integer, x:Complex64Array, strideX:integer, \n y:Complex64Array, strideY:integer )\n Copies values from one complex single-precision floating-point vector to\n another complex single-precision floating-point vector.\n","base.strided.ccopy.ndarray":"\nbase.strided.ccopy.ndarray( N:integer, x:Complex64Array, strideX:integer, \n offsetX:integer, y:Complex64Array, strideY:integer, offsetY:integer )\n Copies values from one complex single-precision floating-point vector to\n another complex single-precision floating-point vector using alternative\n indexing semantics.\n","base.strided.cmap":"\nbase.strided.cmap( N:integer, x:Complex64Array, strideX:integer, \n y:Complex64Array, strideY:integer, fcn:Function )\n Applies a unary function to a single-precision complex floating-point\n strided input array and assigns results to a single-precision complex\n floating-point strided output array.\n","base.strided.cmap.ndarray":"\nbase.strided.cmap.ndarray( N:integer, x:Complex64Array, strideX:integer, \n offsetX:integer, y:Complex64Array, strideY:integer, offsetY:integer, \n fcn:Function )\n Applies a unary function to a single-precision complex floating-point\n strided input array and assigns results to a single-precision complex\n floating-point strided output array using alternative indexing semantics.\n","base.strided.cswap":"\nbase.strided.cswap( N:integer, x:Complex64Array, strideX:integer, \n y:Complex64Array, strideY:integer )\n Interchanges two complex single-precision floating-point vectors.\n","base.strided.cswap.ndarray":"\nbase.strided.cswap.ndarray( N:integer, x:Complex64Array, strideX:integer, \n offsetX:integer, y:Complex64Array, strideY:integer, offsetY:integer )\n Interchanges two complex single-precision floating-point vectors using\n alternative indexing semantics.\n","base.strided.cumax":"\nbase.strided.cumax( N:integer, x:Array|TypedArray, strideX:integer, \n y:Array|TypedArray, strideY:integer )\n Computes the cumulative maximum of a strided array.\n","base.strided.cumax.ndarray":"\nbase.strided.cumax.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, y:Array|TypedArray, strideY:integer, offsetY:integer )\n Computes the cumulative maximum of a strided array using alternative\n indexing semantics.\n","base.strided.cumaxabs":"\nbase.strided.cumaxabs( N:integer, x:Array|TypedArray, strideX:integer, \n y:Array|TypedArray, strideY:integer )\n Computes the cumulative maximum absolute value of a strided array.\n","base.strided.cumaxabs.ndarray":"\nbase.strided.cumaxabs.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, y:Array|TypedArray, strideY:integer, offsetY:integer )\n Computes the cumulative maximum absolute value of a strided array using\n alternative indexing semantics.\n","base.strided.cumin":"\nbase.strided.cumin( N:integer, x:Array|TypedArray, strideX:integer, \n y:Array|TypedArray, strideY:integer )\n Computes the cumulative minimum of a strided array.\n","base.strided.cumin.ndarray":"\nbase.strided.cumin.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, y:Array|TypedArray, strideY:integer, offsetY:integer )\n Computes the cumulative minimum of a strided array using alternative\n indexing semantics.\n","base.strided.cuminabs":"\nbase.strided.cuminabs( N:integer, x:Array|TypedArray, strideX:integer, \n y:Array|TypedArray, strideY:integer )\n Computes the cumulative minimum absolute value of a strided array.\n","base.strided.cuminabs.ndarray":"\nbase.strided.cuminabs.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, y:Array|TypedArray, strideY:integer, offsetY:integer )\n Computes the cumulative minimum absolute value of a strided array using\n alternative indexing semantics.\n","base.strided.dabs":"\nbase.strided.dabs( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Computes the absolute value for each element in a double-precision floating-\n point strided array `x` and assigns the results to elements in a double-\n precision floating-point strided array `y`.\n","base.strided.dabs.ndarray":"\nbase.strided.dabs.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the absolute value for each element in a double-precision floating-\n point strided array `x` and assigns the results to elements in a double-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.dabs2":"\nbase.strided.dabs2( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Computes the squared absolute value for each element in a double-precision\n floating-point strided array `x` and assigns the results to elements in a\n double-precision floating-point strided array `y`.\n","base.strided.dabs2.ndarray":"\nbase.strided.dabs2.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the squared absolute value for each element in a double-precision\n floating-point strided array `x` and assigns the results to elements in a\n double-precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.dapx":"\nbase.strided.dapx( N:integer, alpha:number, x:Float64Array, stride:integer )\n Adds a constant to each element in a double-precision floating-point strided\n array.\n","base.strided.dapx.ndarray":"\nbase.strided.dapx.ndarray( N:integer, alpha:number, x:Float64Array, \n stride:integer, offset:integer )\n Adds a constant to each element in a double-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.dapxsum":"\nbase.strided.dapxsum( N:integer, alpha:number, x:Float64Array, stride:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum.\n","base.strided.dapxsum.ndarray":"\nbase.strided.dapxsum.ndarray( N:integer, alpha:number, x:Float64Array, \n stride:integer, offset:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum using alternative indexing semantics.\n","base.strided.dapxsumkbn":"\nbase.strided.dapxsumkbn( N:integer, alpha:number, x:Float64Array, \n stride:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum using an improved Kahan–Babuška algorithm.\n","base.strided.dapxsumkbn.ndarray":"\nbase.strided.dapxsumkbn.ndarray( N:integer, alpha:number, x:Float64Array, \n stride:integer, offset:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum using an improved Kahan–Babuška algorithm and\n alternative indexing semantics.\n","base.strided.dapxsumkbn2":"\nbase.strided.dapxsumkbn2( N:integer, alpha:number, x:Float64Array, \n stride:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum using a second-order iterative Kahan–Babuška\n algorithm.\n","base.strided.dapxsumkbn2.ndarray":"\nbase.strided.dapxsumkbn2.ndarray( N:integer, alpha:number, x:Float64Array, \n stride:integer, offset:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum using a second-order iterative Kahan–Babuška\n algorithm and alternative indexing semantics.\n","base.strided.dapxsumors":"\nbase.strided.dapxsumors( N:integer, alpha:number, x:Float64Array, \n stride:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum using ordinary recursive summation.\n","base.strided.dapxsumors.ndarray":"\nbase.strided.dapxsumors.ndarray( N:integer, alpha:number, x:Float64Array, \n stride:integer, offset:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum using ordinary recursive summation and\n alternative indexing semantics.\n","base.strided.dapxsumpw":"\nbase.strided.dapxsumpw( N:integer, alpha:number, x:Float64Array, \n stride:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum using pairwise summation.\n","base.strided.dapxsumpw.ndarray":"\nbase.strided.dapxsumpw.ndarray( N:integer, alpha:number, x:Float64Array, \n stride:integer, offset:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum using pairwise summation and alternative\n indexing semantics.\n","base.strided.dasum":"\nbase.strided.dasum( N:integer, x:Float64Array, stride:integer )\n Computes the sum of the absolute values.\n","base.strided.dasum.ndarray":"\nbase.strided.dasum.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of absolute values using alternative indexing semantics.\n","base.strided.dasumpw":"\nbase.strided.dasumpw( N:integer, x:Float64Array, stride:integer )\n Computes the sum of absolute values (L1 norm) of double-precision floating-\n point strided array elements using pairwise summation.\n","base.strided.dasumpw.ndarray":"\nbase.strided.dasumpw.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of absolute values (L1 norm) of double-precision floating-\n point strided array elements using pairwise summation and alternative\n indexing semantics.\n","base.strided.daxpy":"\nbase.strided.daxpy( N:integer, alpha:number, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Multiplies a vector `x` by a constant `alpha` and adds the result to `y`.\n","base.strided.daxpy.ndarray":"\nbase.strided.daxpy.ndarray( N:integer, alpha:number, x:Float64Array, \n strideX:integer, offsetX:integer, y:Float64Array, strideY:integer, \n offsetY:integer )\n Multiplies a vector `x` by a constant `alpha` and adds the result to `y`,\n using alternative indexing semantics.\n","base.strided.dcbrt":"\nbase.strided.dcbrt( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Computes the cube root of each element in a double-precision floating-point\n strided array `x` and assigns the results to elements in a double-precision\n floating-point strided array `y`.\n","base.strided.dcbrt.ndarray":"\nbase.strided.dcbrt.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the cube root of each element in a double-precision floating-point\n strided array `x` and assigns the results to elements in a double-precision\n floating-point strided array `y` using alternative indexing semantics.\n","base.strided.dceil":"\nbase.strided.dceil( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward positive infinity and assigns the results to elements in a double-\n precision floating-point strided array `y`.\n","base.strided.dceil.ndarray":"\nbase.strided.dceil.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward positive infinity and assigns the results to elements in a double-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.dcopy":"\nbase.strided.dcopy( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Copies values from `x` into `y`.\n","base.strided.dcopy.ndarray":"\nbase.strided.dcopy.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Copies values from `x` into `y` using alternative indexing semantics.\n","base.strided.dcumax":"\nbase.strided.dcumax( N:integer, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Computes the cumulative maximum of double-precision floating-point strided\n array elements.\n","base.strided.dcumax.ndarray":"\nbase.strided.dcumax.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the cumulative maximum of double-precision floating-point strided\n array elements using alternative indexing semantics.\n","base.strided.dcumaxabs":"\nbase.strided.dcumaxabs( N:integer, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Computes the cumulative maximum absolute value of double-precision floating-\n point strided array elements.\n","base.strided.dcumaxabs.ndarray":"\nbase.strided.dcumaxabs.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the cumulative maximum absolute value of double-precision floating-\n point strided array elements using alternative indexing semantics.\n","base.strided.dcumin":"\nbase.strided.dcumin( N:integer, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Computes the cumulative minimum of double-precision floating-point strided\n array elements.\n","base.strided.dcumin.ndarray":"\nbase.strided.dcumin.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the cumulative minimum of double-precision floating-point strided\n array elements using alternative indexing semantics.\n","base.strided.dcuminabs":"\nbase.strided.dcuminabs( N:integer, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Computes the cumulative minimum absolute value of double-precision floating-\n point strided array elements.\n","base.strided.dcuminabs.ndarray":"\nbase.strided.dcuminabs.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the cumulative minimum absolute value of double-precision floating-\n point strided array elements using alternative indexing semantics.\n","base.strided.dcusum":"\nbase.strided.dcusum( N:integer, sum:number, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements.\n","base.strided.dcusum.ndarray":"\nbase.strided.dcusum.ndarray( N:integer, sum:number, x:Float64Array, \n strideX:integer, offsetX:integer, y:Float64Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements using alternative indexing semantics.\n","base.strided.dcusumkbn":"\nbase.strided.dcusumkbn( N:integer, sum:number, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements using an improved Kahan–Babuška algorithm.\n","base.strided.dcusumkbn.ndarray":"\nbase.strided.dcusumkbn.ndarray( N:integer, sum:number, x:Float64Array, \n strideX:integer, offsetX:integer, y:Float64Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements using an improved Kahan–Babuška algorithm and alternative indexing\n semantics.\n","base.strided.dcusumkbn2":"\nbase.strided.dcusumkbn2( N:integer, sum:number, x:Float64Array, \n strideX:integer, y:Float64Array, strideY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements using a second-order iterative Kahan–Babuška algorithm.\n","base.strided.dcusumkbn2.ndarray":"\nbase.strided.dcusumkbn2.ndarray( N:integer, sum:number, x:Float64Array, \n strideX:integer, offsetX:integer, y:Float64Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements using a second-order iterative Kahan–Babuška algorithm and\n alternative indexing semantics.\n","base.strided.dcusumors":"\nbase.strided.dcusumors( N:integer, sum:number, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements using ordinary recursive summation.\n","base.strided.dcusumors.ndarray":"\nbase.strided.dcusumors.ndarray( N:integer, sum:number, x:Float64Array, \n strideX:integer, offsetX:integer, y:Float64Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements using ordinary recursive summation and alternative indexing\n semantics.\n","base.strided.dcusumpw":"\nbase.strided.dcusumpw( N:integer, sum:number, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements using pairwise summation.\n","base.strided.dcusumpw.ndarray":"\nbase.strided.dcusumpw.ndarray( N:integer, sum:number, x:Float64Array, \n strideX:integer, offsetX:integer, y:Float64Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements using pairwise summation and alternative indexing semantics.\n","base.strided.ddeg2rad":"\nbase.strided.ddeg2rad( N:integer, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Converts each element in a double-precision floating-point strided array `x`\n from degrees to radians and assigns the results to elements in a double-\n precision floating-point strided array `y`.\n","base.strided.ddeg2rad.ndarray":"\nbase.strided.ddeg2rad.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Converts each element in a double-precision floating-point strided array `x`\n from degrees to radians and assigns the results to elements in a double-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.ddot":"\nbase.strided.ddot( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Computes the dot product of two double-precision floating-point vectors.\n","base.strided.ddot.ndarray":"\nbase.strided.ddot.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the dot product of two double-precision floating-point vectors\n using alternative indexing semantics.\n","base.strided.dfill":"\nbase.strided.dfill( N:integer, alpha:number, x:Float64Array, stride:integer )\n Fills a double-precision floating-point strided array with a specified\n scalar value.\n","base.strided.dfill.ndarray":"\nbase.strided.dfill.ndarray( N:integer, alpha:number, x:Float64Array, \n stride:integer, offset:integer )\n Fills a double-precision floating-point strided array with a specified\n scalar value using alternative indexing semantics.\n","base.strided.dfloor":"\nbase.strided.dfloor( N:integer, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward negative infinity and assigns the results to elements in a double-\n precision floating-point strided array `y`.\n","base.strided.dfloor.ndarray":"\nbase.strided.dfloor.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward negative infinity and assigns the results to elements in a double-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.dinv":"\nbase.strided.dinv( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Computes the multiplicative inverse for each element in a double-precision\n floating-point strided array `x` and assigns the results to elements in a\n double-precision floating-point strided array `y`.\n","base.strided.dinv.ndarray":"\nbase.strided.dinv.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the multiplicative inverse for each element in a double-precision\n floating-point strided array `x` and assigns the results to elements in a\n double-precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.dmap":"\nbase.strided.dmap( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer, fcn:Function )\n Applies a unary function to a double-precision floating-point strided input\n array and assigns results to a double-precision floating-point strided\n output array.\n","base.strided.dmap.ndarray":"\nbase.strided.dmap.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer, \n fcn:Function )\n Applies a unary function to a double-precision floating-point strided input\n array and assigns results to a double-precision floating-point strided\n output array using alternative indexing semantics.\n","base.strided.dmap2":"\nbase.strided.dmap2( N:integer, x:Float64Array, sx:integer, y:Float64Array, \n sy:integer, z:Float64Array, sz:integer, fcn:Function )\n Applies a binary function to double-precision floating-point strided input\n arrays and assigns results to a double-precision floating-point strided\n output array.\n","base.strided.dmap2.ndarray":"\nbase.strided.dmap2.ndarray( N:integer, x:Float64Array, sx:integer, ox:integer, \n y:Float64Array, sy:integer, oy:integer, z:Float64Array, sz:integer, \n oz:integer, fcn:Function )\n Applies a unary function to each element retrieved from a strided input\n array according to a callback function and assigns results to a strided\n output array using alternative indexing semantics.\n","base.strided.dmax":"\nbase.strided.dmax( N:integer, x:Float64Array, stride:integer )\n Computes the maximum value of a double-precision floating-point strided\n array.\n","base.strided.dmax.ndarray":"\nbase.strided.dmax.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the maximum value of a double-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.dmaxabs":"\nbase.strided.dmaxabs( N:integer, x:Float64Array, stride:integer )\n Computes the maximum absolute value of a double-precision floating-point\n strided array.\n","base.strided.dmaxabs.ndarray":"\nbase.strided.dmaxabs.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the maximum absolute value of a double-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.dmaxabssorted":"\nbase.strided.dmaxabssorted( N:integer, x:Float64Array, stride:integer )\n Computes the maximum absolute value of a sorted double-precision floating-\n point strided array.\n","base.strided.dmaxabssorted.ndarray":"\nbase.strided.dmaxabssorted.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the maximum absolute value of a sorted double-precision floating-\n point strided array using alternative indexing semantics.\n","base.strided.dmaxsorted":"\nbase.strided.dmaxsorted( N:integer, x:Float64Array, stride:integer )\n Computes the maximum value of a sorted double-precision floating-point\n strided array.\n","base.strided.dmaxsorted.ndarray":"\nbase.strided.dmaxsorted.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the maximum value of a sorted double-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.dmean":"\nbase.strided.dmean( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array.\n","base.strided.dmean.ndarray":"\nbase.strided.dmean.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.dmeankbn":"\nbase.strided.dmeankbn( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using an improved Kahan–Babuška algorithm.\n","base.strided.dmeankbn.ndarray":"\nbase.strided.dmeankbn.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using an improved Kahan–Babuška algorithm and alternative indexing\n semantics.\n","base.strided.dmeankbn2":"\nbase.strided.dmeankbn2( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using a second-order iterative Kahan–Babuška algorithm.\n","base.strided.dmeankbn2.ndarray":"\nbase.strided.dmeankbn2.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using a second-order iterative Kahan–Babuška algorithm and alternative\n indexing semantics.\n","base.strided.dmeanli":"\nbase.strided.dmeanli( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using a one-pass trial mean algorithm.\n","base.strided.dmeanli.ndarray":"\nbase.strided.dmeanli.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using a one-pass trial mean algorithm and alternative indexing\n semantics.\n","base.strided.dmeanlipw":"\nbase.strided.dmeanlipw( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using a one-pass trial mean algorithm with pairwise summation.\n","base.strided.dmeanlipw.ndarray":"\nbase.strided.dmeanlipw.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using a one-pass trial mean algorithm with pairwise summation and\n alternative indexing semantics.\n","base.strided.dmeanors":"\nbase.strided.dmeanors( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using ordinary recursive summation.\n","base.strided.dmeanors.ndarray":"\nbase.strided.dmeanors.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using ordinary recursive summation and alternative indexing semantics.\n","base.strided.dmeanpn":"\nbase.strided.dmeanpn( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using a two-pass error correction algorithm.\n","base.strided.dmeanpn.ndarray":"\nbase.strided.dmeanpn.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using a two-pass error correction algorithm and alternative indexing\n semantics.\n","base.strided.dmeanpw":"\nbase.strided.dmeanpw( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using pairwise summation.\n","base.strided.dmeanpw.ndarray":"\nbase.strided.dmeanpw.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using pairwise summation and alternative indexing semantics.\n","base.strided.dmeanstdev":"\nbase.strided.dmeanstdev( N:integer, c:number, x:Float64Array, strideX:integer, \n out:Float64Array, strideOut:integer )\n Computes the mean and standard deviation of a double-precision floating-\n point strided array.\n","base.strided.dmeanstdev.ndarray":"\nbase.strided.dmeanstdev.ndarray( N:integer, c:number, x:Float64Array, \n strideX:integer, offsetX:integer, out:Float64Array, strideOut:integer, \n offsetOut:integer )\n Computes the mean and standard deviation of a double-precision floating-\n point strided array using alternative indexing semantics.\n","base.strided.dmeanstdevpn":"\nbase.strided.dmeanstdevpn( N:integer, c:number, x:Float64Array, \n strideX:integer, out:Float64Array, strideOut:integer )\n Computes the mean and standard deviation of a double-precision floating-\n point strided array using a two-pass algorithm.\n","base.strided.dmeanstdevpn.ndarray":"\nbase.strided.dmeanstdevpn.ndarray( N:integer, c:number, x:Float64Array, \n strideX:integer, offsetX:integer, out:Float64Array, strideOut:integer, \n offsetOut:integer )\n Computes the mean and standard deviation of a double-precision floating-\n point strided array using a two-pass algorithm and alternative indexing\n semantics.\n","base.strided.dmeanvar":"\nbase.strided.dmeanvar( N:integer, c:number, x:Float64Array, strideX:integer, \n out:Float64Array, strideOut:integer )\n Computes the mean and variance of a double-precision floating-point strided\n array.\n","base.strided.dmeanvar.ndarray":"\nbase.strided.dmeanvar.ndarray( N:integer, c:number, x:Float64Array, \n strideX:integer, offsetX:integer, out:Float64Array, strideOut:integer, \n offsetOut:integer )\n Computes the mean and variance of a double-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.dmeanvarpn":"\nbase.strided.dmeanvarpn( N:integer, c:number, x:Float64Array, strideX:integer, \n out:Float64Array, strideOut:integer )\n Computes the mean and variance of a double-precision floating-point strided\n array using a two-pass algorithm.\n","base.strided.dmeanvarpn.ndarray":"\nbase.strided.dmeanvarpn.ndarray( N:integer, c:number, x:Float64Array, \n strideX:integer, offsetX:integer, out:Float64Array, strideOut:integer, \n offsetOut:integer )\n Computes the mean and variance of a double-precision floating-point strided\n array using a two-pass algorithm and alternative indexing semantics.\n","base.strided.dmeanwd":"\nbase.strided.dmeanwd( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using Welford's algorithm.\n","base.strided.dmeanwd.ndarray":"\nbase.strided.dmeanwd.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using Welford's algorithm and alternative indexing semantics.\n","base.strided.dmediansorted":"\nbase.strided.dmediansorted( N:integer, x:Float64Array, stride:integer )\n Computes the median value of a sorted double-precision floating-point\n strided array.\n","base.strided.dmediansorted.ndarray":"\nbase.strided.dmediansorted.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the median value of a sorted double-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.dmidrange":"\nbase.strided.dmidrange( N:integer, x:Float64Array, stride:integer )\n Computes the mid-range of a double-precision floating-point strided array.\n","base.strided.dmidrange.ndarray":"\nbase.strided.dmidrange.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the mid-range of a double-precision floating-point strided array\n using alternative indexing semantics.\n","base.strided.dmin":"\nbase.strided.dmin( N:integer, x:Float64Array, stride:integer )\n Computes the minimum value of a double-precision floating-point strided\n array.\n","base.strided.dmin.ndarray":"\nbase.strided.dmin.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the minimum value of a double-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.dminabs":"\nbase.strided.dminabs( N:integer, x:Float64Array, stride:integer )\n Computes the minimum absolute value of a double-precision floating-point\n strided array.\n","base.strided.dminabs.ndarray":"\nbase.strided.dminabs.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the minimum absolute value of a double-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.dminsorted":"\nbase.strided.dminsorted( N:integer, x:Float64Array, stride:integer )\n Computes the minimum value of a sorted double-precision floating-point\n strided array.\n","base.strided.dminsorted.ndarray":"\nbase.strided.dminsorted.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the minimum value of a sorted double-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.dmskabs":"\nbase.strided.dmskabs( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Computes the absolute value for each element in a double-precision floating-\n point strided array `x` according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`.\n","base.strided.dmskabs.ndarray":"\nbase.strided.dmskabs.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Computes the absolute value for each element in a double-precision floating-\n point strided array `x` according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.dmskabs2":"\nbase.strided.dmskabs2( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Computes the squared absolute value for each element in a double-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a double-precision floating-point\n strided array `y`.\n","base.strided.dmskabs2.ndarray":"\nbase.strided.dmskabs2.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Computes the squared absolute value for each element in a double-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a double-precision floating-point\n strided array `y` using alternative indexing semantics.\n","base.strided.dmskcbrt":"\nbase.strided.dmskcbrt( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Computes the cube root for each element in a double-precision floating-point\n strided array `x` according to a strided mask array and assigns the results\n to elements in a double-precision floating-point strided array `y`.\n","base.strided.dmskcbrt.ndarray":"\nbase.strided.dmskcbrt.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Computes the cube root for each element in a double-precision floating-point\n strided array `x` according to a strided mask array and assigns the results\n to elements in a double-precision floating-point strided array `y` using\n alternative indexing semantics.\n","base.strided.dmskceil":"\nbase.strided.dmskceil( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward positive infinity according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`.\n","base.strided.dmskceil.ndarray":"\nbase.strided.dmskceil.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward positive infinity according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.dmskdeg2rad":"\nbase.strided.dmskdeg2rad( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Converts each element in a double-precision floating-point strided array `x`\n from degrees to radians according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`.\n","base.strided.dmskdeg2rad.ndarray":"\nbase.strided.dmskdeg2rad.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Converts each element in a double-precision floating-point strided array `x`\n from degrees to radians according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.dmskfloor":"\nbase.strided.dmskfloor( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward negative infinity according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`.\n","base.strided.dmskfloor.ndarray":"\nbase.strided.dmskfloor.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward negative infinity according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.dmskinv":"\nbase.strided.dmskinv( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Computes the multiplicative inverse for each element in a double-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a double-precision floating-point strided\n array `y`.\n","base.strided.dmskinv.ndarray":"\nbase.strided.dmskinv.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Computes the multiplicative inverse for each element in a double-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a double-precision floating-point strided\n array `y` using alternative indexing semantics.\n","base.strided.dmskmap":"\nbase.strided.dmskmap( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer, fcn:Function )\n Applies a unary function to a double-precision floating-point strided input\n array according to a strided mask array and assigns results to a double-\n precision floating-point strided output array.\n","base.strided.dmskmap.ndarray":"\nbase.strided.dmskmap.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Uint8Array, sm:integer, om:integer, y:Float64Array, sy:integer, \n oy:integer, fcn:Function )\n Applies a unary function to a double-precision floating-point strided input\n array according to a strided mask array and assigns results to a double-\n precision floating-point strided output array using alternative indexing\n semantics.\n","base.strided.dmskmap2":"\nbase.strided.dmskmap2( N:integer, x:Float64Array, sx:integer, y:Float64Array, \n sy:integer, m:Uint8Array, sm:integer, z:Float64Array, sz:integer, \n fcn:Function )\n Applies a binary function to double-precision floating-point strided input\n arrays according to a strided mask array and assigns results to a double-\n precision floating-point strided output array.\n","base.strided.dmskmap2.ndarray":"\nbase.strided.dmskmap2.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, y:Float64Array, sy:integer, oy:integer, m:Uint8Array, sm:integer, \n om:integer, z:Float64Array, sz:integer, oz:integer, fcn:Function )\n Applies a binary function to double-precision floating-point strided input\n arrays according to a strided mask array and assigns results to a double-\n precision floating-point strided output array using alternative indexing\n semantics.\n","base.strided.dmskmax":"\nbase.strided.dmskmax( N:integer, x:Float64Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the maximum value of a double-precision floating-point strided\n array according to a mask.\n","base.strided.dmskmax.ndarray":"\nbase.strided.dmskmax.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the maximum value of a double-precision floating-point strided\n array according to a mask and using alternative indexing semantics.\n","base.strided.dmskmin":"\nbase.strided.dmskmin( N:integer, x:Float64Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the minimum value of a double-precision floating-point strided\n array according to a mask.\n","base.strided.dmskmin.ndarray":"\nbase.strided.dmskmin.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the minimum value of a double-precision floating-point strided\n array according to a mask and using alternative indexing semantics.\n","base.strided.dmskramp":"\nbase.strided.dmskramp( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Evaluates the ramp function for each element in a double-precision floating-\n point strided array `x` according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`.\n","base.strided.dmskramp.ndarray":"\nbase.strided.dmskramp.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Evaluates the ramp function for each element in a double-precision floating-\n point strided array `x` according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.dmskrange":"\nbase.strided.dmskrange( N:integer, x:Float64Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the range of a double-precision floating-point strided array\n according to a mask.\n","base.strided.dmskrange.ndarray":"\nbase.strided.dmskrange.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the range of a double-precision floating-point strided array\n according to a mask and using alternative indexing semantics.\n","base.strided.dmskrsqrt":"\nbase.strided.dmskrsqrt( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Computes the reciprocal square root for each element in a double-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a double-precision floating-point strided\n array `y`.\n","base.strided.dmskrsqrt.ndarray":"\nbase.strided.dmskrsqrt.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Computes the reciprocal square root for each element in a double-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a double-precision floating-point strided\n array `y` using alternative indexing semantics.\n","base.strided.dmsksqrt":"\nbase.strided.dmsksqrt( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Computes the principal square root for each element in a double-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a double-precision floating-point strided\n array `y`.\n","base.strided.dmsksqrt.ndarray":"\nbase.strided.dmsksqrt.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Computes the principal square root for each element in a double-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a double-precision floating-point strided\n array `y` using alternative indexing semantics.\n","base.strided.dmsktrunc":"\nbase.strided.dmsktrunc( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward zero according to a strided mask array and assigns the results to\n elements in a double-precision floating-point strided array `y`.\n","base.strided.dmsktrunc.ndarray":"\nbase.strided.dmsktrunc.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward zero according to a strided mask array and assigns the results to\n elements in a double-precision floating-point strided array `y` using\n alternative indexing semantics.\n","base.strided.dnanasum":"\nbase.strided.dnanasum( N:integer, x:Float64Array, stride:integer )\n Computes the sum of absolute values (L1 norm) of double-precision floating-\n point strided array elements, ignoring `NaN` values.\n","base.strided.dnanasum.ndarray":"\nbase.strided.dnanasum.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of absolute values (L1 norm) of double-precision floating-\n point strided array elements, ignoring `NaN` values and using alternative\n indexing semantics.\n","base.strided.dnanasumors":"\nbase.strided.dnanasumors( N:integer, x:Float64Array, stride:integer )\n Computes the sum of absolute values (L1 norm) of double-precision floating-\n point strided array elements, ignoring `NaN` values and using ordinary\n recursive summation.\n","base.strided.dnanasumors.ndarray":"\nbase.strided.dnanasumors.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of absolute values (L1 norm) of double-precision floating-\n point strided array elements, ignoring `NaN` values and using ordinary\n recursive summation alternative indexing semantics.\n","base.strided.dnanmax":"\nbase.strided.dnanmax( N:integer, x:Float64Array, stride:integer )\n Computes the maximum value of a double-precision floating-point strided\n array, ignoring `NaN` values.\n","base.strided.dnanmax.ndarray":"\nbase.strided.dnanmax.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the maximum value of a double-precision floating-point strided\n array, ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.dnanmaxabs":"\nbase.strided.dnanmaxabs( N:integer, x:Float64Array, stride:integer )\n Computes the maximum absolute value of a double-precision floating-point\n strided array, ignoring `NaN` values.\n","base.strided.dnanmaxabs.ndarray":"\nbase.strided.dnanmaxabs.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the maximum absolute value of a double-precision floating-point\n strided array, ignoring `NaN` values and using alternative indexing\n semantics.\n","base.strided.dnanmean":"\nbase.strided.dnanmean( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, ignoring `NaN` values.\n","base.strided.dnanmean.ndarray":"\nbase.strided.dnanmean.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.dnanmeanors":"\nbase.strided.dnanmeanors( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, ignoring `NaN` values and using ordinary recursive summation.\n","base.strided.dnanmeanors.ndarray":"\nbase.strided.dnanmeanors.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, ignoring `NaN` values and using ordinary recursive summation and\n alternative indexing semantics.\n","base.strided.dnanmeanpn":"\nbase.strided.dnanmeanpn( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, ignoring `NaN` values and using a two-pass error correction\n algorithm.\n","base.strided.dnanmeanpn.ndarray":"\nbase.strided.dnanmeanpn.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, ignoring `NaN` values and using a two-pass error correction algorithm\n and alternative indexing semantics.\n","base.strided.dnanmeanpw":"\nbase.strided.dnanmeanpw( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, ignoring `NaN` values and using pairwise summation.\n","base.strided.dnanmeanpw.ndarray":"\nbase.strided.dnanmeanpw.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, ignoring `NaN` values and using pairwise summation and alternative\n indexing semantics.\n","base.strided.dnanmeanwd":"\nbase.strided.dnanmeanwd( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, using Welford's algorithm and ignoring `NaN` values.\n","base.strided.dnanmeanwd.ndarray":"\nbase.strided.dnanmeanwd.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, ignoring `NaN` values and using Welford's algorithm and alternative\n indexing semantics.\n","base.strided.dnanmin":"\nbase.strided.dnanmin( N:integer, x:Float64Array, stride:integer )\n Computes the minimum value of a double-precision floating-point strided\n array, ignoring `NaN` values.\n","base.strided.dnanmin.ndarray":"\nbase.strided.dnanmin.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the minimum value of a double-precision floating-point strided\n array, ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.dnanminabs":"\nbase.strided.dnanminabs( N:integer, x:Float64Array, stride:integer )\n Computes the minimum absolute value of a double-precision floating-point\n strided array, ignoring `NaN` values.\n","base.strided.dnanminabs.ndarray":"\nbase.strided.dnanminabs.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the minimum absolute value of a double-precision floating-point\n strided array, ignoring `NaN` values and using alternative indexing\n semantics.\n","base.strided.dnanmskmax":"\nbase.strided.dnanmskmax( N:integer, x:Float64Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the maximum value of a double-precision floating-point strided\n array according to a mask, ignoring `NaN` values.\n","base.strided.dnanmskmax.ndarray":"\nbase.strided.dnanmskmax.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the maximum value of a double-precision floating-point strided\n array according to a mask, ignoring `NaN` values and using alternative\n indexing semantics.\n","base.strided.dnanmskmin":"\nbase.strided.dnanmskmin( N:integer, x:Float64Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the minimum value of a double-precision floating-point strided\n array according to a mask, ignoring `NaN` values.\n","base.strided.dnanmskmin.ndarray":"\nbase.strided.dnanmskmin.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the minimum value of a double-precision floating-point strided\n array according to a mask, ignoring `NaN` values and using alternative\n indexing semantics.\n","base.strided.dnanmskrange":"\nbase.strided.dnanmskrange( N:integer, x:Float64Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the range of a double-precision floating-point strided array\n according to a mask, ignoring `NaN` values.\n","base.strided.dnanmskrange.ndarray":"\nbase.strided.dnanmskrange.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the range of a double-precision floating-point strided array\n according to a mask, ignoring `NaN` values and using alternative indexing\n semantics.\n","base.strided.dnannsum":"\nbase.strided.dnannsum( N:integer, x:Float64Array, strideX:integer, \n out:Float64Array, strideOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values.\n","base.strided.dnannsum.ndarray":"\nbase.strided.dnannsum.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, out:Float64Array, strideOut:integer, offsetOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.dnannsumkbn":"\nbase.strided.dnannsumkbn( N:integer, x:Float64Array, strideX:integer, \n out:Float64Array, strideOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using an improved Kahan–Babuška algorithm.\n","base.strided.dnannsumkbn.ndarray":"\nbase.strided.dnannsumkbn.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, out:Float64Array, strideOut:integer, offsetOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using an improved Kahan–Babuška algorithm and\n alternative indexing semantics.\n","base.strided.dnannsumkbn2":"\nbase.strided.dnannsumkbn2( N:integer, x:Float64Array, strideX:integer, \n out:Float64Array, strideOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using a second-order iterative Kahan–Babuška\n algorithm.\n","base.strided.dnannsumkbn2.ndarray":"\nbase.strided.dnannsumkbn2.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, out:Float64Array, strideOut:integer, offsetOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using a second-order iterative Kahan–Babuška\n algorithm and alternative indexing semantics.\n","base.strided.dnannsumors":"\nbase.strided.dnannsumors( N:integer, x:Float64Array, strideX:integer, \n out:Float64Array, strideOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation.\n","base.strided.dnannsumors.ndarray":"\nbase.strided.dnannsumors.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, out:Float64Array, strideOut:integer, offsetOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation and alternative\n indexing semantics.\n","base.strided.dnannsumpw":"\nbase.strided.dnannsumpw( N:integer, x:Float64Array, strideX:integer, \n out:Float64Array, strideOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation.\n","base.strided.dnannsumpw.ndarray":"\nbase.strided.dnannsumpw.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, out:Float64Array, strideOut:integer, offsetOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation and alternative indexing\n semantics.\n","base.strided.dnanrange":"\nbase.strided.dnanrange( N:integer, x:Float64Array, stride:integer )\n Computes the range of a double-precision floating-point strided array,\n ignoring `NaN` values.\n","base.strided.dnanrange.ndarray":"\nbase.strided.dnanrange.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the range of a double-precision floating-point strided array,\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.dnanstdev":"\nbase.strided.dnanstdev( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values.\n","base.strided.dnanstdev.ndarray":"\nbase.strided.dnanstdev.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.dnanstdevch":"\nbase.strided.dnanstdevch( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using a one-pass trial mean algorithm.\n","base.strided.dnanstdevch.ndarray":"\nbase.strided.dnanstdevch.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using a one-pass trial mean algorithm and\n alternative indexing semantics.\n","base.strided.dnanstdevpn":"\nbase.strided.dnanstdevpn( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using a two-pass algorithm.\n","base.strided.dnanstdevpn.ndarray":"\nbase.strided.dnanstdevpn.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using a two-pass algorithm and alternative\n indexing semantics.\n","base.strided.dnanstdevtk":"\nbase.strided.dnanstdevtk( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using a one-pass textbook algorithm.\n","base.strided.dnanstdevtk.ndarray":"\nbase.strided.dnanstdevtk.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using a one-pass textbook algorithm and\n alternative indexing semantics.\n","base.strided.dnanstdevwd":"\nbase.strided.dnanstdevwd( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using Welford's algorithm.\n","base.strided.dnanstdevwd.ndarray":"\nbase.strided.dnanstdevwd.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using Welford's algorithm and alternative\n indexing semantics.\n","base.strided.dnanstdevyc":"\nbase.strided.dnanstdevyc( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using a one-pass algorithm proposed by\n Youngs and Cramer.\n","base.strided.dnanstdevyc.ndarray":"\nbase.strided.dnanstdevyc.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using a one-pass algorithm proposed by\n Youngs and Cramer and alternative indexing semantics.\n","base.strided.dnansum":"\nbase.strided.dnansum( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values.\n","base.strided.dnansum.ndarray":"\nbase.strided.dnansum.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.dnansumkbn":"\nbase.strided.dnansumkbn( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using an improved Kahan–Babuška algorithm.\n","base.strided.dnansumkbn.ndarray":"\nbase.strided.dnansumkbn.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using an improved Kahan–Babuška algorithm and\n alternative indexing semantics.\n","base.strided.dnansumkbn2":"\nbase.strided.dnansumkbn2( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using a second-order iterative Kahan–Babuška\n algorithm.\n","base.strided.dnansumkbn2.ndarray":"\nbase.strided.dnansumkbn2.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using a second-order iterative Kahan–Babuška\n algorithm and alternative indexing semantics.\n","base.strided.dnansumors":"\nbase.strided.dnansumors( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation.\n","base.strided.dnansumors.ndarray":"\nbase.strided.dnansumors.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation and alternative\n indexing semantics.\n","base.strided.dnansumpw":"\nbase.strided.dnansumpw( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation.\n","base.strided.dnansumpw.ndarray":"\nbase.strided.dnansumpw.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation and alternative indexing\n semantics.\n","base.strided.dnanvariance":"\nbase.strided.dnanvariance( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values.\n","base.strided.dnanvariance.ndarray":"\nbase.strided.dnanvariance.ndarray( N:integer, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.dnanvariancech":"\nbase.strided.dnanvariancech( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass trial mean algorithm.\n","base.strided.dnanvariancech.ndarray":"\nbase.strided.dnanvariancech.ndarray( N:integer, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass trial mean algorithm and\n alternative indexing semantics.\n","base.strided.dnanvariancepn":"\nbase.strided.dnanvariancepn( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a two-pass algorithm.\n","base.strided.dnanvariancepn.ndarray":"\nbase.strided.dnanvariancepn.ndarray( N:integer, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a two-pass algorithm and alternative\n indexing semantics.\n","base.strided.dnanvariancetk":"\nbase.strided.dnanvariancetk( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass textbook algorithm.\n","base.strided.dnanvariancetk.ndarray":"\nbase.strided.dnanvariancetk.ndarray( N:integer, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass textbook algorithm and\n alternative indexing semantics.\n","base.strided.dnanvariancewd":"\nbase.strided.dnanvariancewd( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using Welford's algorithm.\n","base.strided.dnanvariancewd.ndarray":"\nbase.strided.dnanvariancewd.ndarray( N:integer, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using Welford's algorithm and alternative indexing\n semantics.\n","base.strided.dnanvarianceyc":"\nbase.strided.dnanvarianceyc( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and\n Cramer.\n","base.strided.dnanvarianceyc.ndarray":"\nbase.strided.dnanvarianceyc.ndarray( N:integer, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and\n Cramer and alternative indexing semantics.\n","base.strided.dnrm2":"\nbase.strided.dnrm2( N:integer, x:Float64Array, stride:integer )\n Computes the L2-norm of a double-precision floating-point vector.\n","base.strided.dnrm2.ndarray":"\nbase.strided.dnrm2.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the L2-norm of a double-precision floating-point vector using\n alternative indexing semantics.\n","base.strided.dramp":"\nbase.strided.dramp( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Evaluates the ramp function for each element in a double-precision floating-\n point strided array `x` and assigns the results to elements in a double-\n precision floating-point strided array `y`.\n","base.strided.dramp.ndarray":"\nbase.strided.dramp.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Evaluates the ramp function for each element in a double-precision floating-\n point strided array `x` and assigns the results to elements in a double-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.drange":"\nbase.strided.drange( N:integer, x:Float64Array, stride:integer )\n Computes the range of a double-precision floating-point strided array.\n","base.strided.drange.ndarray":"\nbase.strided.drange.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the range of a double-precision floating-point strided array using\n alternative indexing semantics.\n","base.strided.drev":"\nbase.strided.drev( N:integer, x:Float64Array, stride:integer )\n Reverses a double-precision floating-point strided array in-place.\n","base.strided.drev.ndarray":"\nbase.strided.drev.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Reverses a double-precision floating-point strided array in-place using\n alternative indexing semantics.\n","base.strided.drsqrt":"\nbase.strided.drsqrt( N:integer, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Computes the reciprocal square root for each element in a double-precision\n floating-point strided array `x` and assigns the results to elements in a\n double-precision floating-point strided array `y`.\n","base.strided.drsqrt.ndarray":"\nbase.strided.drsqrt.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the reciprocal square root for each element in a double-precision\n floating-point strided array `x` and assigns the results to elements in a\n double-precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.dsapxsum":"\nbase.strided.dsapxsum( N:integer, alpha:number, x:Float32Array, stride:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using extended accumulation and returning an\n extended precision result.\n","base.strided.dsapxsum.ndarray":"\nbase.strided.dsapxsum.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using extended accumulation and alternative\n indexing semantics and returning an extended precision result.\n","base.strided.dsapxsumpw":"\nbase.strided.dsapxsumpw( N:integer, alpha:number, x:Float32Array, \n stride:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using pairwise summation with extended\n accumulation and returning an extended precision result.\n","base.strided.dsapxsumpw.ndarray":"\nbase.strided.dsapxsumpw.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using pairwise summation with extended\n accumulation and alternative indexing semantics and returning an extended\n precision result.\n","base.strided.dscal":"\nbase.strided.dscal( N:integer, alpha:number, x:Float64Array, stride:integer )\n Multiplies a double-precision floating-point vector `x` by a constant\n `alpha`.\n","base.strided.dscal.ndarray":"\nbase.strided.dscal.ndarray( N:integer, alpha:number, x:Float64Array, \n stride:integer, offset:integer )\n Multiplies a double-precision floating-point vector `x` by a constant\n `alpha` using alternative indexing semantics.\n","base.strided.dsdot":"\nbase.strided.dsdot( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Computes the dot product of two single-precision floating-point vectors with\n extended accumulation and result.\n","base.strided.dsdot.ndarray":"\nbase.strided.dsdot.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the dot product of two single-precision floating-point vectors\n using alternative indexing semantics and with extended accumulation and\n result.\n","base.strided.dsem":"\nbase.strided.dsem( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array.\n","base.strided.dsem.ndarray":"\nbase.strided.dsem.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using alternative indexing semantics.\n","base.strided.dsemch":"\nbase.strided.dsemch( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using a one-pass trial mean algorithm.\n","base.strided.dsemch.ndarray":"\nbase.strided.dsemch.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using a one-pass trial mean algorithm and alternative\n indexing semantics.\n","base.strided.dsempn":"\nbase.strided.dsempn( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using a two-pass algorithm.\n","base.strided.dsempn.ndarray":"\nbase.strided.dsempn.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using a two-pass algorithm and alternative indexing\n semantics.\n","base.strided.dsemtk":"\nbase.strided.dsemtk( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using a one-pass textbook algorithm.\n","base.strided.dsemtk.ndarray":"\nbase.strided.dsemtk.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using a one-pass textbook algorithm and alternative\n indexing semantics.\n","base.strided.dsemwd":"\nbase.strided.dsemwd( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using Welford's algorithm.\n","base.strided.dsemwd.ndarray":"\nbase.strided.dsemwd.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using Welford's algorithm and alternative indexing\n semantics.\n","base.strided.dsemyc":"\nbase.strided.dsemyc( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using a one-pass algorithm proposed by Youngs and\n Cramer.\n","base.strided.dsemyc.ndarray":"\nbase.strided.dsemyc.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using a one-pass algorithm proposed by Youngs and Cramer\n and alternative indexing semantics.\n","base.strided.dsmean":"\nbase.strided.dsmean( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using extended accumulation and returning an extended precision\n result.\n","base.strided.dsmean.ndarray":"\nbase.strided.dsmean.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using extended accumulation and alternative indexing semantics and\n returning an extended precision result.\n","base.strided.dsmeanors":"\nbase.strided.dsmeanors( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using ordinary recursive summation with extended accumulation and\n returning an extended precision result.\n","base.strided.dsmeanors.ndarray":"\nbase.strided.dsmeanors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using ordinary recursive summation with extended accumulation and\n alternative indexing semantics and returning an extended precision result.\n","base.strided.dsmeanpn":"\nbase.strided.dsmeanpn( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a two-pass error correction algorithm with extended accumulation\n and returning an extended precision result.\n","base.strided.dsmeanpn.ndarray":"\nbase.strided.dsmeanpn.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a two-pass error correction algorithm with extended accumulation\n and alternative indexing semantics and returning an extended precision\n result.\n","base.strided.dsmeanpw":"\nbase.strided.dsmeanpw( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using pairwise summation with extended accumulation and returning an\n extended precision result.\n","base.strided.dsmeanpw.ndarray":"\nbase.strided.dsmeanpw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using pairwise summation with extended accumulation and alternative\n indexing semantics and returning an extended precision result.\n","base.strided.dsmeanwd":"\nbase.strided.dsmeanwd( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using Welford's algorithm with extended accumulation and returning an\n extended precision result.\n","base.strided.dsmeanwd.ndarray":"\nbase.strided.dsmeanwd.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using Welford's algorithm with extended accumulation and alternative\n indexing semantics and returning an extended precision result.\n","base.strided.dsnanmean":"\nbase.strided.dsnanmean( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values, using extended accumulation, and returning an\n extended precision result.\n","base.strided.dsnanmean.ndarray":"\nbase.strided.dsnanmean.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using extended accumulation and alternative\n indexing semantics.\n","base.strided.dsnanmeanors":"\nbase.strided.dsnanmeanors( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values, using ordinary recursive summation with\n extended accumulation, and returning an extended precision result.\n","base.strided.dsnanmeanors.ndarray":"\nbase.strided.dsnanmeanors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using ordinary recursive summation with\n extended accumulation and alternative indexing semantics.\n","base.strided.dsnanmeanpn":"\nbase.strided.dsnanmeanpn( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values, using a two-pass error correction algorithm\n with extended accumulation, and returning an extended precision result.\n","base.strided.dsnanmeanpn.ndarray":"\nbase.strided.dsnanmeanpn.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using a two-pass error correction algorithm\n with extended accumulation and alternative indexing semantics.\n","base.strided.dsnanmeanwd":"\nbase.strided.dsnanmeanwd( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values, using Welford's algorithm with extended\n accumulation, and returning an extended precision result.\n","base.strided.dsnanmeanwd.ndarray":"\nbase.strided.dsnanmeanwd.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using Welford's algorithm with extended\n accumulation and alternative indexing semantics.\n","base.strided.dsnannsumors":"\nbase.strided.dsnannsumors( N:integer, x:Float32Array, strideX:integer, \n out:Float64Array, strideOut:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values, using ordinary recursive summation with extended\n accumulation, and returning an extended precision result.\n","base.strided.dsnannsumors.ndarray":"\nbase.strided.dsnannsumors.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, out:Float64Array, strideOut:integer, offsetOut:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation with extended\n accumulation and alternative indexing semantics.\n","base.strided.dsnansum":"\nbase.strided.dsnansum( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values, using extended accumulation, and returning an\n extended precision result.\n","base.strided.dsnansum.ndarray":"\nbase.strided.dsnansum.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using extended accumulation and alternative\n indexing semantics.\n","base.strided.dsnansumors":"\nbase.strided.dsnansumors( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values, using ordinary recursive summation with extended\n accumulation, and returning an extended precision result.\n","base.strided.dsnansumors.ndarray":"\nbase.strided.dsnansumors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation with extended\n accumulation and alternative indexing semantics.\n","base.strided.dsnansumpw":"\nbase.strided.dsnansumpw( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values, using pairwise summation with extended accumulation,\n and returning an extended precision result.\n","base.strided.dsnansumpw.ndarray":"\nbase.strided.dsnansumpw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation with extended\n accumulation and alternative indexing semantics.\n","base.strided.dsort2hp":"\nbase.strided.dsort2hp( N:integer, order:number, x:Float64Array, \n strideX:integer, y:Float64Array, strideY:integer )\n Simultaneously sorts two double-precision floating-point strided arrays\n based on the sort order of the first array using heapsort.\n","base.strided.dsort2hp.ndarray":"\nbase.strided.dsort2hp.ndarray( N:integer, order:number, x:Float64Array, \n strideX:integer, offsetX:integer, y:Float64Array, strideY:integer, \n offsetY:integer )\n Simultaneously sorts two double-precision floating-point strided arrays\n based on the sort order of the first array using heapsort and alternative\n indexing semantics.\n","base.strided.dsort2ins":"\nbase.strided.dsort2ins( N:integer, order:number, x:Float64Array, \n strideX:integer, y:Float64Array, strideY:integer )\n Simultaneously sorts two double-precision floating-point strided arrays\n based on the sort order of the first array using insertion sort.\n","base.strided.dsort2ins.ndarray":"\nbase.strided.dsort2ins.ndarray( N:integer, order:number, x:Float64Array, \n strideX:integer, offsetX:integer, y:Float64Array, strideY:integer, \n offsetY:integer )\n Simultaneously sorts two double-precision floating-point strided arrays\n based on the sort order of the first array using insertion sort and\n alternative indexing semantics.\n","base.strided.dsort2sh":"\nbase.strided.dsort2sh( N:integer, order:number, x:Float64Array, \n strideX:integer, y:Float64Array, strideY:integer )\n Simultaneously sorts two double-precision floating-point strided arrays\n based on the sort order of the first array using Shellsort.\n","base.strided.dsort2sh.ndarray":"\nbase.strided.dsort2sh.ndarray( N:integer, order:number, x:Float64Array, \n strideX:integer, offsetX:integer, y:Float64Array, strideY:integer, \n offsetY:integer )\n Simultaneously sorts two double-precision floating-point strided arrays\n based on the sort order of the first array using Shellsort and alternative\n indexing semantics.\n","base.strided.dsorthp":"\nbase.strided.dsorthp( N:integer, order:number, x:Float64Array, stride:integer )\n Sorts a double-precision floating-point strided array using heapsort.\n","base.strided.dsorthp.ndarray":"\nbase.strided.dsorthp.ndarray( N:integer, order:number, x:Float64Array, \n stride:integer, offset:integer )\n Sorts a double-precision floating-point strided array using heapsort and\n alternative indexing semantics.\n","base.strided.dsortins":"\nbase.strided.dsortins( N:integer, order:number, x:Float64Array, stride:integer )\n Sorts a double-precision floating-point strided array using insertion sort.\n","base.strided.dsortins.ndarray":"\nbase.strided.dsortins.ndarray( N:integer, order:number, x:Float64Array, \n stride:integer, offset:integer )\n Sorts a double-precision floating-point strided array using insertion sort\n and alternative indexing semantics.\n","base.strided.dsortsh":"\nbase.strided.dsortsh( N:integer, order:number, x:Float64Array, stride:integer )\n Sorts a double-precision floating-point strided array using Shellsort.\n","base.strided.dsortsh.ndarray":"\nbase.strided.dsortsh.ndarray( N:integer, order:number, x:Float64Array, \n stride:integer, offset:integer )\n Sorts a double-precision floating-point strided array using Shellsort and\n alternative indexing semantics.\n","base.strided.dsqrt":"\nbase.strided.dsqrt( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Computes the principal square root for each element in a double-precision\n floating-point strided array `x` and assigns the results to elements in a\n double-precision floating-point strided array `y`.\n","base.strided.dsqrt.ndarray":"\nbase.strided.dsqrt.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the principal square root for each element in a double-precision\n floating-point strided array `x` and assigns the results to elements in a\n double-precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.dssum":"\nbase.strided.dssum( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements\n using extended accumulation and returning an extended precision result.\n","base.strided.dssum.ndarray":"\nbase.strided.dssum.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using extended accumulation and alternative indexing semantics and returning\n an extended precision result.\n","base.strided.dssumors":"\nbase.strided.dssumors( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements\n using ordinary recursive summation with extended accumulation and returning\n an extended precision result.\n","base.strided.dssumors.ndarray":"\nbase.strided.dssumors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using ordinary recursive summation with extended accumulation and\n alternative indexing semantics and returning an extended precision result.\n","base.strided.dssumpw":"\nbase.strided.dssumpw( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements\n using pairwise summation with extended accumulation and returning an\n extended precision result.\n","base.strided.dssumpw.ndarray":"\nbase.strided.dssumpw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using pairwise summation with extended accumulation and alternative indexing\n semantics and returning an extended precision result.\n","base.strided.dstdev":"\nbase.strided.dstdev( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array.\n","base.strided.dstdev.ndarray":"\nbase.strided.dstdev.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.dstdevch":"\nbase.strided.dstdevch( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using a one-pass trial mean algorithm.\n","base.strided.dstdevch.ndarray":"\nbase.strided.dstdevch.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using a one-pass trial mean algorithm and alternative indexing\n semantics.\n","base.strided.dstdevpn":"\nbase.strided.dstdevpn( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using a two-pass algorithm.\n","base.strided.dstdevpn.ndarray":"\nbase.strided.dstdevpn.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using a two-pass algorithm and alternative indexing semantics.\n","base.strided.dstdevtk":"\nbase.strided.dstdevtk( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using a one-pass textbook algorithm.\n","base.strided.dstdevtk.ndarray":"\nbase.strided.dstdevtk.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using a one-pass textbook algorithm and alternative indexing\n semantics.\n","base.strided.dstdevwd":"\nbase.strided.dstdevwd( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using Welford's algorithm.\n","base.strided.dstdevwd.ndarray":"\nbase.strided.dstdevwd.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using Welford's algorithm and alternative indexing semantics.\n","base.strided.dstdevyc":"\nbase.strided.dstdevyc( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using a one-pass algorithm proposed by Youngs and Cramer.\n","base.strided.dstdevyc.ndarray":"\nbase.strided.dstdevyc.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using a one-pass algorithm proposed by Youngs and Cramer and\n alternative indexing semantics.\n","base.strided.dsum":"\nbase.strided.dsum( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements.\n","base.strided.dsum.ndarray":"\nbase.strided.dsum.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements\n using alternative indexing semantics.\n","base.strided.dsumkbn":"\nbase.strided.dsumkbn( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements\n using an improved Kahan–Babuška algorithm.\n","base.strided.dsumkbn.ndarray":"\nbase.strided.dsumkbn.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements\n using an improved Kahan–Babuška algorithm and alternative indexing\n semantics.\n","base.strided.dsumkbn2":"\nbase.strided.dsumkbn2( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements\n using a second-order iterative Kahan–Babuška algorithm.\n","base.strided.dsumkbn2.ndarray":"\nbase.strided.dsumkbn2.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements\n using a second-order iterative Kahan–Babuška algorithm and alternative\n indexing semantics.\n","base.strided.dsumors":"\nbase.strided.dsumors( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements\n using ordinary recursive summation.\n","base.strided.dsumors.ndarray":"\nbase.strided.dsumors.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements\n using ordinary recursive summation and alternative indexing semantics.\n","base.strided.dsumpw":"\nbase.strided.dsumpw( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements\n using pairwise summation.\n","base.strided.dsumpw.ndarray":"\nbase.strided.dsumpw.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements\n using pairwise summation and alternative indexing semantics.\n","base.strided.dsvariance":"\nbase.strided.dsvariance( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n using extended accumulation and returning an extended precision result.\n","base.strided.dsvariance.ndarray":"\nbase.strided.dsvariance.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n using extended accumulation and alternative indexing semantics and\n returning an extended precision result.\n","base.strided.dsvariancepn":"\nbase.strided.dsvariancepn( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n using a two-pass algorithm with extended accumulation and returning an\n extended precision result.\n","base.strided.dsvariancepn.ndarray":"\nbase.strided.dsvariancepn.ndarray( N:integer, correction:number, \n x:Float32Array, stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n using a two-pass algorithm with extended accumulation and alternative\n indexing semantics and returning an extended precision result.\n","base.strided.dswap":"\nbase.strided.dswap( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Interchanges two double-precision floating-point vectors.\n","base.strided.dswap.ndarray":"\nbase.strided.dswap.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Interchanges two double-precision floating-point vectors using alternative\n indexing semantics.\n","base.strided.dtrunc":"\nbase.strided.dtrunc( N:integer, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward zero and assigns the results to elements in a double-precision\n floating-point strided array `y`.\n","base.strided.dtrunc.ndarray":"\nbase.strided.dtrunc.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward zero and assigns the results to elements in a double-precision\n floating-point strided array `y` using alternative indexing semantics.\n","base.strided.dvariance":"\nbase.strided.dvariance( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array.\n","base.strided.dvariance.ndarray":"\nbase.strided.dvariance.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n using alternative indexing semantics.\n","base.strided.dvariancech":"\nbase.strided.dvariancech( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n using a one-pass trial mean algorithm.\n","base.strided.dvariancech.ndarray":"\nbase.strided.dvariancech.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n using a one-pass trial mean algorithm and alternative indexing semantics.\n","base.strided.dvariancepn":"\nbase.strided.dvariancepn( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n using a two-pass algorithm.\n","base.strided.dvariancepn.ndarray":"\nbase.strided.dvariancepn.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n using a two-pass algorithm and alternative indexing semantics.\n","base.strided.dvariancetk":"\nbase.strided.dvariancetk( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n using a one-pass textbook algorithm.\n","base.strided.dvariancetk.ndarray":"\nbase.strided.dvariancetk.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n using a one-pass textbook algorithm and alternative indexing semantics.\n","base.strided.dvariancewd":"\nbase.strided.dvariancewd( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n using Welford's algorithm.\n","base.strided.dvariancewd.ndarray":"\nbase.strided.dvariancewd.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n using Welford's algorithm and alternative indexing semantics.\n","base.strided.dvarianceyc":"\nbase.strided.dvarianceyc( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n using a one-pass algorithm proposed by Youngs and Cramer.\n","base.strided.dvarianceyc.ndarray":"\nbase.strided.dvarianceyc.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n using a one-pass algorithm proposed by Youngs and Cramer and alternative\n indexing semantics.\n","base.strided.dvarm":"\nbase.strided.dvarm( N:integer, mean:number, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n provided a known mean.\n","base.strided.dvarm.ndarray":"\nbase.strided.dvarm.ndarray( N:integer, mean:number, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n provided a known mean and using alternative indexing semantics.\n","base.strided.dvarmpn":"\nbase.strided.dvarmpn( N:integer, mean:number, correction:number, \n x:Float64Array, stride:integer )\n Computes the variance of a double-precision floating-point strided array\n provided a known mean and using Neely's correction algorithm.\n","base.strided.dvarmpn.ndarray":"\nbase.strided.dvarmpn.ndarray( N:integer, mean:number, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n provided a known mean and using Neely's correction algorithm and alternative\n indexing semantics.\n","base.strided.dvarmtk":"\nbase.strided.dvarmtk( N:integer, mean:number, correction:number, \n x:Float64Array, stride:integer )\n Computes the variance of a double-precision floating-point strided array\n provided a known mean and using a one-pass textbook algorithm.\n","base.strided.dvarmtk.ndarray":"\nbase.strided.dvarmtk.ndarray( N:integer, mean:number, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n provided a known mean and using a one-pass textbook algorithm and\n alternative indexing semantics.\n","base.strided.gapx":"\nbase.strided.gapx( N:integer, alpha:number, x:Array|TypedArray, stride:integer )\n Adds a constant to each element in a strided array.\n","base.strided.gapx.ndarray":"\nbase.strided.gapx.ndarray( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Adds a constant to each element in a strided array using alternative\n indexing semantics.\n","base.strided.gapxsum":"\nbase.strided.gapxsum( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer )\n Adds a constant to each strided array element and computes the sum.\n","base.strided.gapxsum.ndarray":"\nbase.strided.gapxsum.ndarray( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Adds a constant to each strided array element and computes the sum using\n alternative indexing semantics.\n","base.strided.gapxsumkbn":"\nbase.strided.gapxsumkbn( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer )\n Adds a constant to each strided array element and computes the sum using an\n improved Kahan–Babuška algorithm.\n","base.strided.gapxsumkbn.ndarray":"\nbase.strided.gapxsumkbn.ndarray( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Adds a constant to each strided array element and computes the sum using an\n improved Kahan–Babuška algorithm and alternative indexing semantics.\n","base.strided.gapxsumkbn2":"\nbase.strided.gapxsumkbn2( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer )\n Adds a constant to each strided array element and computes the sum using a\n second-order iterative Kahan–Babuška algorithm.\n","base.strided.gapxsumkbn2.ndarray":"\nbase.strided.gapxsumkbn2.ndarray( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Adds a constant to each strided array element and computes the sum using a\n second-order iterative Kahan–Babuška algorithm and alternative indexing\n semantics.\n","base.strided.gapxsumors":"\nbase.strided.gapxsumors( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer )\n Adds a constant to each strided array element and computes the sum using\n ordinary recursive summation.\n","base.strided.gapxsumors.ndarray":"\nbase.strided.gapxsumors.ndarray( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Adds a constant to each strided array element and computes the sum using\n ordinary recursive summation and alternative indexing semantics.\n","base.strided.gapxsumpw":"\nbase.strided.gapxsumpw( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer )\n Adds a constant to each strided array element and computes the sum using\n pairwise summation.\n","base.strided.gapxsumpw.ndarray":"\nbase.strided.gapxsumpw.ndarray( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Adds a constant to each strided array element and computes the sum using\n pairwise summation and alternative indexing semantics.\n","base.strided.gasum":"\nbase.strided.gasum( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of the absolute values.\n","base.strided.gasum.ndarray":"\nbase.strided.gasum.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of absolute values using alternative indexing semantics.\n","base.strided.gasumpw":"\nbase.strided.gasumpw( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of absolute values (L1 norm) of strided array elements\n using pairwise summation.\n","base.strided.gasumpw.ndarray":"\nbase.strided.gasumpw.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of absolute values (L1 norm) of strided array elements\n using pairwise summation and alternative indexing semantics.\n","base.strided.gaxpy":"\nbase.strided.gaxpy( N:integer, alpha:number, x:Array|TypedArray, \n strideX:integer, y:Array|TypedArray, strideY:integer )\n Multiplies `x` by a constant `alpha` and adds the result to `y`.\n","base.strided.gaxpy.ndarray":"\nbase.strided.gaxpy.ndarray( N:integer, alpha:number, x:Array|TypedArray, \n strideX:integer, offsetX:integer, y:Array|TypedArray, strideY:integer, \n offsetY:integer )\n Multiplies `x` by a constant `alpha` and adds the result to `y`, with\n alternative indexing semantics.\n","base.strided.gcopy":"\nbase.strided.gcopy( N:integer, x:ArrayLikeObject, strideX:integer, \n y:ArrayLikeObject, strideY:integer )\n Copies values from `x` into `y`.\n","base.strided.gcopy.ndarray":"\nbase.strided.gcopy.ndarray( N:integer, x:ArrayLikeObject, strideX:integer, \n offsetX:integer, y:ArrayLikeObject, strideY:integer, offsetY:integer )\n Copies values from `x` into `y` using alternative indexing semantics.\n","base.strided.gcusum":"\nbase.strided.gcusum( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, y:Array|TypedArray, strideY:integer )\n Computes the cumulative sum of strided array elements.\n","base.strided.gcusum.ndarray":"\nbase.strided.gcusum.ndarray( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, offsetX:integer, y:Array|TypedArray, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of strided array elements using alternative\n indexing semantics.\n","base.strided.gcusumkbn":"\nbase.strided.gcusumkbn( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, y:Array|TypedArray, strideY:integer )\n Computes the cumulative sum of strided array elements using an improved\n Kahan–Babuška algorithm.\n","base.strided.gcusumkbn.ndarray":"\nbase.strided.gcusumkbn.ndarray( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, offsetX:integer, y:Array|TypedArray, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of strided array elements using an improved\n Kahan–Babuška algorithm and alternative indexing semantics.\n","base.strided.gcusumkbn2":"\nbase.strided.gcusumkbn2( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, y:Array|TypedArray, strideY:integer )\n Computes the cumulative sum of strided array elements using a second-order\n iterative Kahan–Babuška algorithm.\n","base.strided.gcusumkbn2.ndarray":"\nbase.strided.gcusumkbn2.ndarray( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, offsetX:integer, y:Array|TypedArray, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of strided array elements using a second-order\n iterative Kahan–Babuška algorithm and alternative indexing semantics.\n","base.strided.gcusumors":"\nbase.strided.gcusumors( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, y:Array|TypedArray, strideY:integer )\n Computes the cumulative sum of strided array elements using ordinary\n recursive summation.\n","base.strided.gcusumors.ndarray":"\nbase.strided.gcusumors.ndarray( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, offsetX:integer, y:Array|TypedArray, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of strided array elements using ordinary\n recursive summation and alternative indexing semantics.\n","base.strided.gcusumpw":"\nbase.strided.gcusumpw( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, y:Array|TypedArray, strideY:integer )\n Computes the cumulative sum of strided array elements using pairwise\n summation.\n","base.strided.gcusumpw.ndarray":"\nbase.strided.gcusumpw.ndarray( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, offsetX:integer, y:Array|TypedArray, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of strided array elements using pairwise\n summation and alternative indexing semantics.\n","base.strided.gdot":"\nbase.strided.gdot( N:integer, x:Array|TypedArray, strideX:integer, \n y:Array|TypedArray, strideY:integer )\n Computes the dot product of two vectors.\n","base.strided.gdot.ndarray":"\nbase.strided.gdot.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, y:Array|TypedArray, strideY:integer, offsetY:integer )\n Computes the dot product of two vectors using alternative indexing\n semantics.\n","base.strided.gfill":"\nbase.strided.gfill( N:integer, alpha:any, x:ArrayLikeObject, stride:integer )\n Fills a strided array with a specified scalar value.\n","base.strided.gfill.ndarray":"\nbase.strided.gfill.ndarray( N:integer, alpha:any, x:ArrayLikeObject, \n stride:integer, offset:integer )\n Fills a strided array with a specified scalar value using alternative\n indexing semantics.\n","base.strided.gfillBy":"\nbase.strided.gfillBy( N:integer, x:ArrayLikeObject, stride:integer, \n clbk:Function[, thisArg:any] )\n Fills a strided array according to a provided callback function.\n","base.strided.gfillBy.ndarray":"\nbase.strided.gfillBy.ndarray( N:integer, x:ArrayLikeObject, stride:integer, \n offset:integer, clbk:Function[, thisArg:any] )\n Fills a strided array according to a provided callback function and using\n alternative indexing semantics.\n","base.strided.gnannsumkbn":"\nbase.strided.gnannsumkbn( N:integer, x:Array|TypedArray, strideX:integer, \n out:Array|TypedArray, strideOut:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n an improved Kahan–Babuška algorithm.\n","base.strided.gnannsumkbn.ndarray":"\nbase.strided.gnannsumkbn.ndarray( N:integer, x:Array|TypedArray, \n strideX:integer, offsetX:integer, out:Array|TypedArray, strideOut:integer, \n offsetOut:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n an improved Kahan–Babuška algorithm and alternative indexing semantics.\n","base.strided.gnansum":"\nbase.strided.gnansum( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements, ignoring `NaN` values.\n","base.strided.gnansum.ndarray":"\nbase.strided.gnansum.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n alternative indexing semantics.\n","base.strided.gnansumkbn":"\nbase.strided.gnansumkbn( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n an improved Kahan–Babuška algorithm.\n","base.strided.gnansumkbn.ndarray":"\nbase.strided.gnansumkbn.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n an improved Kahan–Babuška algorithm and alternative indexing semantics.\n","base.strided.gnansumkbn2":"\nbase.strided.gnansumkbn2( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n a second-order iterative Kahan–Babuška algorithm.\n","base.strided.gnansumkbn2.ndarray":"\nbase.strided.gnansumkbn2.ndarray( N:integer, x:Array|TypedArray, \n stride:integer, offset:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n a second-order iterative Kahan–Babuška algorithm and alternative indexing\n semantics.\n","base.strided.gnansumors":"\nbase.strided.gnansumors( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n ordinary recursive summation.\n","base.strided.gnansumors.ndarray":"\nbase.strided.gnansumors.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n ordinary recursive summation and alternative indexing semantics.\n","base.strided.gnansumpw":"\nbase.strided.gnansumpw( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and\n pairwise summation.\n","base.strided.gnansumpw.ndarray":"\nbase.strided.gnansumpw.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n pairwise summation and alternative indexing semantics.\n","base.strided.gnrm2":"\nbase.strided.gnrm2( N:integer, x:Array|TypedArray, stride:integer )\n Computes the L2-norm of a vector.\n","base.strided.gnrm2.ndarray":"\nbase.strided.gnrm2.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the L2-norm of a vector using alternative indexing semantics.\n","base.strided.grev":"\nbase.strided.grev( N:integer, x:ArrayLikeObject, stride:integer )\n Reverses a strided array in-place.\n","base.strided.grev.ndarray":"\nbase.strided.grev.ndarray( N:integer, x:ArrayLikeObject, stride:integer, \n offset:integer )\n Reverses a strided array in-place using alternative indexing semantics.\n","base.strided.gscal":"\nbase.strided.gscal( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer )\n Multiplies a vector `x` by a constant `alpha`.\n","base.strided.gscal.ndarray":"\nbase.strided.gscal.ndarray( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Multiplies `x` by a constant `alpha` using alternative indexing semantics.\n","base.strided.gsort2hp":"\nbase.strided.gsort2hp( N:integer, order:number, x:Array|TypedArray, \n strideX:integer, y:Array|TypedArray, strideY:integer )\n Simultaneously sorts two strided arrays based on the sort order of the first\n array using heapsort.\n","base.strided.gsort2hp.ndarray":"\nbase.strided.gsort2hp.ndarray( N:integer, order:number, x:Array|TypedArray, \n strideX:integer, offsetX:integer, y:Array|TypedArray, strideY:integer, \n offsetY:integer )\n Simultaneously sorts two strided arrays based on the sort order of the first\n array using heapsort and alternative indexing semantics.\n","base.strided.gsort2ins":"\nbase.strided.gsort2ins( N:integer, order:number, x:Array|TypedArray, \n strideX:integer, y:Array|TypedArray, strideY:integer )\n Simultaneously sorts two strided arrays based on the sort order of the first\n array using insertion sort.\n","base.strided.gsort2ins.ndarray":"\nbase.strided.gsort2ins.ndarray( N:integer, order:number, x:Array|TypedArray, \n strideX:integer, offsetX:integer, y:Array|TypedArray, strideY:integer, \n offsetY:integer )\n Simultaneously sorts two strided arrays based on the sort order of the first\n array using insertion sort and alternative indexing semantics.\n","base.strided.gsort2sh":"\nbase.strided.gsort2sh( N:integer, order:number, x:Array|TypedArray, \n strideX:integer, y:Array|TypedArray, strideY:integer )\n Simultaneously sorts two strided arrays based on the sort order of the first\n array using Shellsort.\n","base.strided.gsort2sh.ndarray":"\nbase.strided.gsort2sh.ndarray( N:integer, order:number, x:Array|TypedArray, \n strideX:integer, offsetX:integer, y:Array|TypedArray, strideY:integer, \n offsetY:integer )\n Simultaneously sorts two strided arrays based on the sort order of the first\n array using Shellsort and alternative indexing semantics.\n","base.strided.gsorthp":"\nbase.strided.gsorthp( N:integer, order:number, x:Array|TypedArray, \n stride:integer )\n Sorts a strided array using heapsort.\n","base.strided.gsorthp.ndarray":"\nbase.strided.gsorthp.ndarray( N:integer, order:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Sorts a strided array using heapsort and alternative indexing semantics.\n","base.strided.gsortins":"\nbase.strided.gsortins( N:integer, order:number, x:Array|TypedArray, \n stride:integer )\n Sorts a strided array using insertion sort.\n","base.strided.gsortins.ndarray":"\nbase.strided.gsortins.ndarray( N:integer, order:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Sorts a strided array using insertion sort and alternative indexing\n semantics.\n","base.strided.gsortsh":"\nbase.strided.gsortsh( N:integer, order:number, x:Array|TypedArray, \n stride:integer )\n Sorts a strided array using Shellsort.\n","base.strided.gsortsh.ndarray":"\nbase.strided.gsortsh.ndarray( N:integer, order:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Sorts a strided array using Shellsort and alternative indexing semantics.\n","base.strided.gsum":"\nbase.strided.gsum( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements.\n","base.strided.gsum.ndarray":"\nbase.strided.gsum.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of strided array elements using alternative indexing\n semantics.\n","base.strided.gsumkbn":"\nbase.strided.gsumkbn( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements using an improved Kahan–Babuška\n algorithm.\n","base.strided.gsumkbn.ndarray":"\nbase.strided.gsumkbn.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of strided array elements using an improved Kahan–Babuška\n algorithm and alternative indexing semantics.\n","base.strided.gsumkbn2":"\nbase.strided.gsumkbn2( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements using a second-order iterative\n Kahan–Babuška algorithm.\n","base.strided.gsumkbn2.ndarray":"\nbase.strided.gsumkbn2.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of strided array elements using a second-order iterative\n Kahan–Babuška algorithm and alternative indexing semantics.\n","base.strided.gsumors":"\nbase.strided.gsumors( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements using ordinary recursive\n summation.\n","base.strided.gsumors.ndarray":"\nbase.strided.gsumors.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of strided array elements using ordinary recursive\n summation and alternative indexing semantics.\n","base.strided.gsumpw":"\nbase.strided.gsumpw( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements using pairwise summation.\n","base.strided.gsumpw.ndarray":"\nbase.strided.gsumpw.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of strided array elements using pairwise summation and\n alternative indexing semantics.\n","base.strided.gswap":"\nbase.strided.gswap( N:integer, x:ArrayLikeObject, strideX:integer, \n y:ArrayLikeObject, strideY:integer )\n Interchanges vectors `x` and `y`.\n","base.strided.gswap.ndarray":"\nbase.strided.gswap.ndarray( N:integer, x:ArrayLikeObject, strideX:integer, \n offsetX:integer, y:ArrayLikeObject, strideY:integer, offsetY:integer )\n Interchanges vectors `x` and `y` using alternative indexing semantics.\n","base.strided.mapBy":"\nbase.strided.mapBy( N:integer, x:Array|TypedArray|Object, sx:integer, \n y:Array|TypedArray|Object, sy:integer, fcn:Function, clbk:Function[, \n thisArg:any] )\n Applies a unary function to each element retrieved from a strided input\n array according to a callback function and assigns results to a strided\n output array.\n","base.strided.mapBy.ndarray":"\nbase.strided.mapBy.ndarray( N:integer, x:Array|TypedArray|Object, sx:integer, \n ox:integer, y:Array|TypedArray|Object, sy:integer, oy:integer, fcn:Function, \n clbk:Function[, thisArg:any] )\n Applies a unary function to each element retrieved from a strided input\n array according to a callback function and assigns results to a strided\n output array using alternative indexing semantics.\n","base.strided.mapBy2":"\nbase.strided.mapBy2( N:integer, x:Array|TypedArray|Object, sx:integer, \n y:Array|TypedArray|Object, sy:integer, z:Array|TypedArray|Object, sz:integer, \n fcn:Function, clbk:Function[, thisArg:any] )\n Applies a binary function to each pair of elements retrieved from strided\n input arrays according to a callback function and assigns results to a\n strided output array.\n","base.strided.mapBy2.ndarray":"\nbase.strided.mapBy2.ndarray( N:integer, x:Array|TypedArray|Object, sx:integer, \n ox:integer, y:Array|TypedArray|Object, sy:integer, oy:integer, \n z:Array|TypedArray|Object, sz:integer, oz:integer, fcn:Function, \n clbk:Function[, thisArg:any] )\n Applies a binary function to each pair of elements retrieved from strided\n input arrays according to a callback function and assigns results to a\n strided output array using alternative indexing semantics.\n","base.strided.max":"\nbase.strided.max( N:integer, x:Array|TypedArray, stride:integer )\n Computes the maximum value of a strided array.\n","base.strided.max.ndarray":"\nbase.strided.max.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the maximum value of a strided array using alternative indexing\n semantics.\n","base.strided.maxabs":"\nbase.strided.maxabs( N:integer, x:Array|TypedArray, stride:integer )\n Computes the maximum absolute value of a strided array.\n","base.strided.maxabs.ndarray":"\nbase.strided.maxabs.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the maximum absolute value of a strided array using alternative\n indexing semantics.\n","base.strided.maxBy":"\nbase.strided.maxBy( N:integer, x:Array|TypedArray|Object, stride:integer, \n clbk:Function[, thisArg:any] )\n Calculates the maximum value of a strided array via a callback function.\n","base.strided.maxBy.ndarray":"\nbase.strided.maxBy.ndarray( N:integer, x:Array|TypedArray|Object, \n stride:integer, offset:integer, clbk:Function[, thisArg:any] )\n Calculates the maximum value of a strided array via a callback function and\n using alternative indexing semantics.\n","base.strided.maxsorted":"\nbase.strided.maxsorted( N:integer, x:Array|TypedArray, stride:integer )\n Computes the maximum value of a sorted strided array.\n","base.strided.maxsorted.ndarray":"\nbase.strided.maxsorted.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the maximum value of a sorted strided array using alternative\n indexing semantics.\n","base.strided.mean":"\nbase.strided.mean( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array.\n","base.strided.mean.ndarray":"\nbase.strided.mean.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array using alternative indexing\n semantics.\n","base.strided.meankbn":"\nbase.strided.meankbn( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array using an improved Kahan–\n Babuška algorithm.\n","base.strided.meankbn.ndarray":"\nbase.strided.meankbn.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array using an improved Kahan–\n Babuška algorithm and alternative indexing semantics.\n","base.strided.meankbn2":"\nbase.strided.meankbn2( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array using a second-order\n iterative Kahan–Babuška algorithm.\n","base.strided.meankbn2.ndarray":"\nbase.strided.meankbn2.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array using a second-order\n iterative Kahan–Babuška algorithm and alternative indexing semantics.\n","base.strided.meanors":"\nbase.strided.meanors( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array using ordinary recursive\n summation.\n","base.strided.meanors.ndarray":"\nbase.strided.meanors.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array using ordinary recursive\n summation and alternative indexing semantics.\n","base.strided.meanpn":"\nbase.strided.meanpn( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array using a two-pass error\n correction algorithm.\n","base.strided.meanpn.ndarray":"\nbase.strided.meanpn.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array using a two-pass error\n correction algorithm and alternative indexing semantics.\n","base.strided.meanpw":"\nbase.strided.meanpw( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array using pairwise summation.\n","base.strided.meanpw.ndarray":"\nbase.strided.meanpw.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array using pairwise summation and\n alternative indexing semantics.\n","base.strided.meanwd":"\nbase.strided.meanwd( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array using Welford's algorithm.\n","base.strided.meanwd.ndarray":"\nbase.strided.meanwd.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array using Welford's algorithm\n and alternative indexing semantics.\n","base.strided.mediansorted":"\nbase.strided.mediansorted( N:integer, x:Array|TypedArray, stride:integer )\n Computes the median value of a sorted strided array.\n","base.strided.mediansorted.ndarray":"\nbase.strided.mediansorted.ndarray( N:integer, x:Array|TypedArray, \n stride:integer, offset:integer )\n Computes the median value of a sorted strided array using alternative\n indexing semantics.\n","base.strided.min":"\nbase.strided.min( N:integer, x:Array|TypedArray, stride:integer )\n Computes the minimum value of a strided array.\n","base.strided.min.ndarray":"\nbase.strided.min.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the minimum value of a strided array using alternative indexing\n semantics.\n","base.strided.minabs":"\nbase.strided.minabs( N:integer, x:Array|TypedArray, stride:integer )\n Computes the minimum absolute value of a strided array.\n","base.strided.minabs.ndarray":"\nbase.strided.minabs.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the minimum absolute value of a strided array using alternative\n indexing semantics.\n","base.strided.minBy":"\nbase.strided.minBy( N:integer, x:Array|TypedArray|Object, stride:integer, \n clbk:Function[, thisArg:any] )\n Calculates the minimum value of a strided array via a callback function.\n","base.strided.minBy.ndarray":"\nbase.strided.minBy.ndarray( N:integer, x:Array|TypedArray|Object, \n stride:integer, offset:integer, clbk:Function[, thisArg:any] )\n Calculates the minimum value of a strided array via a callback function and\n using alternative indexing semantics.\n","base.strided.minsorted":"\nbase.strided.minsorted( N:integer, x:Array|TypedArray, stride:integer )\n Computes the minimum value of a sorted strided array.\n","base.strided.minsorted.ndarray":"\nbase.strided.minsorted.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the minimum value of a sorted strided array using alternative\n indexing semantics.\n","base.strided.mskmax":"\nbase.strided.mskmax( N:integer, x:Array|TypedArray, strideX:integer, \n mask:Array|TypedArray, strideMask:integer )\n Computes the maximum value of a strided array according to a mask.\n","base.strided.mskmax.ndarray":"\nbase.strided.mskmax.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, mask:Array|TypedArray, strideMask:integer, \n offsetMask:integer )\n Computes the maximum value of a strided array according to a mask and using\n alternative indexing semantics.\n","base.strided.mskmin":"\nbase.strided.mskmin( N:integer, x:Array|TypedArray, strideX:integer, \n mask:Array|TypedArray, strideMask:integer )\n Computes the minimum value of a strided array according to a mask.\n","base.strided.mskmin.ndarray":"\nbase.strided.mskmin.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, mask:Array|TypedArray, strideMask:integer, \n offsetMask:integer )\n Computes the minimum value of a strided array according to a mask and using\n alternative indexing semantics.\n","base.strided.mskrange":"\nbase.strided.mskrange( N:integer, x:Array|TypedArray, strideX:integer, \n mask:Array|TypedArray, strideMask:integer )\n Computes the range of a strided array according to a mask.\n","base.strided.mskrange.ndarray":"\nbase.strided.mskrange.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, mask:Array|TypedArray, strideMask:integer, \n offsetMask:integer )\n Computes the range of a strided array according to a mask and using\n alternative indexing semantics.\n","base.strided.mskunary":"\nbase.strided.mskunary( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n fcn:Function )\n Applies a unary callback to elements in a strided input array according to\n elements in a strided mask array and assigns results to elements in a\n strided output array.\n","base.strided.mskunary.ndarray":"\nbase.strided.mskunary.ndarray( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n offsets:ArrayLikeObject, fcn:Function )\n Applies a unary callback to elements in a strided input array according to\n elements in a strided mask array, and assigns results to elements in a\n strided output array using alternative indexing semantics.\n","base.strided.nanmax":"\nbase.strided.nanmax( N:integer, x:Array|TypedArray, stride:integer )\n Computes the maximum value of a strided array, ignoring `NaN` values.\n","base.strided.nanmax.ndarray":"\nbase.strided.nanmax.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the maximum value of a strided array, ignoring `NaN` values and\n using alternative indexing semantics.\n","base.strided.nanmaxabs":"\nbase.strided.nanmaxabs( N:integer, x:Array|TypedArray, stride:integer )\n Computes the maximum absolute value of a strided array, ignoring `NaN`\n values.\n","base.strided.nanmaxabs.ndarray":"\nbase.strided.nanmaxabs.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the maximum absolute value of a strided array, ignoring `NaN`\n values and using alternative indexing semantics.\n","base.strided.nanmaxBy":"\nbase.strided.nanmaxBy( N:integer, x:Array|TypedArray|Object, stride:integer, \n clbk:Function[, thisArg:any] )\n Calculates the maximum value of a strided array via a callback function,\n ignoring `NaN` values.\n","base.strided.nanmaxBy.ndarray":"\nbase.strided.nanmaxBy.ndarray( N:integer, x:Array|TypedArray|Object, \n stride:integer, offset:integer, clbk:Function[, thisArg:any] )\n Calculates the maximum value of a strided array via a callback function,\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.nanmean":"\nbase.strided.nanmean( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array, ignoring `NaN` values.\n","base.strided.nanmean.ndarray":"\nbase.strided.nanmean.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array, ignoring `NaN` values and\n using alternative indexing semantics.\n","base.strided.nanmeanors":"\nbase.strided.nanmeanors( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array, ignoring `NaN` values and\n using ordinary recursive summation.\n","base.strided.nanmeanors.ndarray":"\nbase.strided.nanmeanors.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array, ignoring `NaN` values and\n using ordinary recursive summation and alternative indexing semantics.\n","base.strided.nanmeanpn":"\nbase.strided.nanmeanpn( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array, ignoring `NaN` values and\n using a two-pass error correction algorithm.\n","base.strided.nanmeanpn.ndarray":"\nbase.strided.nanmeanpn.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array, ignoring `NaN` values and\n using a two-pass error correction algorithm and alternative indexing\n semantics.\n","base.strided.nanmeanwd":"\nbase.strided.nanmeanwd( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array, ignoring `NaN` values and\n using Welford's algorithm.\n","base.strided.nanmeanwd.ndarray":"\nbase.strided.nanmeanwd.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array, ignoring `NaN` values and\n using Welford's algorithm and alternative indexing semantics.\n","base.strided.nanmin":"\nbase.strided.nanmin( N:integer, x:Array|TypedArray, stride:integer )\n Computes the minimum value of a strided array, ignoring `NaN` values.\n","base.strided.nanmin.ndarray":"\nbase.strided.nanmin.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the minimum value of a strided array, ignoring `NaN` values and\n using alternative indexing semantics.\n","base.strided.nanminabs":"\nbase.strided.nanminabs( N:integer, x:Array|TypedArray, stride:integer )\n Computes the minimum absolute value of a strided array, ignoring `NaN`\n values.\n","base.strided.nanminabs.ndarray":"\nbase.strided.nanminabs.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the minimum absolute value of a strided array, ignoring `NaN`\n values and using alternative indexing semantics.\n","base.strided.nanminBy":"\nbase.strided.nanminBy( N:integer, x:Array|TypedArray|Object, stride:integer, \n clbk:Function[, thisArg:any] )\n Calculates the minimum value of a strided array via a callback function,\n ignoring `NaN` values.\n","base.strided.nanminBy.ndarray":"\nbase.strided.nanminBy.ndarray( N:integer, x:Array|TypedArray|Object, \n stride:integer, offset:integer, clbk:Function[, thisArg:any] )\n Calculates the minimum value of a strided array via a callback function,\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.nanmskmax":"\nbase.strided.nanmskmax( N:integer, x:Array|TypedArray, strideX:integer, \n mask:Array|TypedArray, strideMask:integer )\n Computes the maximum value of a strided array according to a mask and\n ignoring `NaN` values.\n","base.strided.nanmskmax.ndarray":"\nbase.strided.nanmskmax.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, mask:Array|TypedArray, strideMask:integer, \n offsetMask:integer )\n Computes the maximum value of a strided array according to a mask,\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.nanmskmin":"\nbase.strided.nanmskmin( N:integer, x:Array|TypedArray, strideX:integer, \n mask:Array|TypedArray, strideMask:integer )\n Computes the minimum value of a strided array according to a mask and\n ignoring `NaN` values.\n","base.strided.nanmskmin.ndarray":"\nbase.strided.nanmskmin.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, mask:Array|TypedArray, strideMask:integer, \n offsetMask:integer )\n Computes the minimum value of a strided array according to a mask, ignoring\n `NaN` values and using alternative indexing semantics.\n","base.strided.nanmskrange":"\nbase.strided.nanmskrange( N:integer, x:Array|TypedArray, strideX:integer, \n mask:Array|TypedArray, strideMask:integer )\n Computes the range of a strided array according to a mask and ignoring `NaN`\n values.\n","base.strided.nanmskrange.ndarray":"\nbase.strided.nanmskrange.ndarray( N:integer, x:Array|TypedArray, \n strideX:integer, offsetX:integer, mask:Array|TypedArray, strideMask:integer, \n offsetMask:integer )\n Computes the range of a strided array according to a mask, ignoring `NaN`\n values and using alternative indexing semantics.\n","base.strided.nanrange":"\nbase.strided.nanrange( N:integer, x:Array|TypedArray, stride:integer )\n Computes the range of a strided array, ignoring `NaN` values.\n","base.strided.nanrange.ndarray":"\nbase.strided.nanrange.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the range of a strided array, ignoring `NaN` values and using\n alternative indexing semantics.\n","base.strided.nanrangeBy":"\nbase.strided.nanrangeBy( N:integer, x:Array|TypedArray|Object, stride:integer, \n clbk:Function[, thisArg:any] )\n Calculates the range of a strided array via a callback function, ignoring\n `NaN` values.\n","base.strided.nanrangeBy.ndarray":"\nbase.strided.nanrangeBy.ndarray( N:integer, x:Array|TypedArray|Object, \n stride:integer, offset:integer, clbk:Function[, thisArg:any] )\n Calculates the range of a strided array via a callback function, ignoring\n `NaN` values and using alternative indexing semantics.\n","base.strided.nanstdev":"\nbase.strided.nanstdev( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values.\n","base.strided.nanstdev.ndarray":"\nbase.strided.nanstdev.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using alternative indexing semantics.\n","base.strided.nanstdevch":"\nbase.strided.nanstdevch( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using a one-pass trial mean algorithm.\n","base.strided.nanstdevch.ndarray":"\nbase.strided.nanstdevch.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using a one-pass trial mean algorithm and alternative indexing semantics.\n","base.strided.nanstdevpn":"\nbase.strided.nanstdevpn( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using a two-pass algorithm.\n","base.strided.nanstdevpn.ndarray":"\nbase.strided.nanstdevpn.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using a two-pass algorithm and alternative indexing semantics.\n","base.strided.nanstdevtk":"\nbase.strided.nanstdevtk( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using a one-pass textbook algorithm.\n","base.strided.nanstdevtk.ndarray":"\nbase.strided.nanstdevtk.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using a one-pass textbook algorithm and alternative indexing semantics.\n","base.strided.nanstdevwd":"\nbase.strided.nanstdevwd( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using Welford's algorithm.\n","base.strided.nanstdevwd.ndarray":"\nbase.strided.nanstdevwd.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using Welford's algorithm and alternative indexing semantics.\n","base.strided.nanstdevyc":"\nbase.strided.nanstdevyc( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using a one-pass algorithm proposed by Youngs and Cramer.\n","base.strided.nanstdevyc.ndarray":"\nbase.strided.nanstdevyc.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using a one-pass algorithm proposed by Youngs and Cramer and alternative\n indexing semantics.\n","base.strided.nanvariance":"\nbase.strided.nanvariance( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array ignoring `NaN` values.\n","base.strided.nanvariance.ndarray":"\nbase.strided.nanvariance.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array ignoring `NaN` values and using\n alternative indexing semantics.\n","base.strided.nanvariancech":"\nbase.strided.nanvariancech( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array ignoring `NaN` values and using a\n one-pass trial mean algorithm.\n","base.strided.nanvariancech.ndarray":"\nbase.strided.nanvariancech.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array ignoring `NaN` values and using a\n one-pass trial mean algorithm and alternative indexing semantics.\n","base.strided.nanvariancepn":"\nbase.strided.nanvariancepn( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array ignoring `NaN` values and using a\n two-pass algorithm.\n","base.strided.nanvariancepn.ndarray":"\nbase.strided.nanvariancepn.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array ignoring `NaN` values and using a\n two-pass algorithm and alternative indexing semantics.\n","base.strided.nanvariancetk":"\nbase.strided.nanvariancetk( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array ignoring `NaN` values and using a\n one-pass textbook algorithm.\n","base.strided.nanvariancetk.ndarray":"\nbase.strided.nanvariancetk.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array ignoring `NaN` values and using a\n one-pass textbook algorithm and alternative indexing semantics.\n","base.strided.nanvariancewd":"\nbase.strided.nanvariancewd( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array ignoring `NaN` values and using\n Welford's algorithm.\n","base.strided.nanvariancewd.ndarray":"\nbase.strided.nanvariancewd.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array ignoring `NaN` values and using\n Welford's algorithm and alternative indexing semantics.\n","base.strided.nanvarianceyc":"\nbase.strided.nanvarianceyc( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array ignoring `NaN` values and using a\n one-pass algorithm proposed by Youngs and Cramer.\n","base.strided.nanvarianceyc.ndarray":"\nbase.strided.nanvarianceyc.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array ignoring `NaN` values and using a\n one-pass algorithm proposed by Youngs and Cramer and alternative indexing\n semantics.\n","base.strided.nullary":"\nbase.strided.nullary( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n fcn:Function )\n Applies a nullary callback and assigns results to elements in a strided\n output array.\n","base.strided.nullary.ndarray":"\nbase.strided.nullary.ndarray( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n offsets:ArrayLikeObject, fcn:Function )\n Applies a nullary callback and assigns results to elements in a strided\n output array using alternative indexing semantics.\n","base.strided.quaternary":"\nbase.strided.quaternary( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n fcn:Function )\n Applies a quaternary callback to strided input array elements and assigns\n results to elements in a strided output array.\n","base.strided.quaternary.ndarray":"\nbase.strided.quaternary.ndarray( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n offsets:ArrayLikeObject, fcn:Function )\n Applies a quaternary callback to strided input array elements and assigns\n results to elements in a strided output array using alternative indexing\n semantics.\n","base.strided.quinary":"\nbase.strided.quinary( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n fcn:Function )\n Applies a quinary callback to strided input array elements and assigns\n results to elements in a strided output array.\n","base.strided.quinary.ndarray":"\nbase.strided.quinary.ndarray( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n offsets:ArrayLikeObject, fcn:Function )\n Applies a quinary callback to strided input array elements and assigns\n results to elements in a strided output array using alternative indexing\n semantics.\n","base.strided.range":"\nbase.strided.range( N:integer, x:Array|TypedArray, stride:integer )\n Computes the range of a strided array.\n","base.strided.range.ndarray":"\nbase.strided.range.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the range of a strided array using alternative indexing semantics.\n","base.strided.rangeBy":"\nbase.strided.rangeBy( N:integer, x:Array|TypedArray|Object, stride:integer, \n clbk:Function[, thisArg:any] )\n Calculates the range of a strided array via a callback function.\n","base.strided.rangeBy.ndarray":"\nbase.strided.rangeBy.ndarray( N:integer, x:Array|TypedArray|Object, \n stride:integer, offset:integer, clbk:Function[, thisArg:any] )\n Calculates the range of a strided array via a callback function and using\n alternative indexing semantics.\n","base.strided.sabs":"\nbase.strided.sabs( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Computes the absolute value for each element in a single-precision floating-\n point strided array `x` and assigns the results to elements in a single-\n precision floating-point strided array `y`.\n","base.strided.sabs.ndarray":"\nbase.strided.sabs.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the absolute value for each element in a single-precision floating-\n point strided array `x` and assigns the results to elements in a single-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.sabs2":"\nbase.strided.sabs2( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Computes the squared absolute value for each element in a single-precision\n floating-point strided array `x` and assigns the results to elements in a\n single-precision floating-point strided array `y`.\n","base.strided.sabs2.ndarray":"\nbase.strided.sabs2.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the squared absolute value for each element in a single-precision\n floating-point strided array `x` and assigns the results to elements in a\n single-precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.sapx":"\nbase.strided.sapx( N:integer, alpha:number, x:Float32Array, stride:integer )\n Adds a constant to each element in a single-precision floating-point strided\n array.\n","base.strided.sapx.ndarray":"\nbase.strided.sapx.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each element in a single-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.sapxsum":"\nbase.strided.sapxsum( N:integer, alpha:number, x:Float32Array, stride:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum.\n","base.strided.sapxsum.ndarray":"\nbase.strided.sapxsum.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using alternative indexing semantics.\n","base.strided.sapxsumkbn":"\nbase.strided.sapxsumkbn( N:integer, alpha:number, x:Float32Array, \n stride:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using an improved Kahan–Babuška algorithm.\n","base.strided.sapxsumkbn.ndarray":"\nbase.strided.sapxsumkbn.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using an improved Kahan–Babuška algorithm and\n alternative indexing semantics.\n","base.strided.sapxsumkbn2":"\nbase.strided.sapxsumkbn2( N:integer, alpha:number, x:Float32Array, \n stride:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using a second-order iterative Kahan–Babuška\n algorithm.\n","base.strided.sapxsumkbn2.ndarray":"\nbase.strided.sapxsumkbn2.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using a second-order iterative Kahan–Babuška\n algorithm and alternative indexing semantics.\n","base.strided.sapxsumors":"\nbase.strided.sapxsumors( N:integer, alpha:number, x:Float32Array, \n stride:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using ordinary recursive summation.\n","base.strided.sapxsumors.ndarray":"\nbase.strided.sapxsumors.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using ordinary recursive summation and\n alternative indexing semantics.\n","base.strided.sapxsumpw":"\nbase.strided.sapxsumpw( N:integer, alpha:number, x:Float32Array, \n stride:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using pairwise summation.\n","base.strided.sapxsumpw.ndarray":"\nbase.strided.sapxsumpw.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using pairwise summation and alternative\n indexing semantics.\n","base.strided.sasum":"\nbase.strided.sasum( N:integer, x:Float32Array, stride:integer )\n Computes the sum of the absolute values.\n","base.strided.sasum.ndarray":"\nbase.strided.sasum.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of absolute values using alternative indexing semantics.\n","base.strided.sasumpw":"\nbase.strided.sasumpw( N:integer, x:Float32Array, stride:integer )\n Computes the sum of absolute values (L1 norm) of single-precision floating-\n point strided array elements using pairwise summation.\n","base.strided.sasumpw.ndarray":"\nbase.strided.sasumpw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of absolute values (L1 norm) of single-precision floating-\n point strided array elements using pairwise summation and alternative\n indexing semantics.\n","base.strided.saxpy":"\nbase.strided.saxpy( N:integer, alpha:number, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Multiplies a vector `x` by a constant `alpha` and adds the result to `y`.\n","base.strided.saxpy.ndarray":"\nbase.strided.saxpy.ndarray( N:integer, alpha:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Multiplies a vector `x` by a constant `alpha` and adds the result to `y`,\n using alternative indexing semantics.\n","base.strided.scbrt":"\nbase.strided.scbrt( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Computes the cube root of each element in a single-precision floating-point \n strided array `x` and assigns the results to elements in a single-precision \n floating-point strided array `y`.\n","base.strided.scbrt.ndarray":"\nbase.strided.scbrt.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the cube root of each element in a single-precision floating-point \n strided array `x` and assigns the results to elements in a single-precision \n floating-point strided array `y` using alternative indexing semantics.\n","base.strided.sceil":"\nbase.strided.sceil( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward positive infinity and assigns the results to elements in a single-\n precision floating-point strided array `y`.\n","base.strided.sceil.ndarray":"\nbase.strided.sceil.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward positive infinity and assigns the results to elements in a single-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.scopy":"\nbase.strided.scopy( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Copies values from `x` into `y`.\n","base.strided.scopy.ndarray":"\nbase.strided.scopy.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Copies values from `x` into `y` using alternative indexing semantics.\n","base.strided.scumax":"\nbase.strided.scumax( N:integer, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the cumulative maximum of single-precision floating-point strided\n array elements.\n","base.strided.scumax.ndarray":"\nbase.strided.scumax.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the cumulative maximum of single-precision floating-point strided\n array elements using alternative indexing semantics.\n","base.strided.scumaxabs":"\nbase.strided.scumaxabs( N:integer, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the cumulative maximum absolute value of single-precision floating-\n point strided array elements.\n","base.strided.scumaxabs.ndarray":"\nbase.strided.scumaxabs.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the cumulative maximum absolute value of single-precision floating-\n point strided array elements using alternative indexing semantics.\n","base.strided.scumin":"\nbase.strided.scumin( N:integer, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the cumulative minimum of single-precision floating-point strided\n array elements.\n","base.strided.scumin.ndarray":"\nbase.strided.scumin.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the cumulative minimum of single-precision floating-point strided\n array elements using alternative indexing semantics.\n","base.strided.scuminabs":"\nbase.strided.scuminabs( N:integer, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the cumulative minimum absolute value of single-precision floating-\n point strided array elements.\n","base.strided.scuminabs.ndarray":"\nbase.strided.scuminabs.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the cumulative minimum absolute value of single-precision floating-\n point strided array elements using alternative indexing semantics.\n","base.strided.scusum":"\nbase.strided.scusum( N:integer, sum:number, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements.\n","base.strided.scusum.ndarray":"\nbase.strided.scusum.ndarray( N:integer, sum:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements using alternative indexing semantics.\n","base.strided.scusumkbn":"\nbase.strided.scusumkbn( N:integer, sum:number, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements using an improved Kahan–Babuška algorithm.\n","base.strided.scusumkbn.ndarray":"\nbase.strided.scusumkbn.ndarray( N:integer, sum:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements using an improved Kahan–Babuška algorithm and alternative indexing\n semantics.\n","base.strided.scusumkbn2":"\nbase.strided.scusumkbn2( N:integer, sum:number, x:Float32Array, \n strideX:integer, y:Float32Array, strideY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements using a second-order iterative Kahan–Babuška algorithm.\n","base.strided.scusumkbn2.ndarray":"\nbase.strided.scusumkbn2.ndarray( N:integer, sum:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements using a second-order iterative Kahan–Babuška algorithm and\n alternative indexing semantics.\n","base.strided.scusumors":"\nbase.strided.scusumors( N:integer, sum:number, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements using ordinary recursive summation.\n","base.strided.scusumors.ndarray":"\nbase.strided.scusumors.ndarray( N:integer, sum:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements using ordinary recursive summation and alternative indexing\n semantics.\n","base.strided.scusumpw":"\nbase.strided.scusumpw( N:integer, sum:number, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements using pairwise summation.\n","base.strided.scusumpw.ndarray":"\nbase.strided.scusumpw.ndarray( N:integer, sum:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements using pairwise summation and alternative indexing semantics.\n","base.strided.sdeg2rad":"\nbase.strided.sdeg2rad( N:integer, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Converts each element in a single-precision floating-point strided array `x`\n from degrees to radians and assigns the results to elements in a single-\n precision floating-point strided array `y`.\n","base.strided.sdeg2rad.ndarray":"\nbase.strided.sdeg2rad.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Converts each element in a single-precision floating-point strided array `x`\n from degrees to radians and assigns the results to elements in a single-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.sdot":"\nbase.strided.sdot( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Computes the dot product of two single-precision floating-point vectors.\n","base.strided.sdot.ndarray":"\nbase.strided.sdot.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the dot product of two single-precision floating-point vectors\n using alternative indexing semantics.\n","base.strided.sdsapxsum":"\nbase.strided.sdsapxsum( N:integer, alpha:number, x:Float32Array, \n stride:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using extended accumulation.\n","base.strided.sdsapxsum.ndarray":"\nbase.strided.sdsapxsum.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using extended accumulation and alternative\n indexing semantics.\n","base.strided.sdsapxsumpw":"\nbase.strided.sdsapxsumpw( N:integer, alpha:number, x:Float32Array, \n stride:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using pairwise summation with extended\n accumulation.\n","base.strided.sdsapxsumpw.ndarray":"\nbase.strided.sdsapxsumpw.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using pairwise summation with extended\n accumulation and alternative indexing semantics.\n","base.strided.sdsdot":"\nbase.strided.sdsdot( N:integer, scalar:number, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the dot product of two single-precision floating-point vectors with\n extended accumulation.\n","base.strided.sdsdot.ndarray":"\nbase.strided.sdsdot.ndarray( N:integer, scalar:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Computes the dot product of two single-precision floating-point vectors\n using alternative indexing semantics and with extended accumulation.\n","base.strided.sdsmean":"\nbase.strided.sdsmean( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using extended accumulation.\n","base.strided.sdsmean.ndarray":"\nbase.strided.sdsmean.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using extended accumulation and alternative indexing semantics.\n","base.strided.sdsmeanors":"\nbase.strided.sdsmeanors( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using ordinary recursive summation with extended accumulation.\n","base.strided.sdsmeanors.ndarray":"\nbase.strided.sdsmeanors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using ordinary recursive summation with extended accumulation and\n alternative indexing semantics.\n","base.strided.sdsnanmean":"\nbase.strided.sdsnanmean( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using extended accumulation.\n","base.strided.sdsnanmean.ndarray":"\nbase.strided.sdsnanmean.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using extended accumulation and alternative\n indexing semantics.\n","base.strided.sdsnanmeanors":"\nbase.strided.sdsnanmeanors( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using ordinary recursive summation with\n extended accumulation.\n","base.strided.sdsnanmeanors.ndarray":"\nbase.strided.sdsnanmeanors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using ordinary recursive summation with\n extended accumulation and alternative indexing semantics.\n","base.strided.sdsnansum":"\nbase.strided.sdsnansum( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using extended accumulation.\n","base.strided.sdsnansum.ndarray":"\nbase.strided.sdsnansum.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using extended accumulation and alternative\n indexing semantics.\n","base.strided.sdsnansumpw":"\nbase.strided.sdsnansumpw( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation with extended\n accumulation.\n","base.strided.sdsnansumpw.ndarray":"\nbase.strided.sdsnansumpw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation with extended\n accumulation and alternative indexing semantics.\n","base.strided.sdssum":"\nbase.strided.sdssum( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements\n using extended accumulation.\n","base.strided.sdssum.ndarray":"\nbase.strided.sdssum.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using extended accumulation and alternative indexing semantics.\n","base.strided.sdssumpw":"\nbase.strided.sdssumpw( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements\n using pairwise summation with extended accumulation.\n","base.strided.sdssumpw.ndarray":"\nbase.strided.sdssumpw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using pairwise summation with extended accumulation and alternative indexing\n semantics.\n","base.strided.sfill":"\nbase.strided.sfill( N:integer, alpha:number, x:Float32Array, stride:integer )\n Fills a single-precision floating-point strided array with a specified\n scalar value.\n","base.strided.sfill.ndarray":"\nbase.strided.sfill.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Fills a single-precision floating-point strided array with a specified\n scalar value using alternative indexing semantics.\n","base.strided.sfloor":"\nbase.strided.sfloor( N:integer, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward negative infinity and assigns the results to elements in a single-\n precision floating-point strided array `y`.\n","base.strided.sfloor.ndarray":"\nbase.strided.sfloor.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward negative infinity and assigns the results to elements in a single-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.sinv":"\nbase.strided.sinv( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Computes the multiplicative inverse for each element in a single-precision\n floating-point strided array `x` and assigns the results to elements in a\n single-precision floating-point strided array `y`.\n","base.strided.sinv.ndarray":"\nbase.strided.sinv.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the multiplicative inverse for each element in a single-precision\n floating-point strided array `x` and assigns the results to elements in a\n single-precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.smap":"\nbase.strided.smap( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer, fcn:Function )\n Applies a unary function to a single-precision floating-point strided input\n array and assigns results to a single-precision floating-point strided\n output array.\n","base.strided.smap.ndarray":"\nbase.strided.smap.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer, \n fcn:Function )\n Applies a unary function to a single-precision floating-point strided input\n array and assigns results to a single-precision floating-point strided\n output array using alternative indexing semantics.\n","base.strided.smap2":"\nbase.strided.smap2( N:integer, x:Float32Array, sx:integer, y:Float32Array, \n sy:integer, z:Float32Array, sz:integer, fcn:Function )\n Applies a binary function to single-precision floating-point strided input\n arrays and assigns results to a single-precision floating-point strided\n output array.\n","base.strided.smap2.ndarray":"\nbase.strided.smap2.ndarray( N:integer, x:Float32Array, sx:integer, ox:integer, \n y:Float32Array, sy:integer, oy:integer, z:Float32Array, sz:integer, \n oz:integer, fcn:Function )\n Applies a binary function to single-precision floating-point strided input\n arrays and assigns results to a single-precision floating-point strided\n output array using alternative indexing semantics.\n","base.strided.smax":"\nbase.strided.smax( N:integer, x:Float32Array, stride:integer )\n Computes the maximum value of a single-precision floating-point strided\n array.\n","base.strided.smax.ndarray":"\nbase.strided.smax.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the maximum value of a single-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.smaxabs":"\nbase.strided.smaxabs( N:integer, x:Float32Array, stride:integer )\n Computes the maximum absolute value of a single-precision floating-point\n strided array.\n","base.strided.smaxabs.ndarray":"\nbase.strided.smaxabs.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the maximum absolute value of a single-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.smaxabssorted":"\nbase.strided.smaxabssorted( N:integer, x:Float32Array, stride:integer )\n Computes the maximum absolute value of a sorted single-precision floating-\n point strided array.\n","base.strided.smaxabssorted.ndarray":"\nbase.strided.smaxabssorted.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the maximum absolute value of a sorted single-precision floating-\n point strided array using alternative indexing semantics.\n","base.strided.smaxsorted":"\nbase.strided.smaxsorted( N:integer, x:Float32Array, stride:integer )\n Computes the maximum value of a sorted single-precision floating-point\n strided array.\n","base.strided.smaxsorted.ndarray":"\nbase.strided.smaxsorted.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the maximum value of a sorted single-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.smean":"\nbase.strided.smean( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array.\n","base.strided.smean.ndarray":"\nbase.strided.smean.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.smeankbn":"\nbase.strided.smeankbn( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using an improved Kahan–Babuška algorithm.\n","base.strided.smeankbn.ndarray":"\nbase.strided.smeankbn.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using an improved Kahan–Babuška algorithm and alternative indexing\n semantics.\n","base.strided.smeankbn2":"\nbase.strided.smeankbn2( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a second-order iterative Kahan–Babuška algorithm.\n","base.strided.smeankbn2.ndarray":"\nbase.strided.smeankbn2.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a second-order iterative Kahan–Babuška algorithm and alternative\n indexing semantics.\n","base.strided.smeanli":"\nbase.strided.smeanli( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a one-pass trial mean algorithm.\n","base.strided.smeanli.ndarray":"\nbase.strided.smeanli.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a one-pass trial mean algorithm and alternative indexing\n semantics.\n","base.strided.smeanlipw":"\nbase.strided.smeanlipw( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a one-pass trial mean algorithm with pairwise summation.\n","base.strided.smeanlipw.ndarray":"\nbase.strided.smeanlipw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a one-pass trial mean algorithm with pairwise summation and\n alternative indexing semantics.\n","base.strided.smeanors":"\nbase.strided.smeanors( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using ordinary recursive summation.\n","base.strided.smeanors.ndarray":"\nbase.strided.smeanors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using ordinary recursive summation and alternative indexing semantics.\n","base.strided.smeanpn":"\nbase.strided.smeanpn( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a two-pass error correction algorithm.\n","base.strided.smeanpn.ndarray":"\nbase.strided.smeanpn.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a two-pass error correction algorithm and alternative indexing\n semantics.\n","base.strided.smeanpw":"\nbase.strided.smeanpw( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using pairwise summation.\n","base.strided.smeanpw.ndarray":"\nbase.strided.smeanpw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using pairwise summation and alternative indexing semantics.\n","base.strided.smeanwd":"\nbase.strided.smeanwd( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using Welford's algorithm.\n","base.strided.smeanwd.ndarray":"\nbase.strided.smeanwd.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using Welford's algorithm and alternative indexing semantics.\n","base.strided.smediansorted":"\nbase.strided.smediansorted( N:integer, x:Float32Array, stride:integer )\n Computes the median value of a sorted single-precision floating-point\n strided array.\n","base.strided.smediansorted.ndarray":"\nbase.strided.smediansorted.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the median value of a sorted single-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.smidrange":"\nbase.strided.smidrange( N:integer, x:Float32Array, stride:integer )\n Computes the mid-range of a single-precision floating-point strided array.\n","base.strided.smidrange.ndarray":"\nbase.strided.smidrange.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the mid-range of a single-precision floating-point strided array\n using alternative indexing semantics.\n","base.strided.smin":"\nbase.strided.smin( N:integer, x:Float32Array, stride:integer )\n Computes the minimum value of a single-precision floating-point strided\n array.\n","base.strided.smin.ndarray":"\nbase.strided.smin.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the minimum value of a single-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.sminabs":"\nbase.strided.sminabs( N:integer, x:Float32Array, stride:integer )\n Computes the minimum absolute value of a single-precision floating-point\n strided array.\n","base.strided.sminabs.ndarray":"\nbase.strided.sminabs.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the minimum absolute value of a single-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.sminsorted":"\nbase.strided.sminsorted( N:integer, x:Float32Array, stride:integer )\n Computes the minimum value of a sorted single-precision floating-point\n strided array.\n","base.strided.sminsorted.ndarray":"\nbase.strided.sminsorted.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the minimum value of a sorted single-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.smskabs":"\nbase.strided.smskabs( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Computes the absolute value for each element in a single-precision floating-\n point strided array `x` according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`.\n","base.strided.smskabs.ndarray":"\nbase.strided.smskabs.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Computes the absolute value for each element in a single-precision floating-\n point strided array `x` according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.smskabs2":"\nbase.strided.smskabs2( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Computes the squared absolute value for each element in a single-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a single-precision floating-point\n strided array `y`.\n","base.strided.smskabs2.ndarray":"\nbase.strided.smskabs2.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Computes the squared absolute value for each element in a single-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a single-precision floating-point\n strided array `y` using alternative indexing semantics.\n","base.strided.smskcbrt":"\nbase.strided.smskcbrt( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Computes the cube root for each element in a single-precision floating-point\n strided array `x` according to a strided mask array and assigns the results\n to elements in a single-precision floating-point strided array `y`.\n","base.strided.smskcbrt.ndarray":"\nbase.strided.smskcbrt.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Computes the cube root for each element in a single-precision floating-point\n strided array `x` according to a strided mask array and assigns the results\n to elements in a single-precision floating-point strided array `y` using\n alternative indexing semantics.\n","base.strided.smskceil":"\nbase.strided.smskceil( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward positive infinity according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`.\n","base.strided.smskceil.ndarray":"\nbase.strided.smskceil.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward positive infinity according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.smskdeg2rad":"\nbase.strided.smskdeg2rad( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Converts each element in a single-precision floating-point strided array `x`\n from degrees to radians according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`.\n","base.strided.smskdeg2rad.ndarray":"\nbase.strided.smskdeg2rad.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Converts each element in a single-precision floating-point strided array `x`\n from degrees to radians according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.smskfloor":"\nbase.strided.smskfloor( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward negative infinity according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`.\n","base.strided.smskfloor.ndarray":"\nbase.strided.smskfloor.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward negative infinity according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.smskinv":"\nbase.strided.smskinv( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Computes the multiplicative inverse for each element in a single-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a single-precision floating-point strided\n array `y`.\n","base.strided.smskinv.ndarray":"\nbase.strided.smskinv.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Computes the multiplicative inverse for each element in a single-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a single-precision floating-point strided\n array `y` using alternative indexing semantics.\n","base.strided.smskmap":"\nbase.strided.smskmap( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer, fcn:Function )\n Applies a unary function to a single-precision floating-point strided input\n array according to a strided mask array and assigns results to a single-\n precision floating-point strided output array.\n","base.strided.smskmap.ndarray":"\nbase.strided.smskmap.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Uint8Array, sm:integer, om:integer, y:Float32Array, sy:integer, \n oy:integer, fcn:Function )\n Applies a unary function to a single-precision floating-point strided input\n array according to a strided mask array and assigns results to a single-\n precision floating-point strided output array using alternative indexing\n semantics.\n","base.strided.smskmap2":"\nbase.strided.smskmap2( N:integer, x:Float32Array, sx:integer, y:Float32Array, \n sy:integer, m:Uint8Array, sm:integer, z:Float32Array, sz:integer, \n fcn:Function )\n Applies a binary function to single-precision floating-point strided input\n arrays according to a strided mask array and assigns results to a single-\n precision floating-point strided output array.\n","base.strided.smskmap2.ndarray":"\nbase.strided.smskmap2.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, y:Float32Array, sy:integer, oy:integer, m:Uint8Array, sm:integer, \n om:integer, z:Float32Array, sz:integer, oz:integer, fcn:Function )\n Applies a binary function to single-precision floating-point strided input\n arrays according to a strided mask array and assigns results to a single-\n precision floating-point strided output array using alternative indexing\n semantics.\n","base.strided.smskmax":"\nbase.strided.smskmax( N:integer, x:Float32Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the maximum value of a single-precision floating-point strided\n array according to a mask.\n","base.strided.smskmax.ndarray":"\nbase.strided.smskmax.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the maximum value of a single-precision floating-point strided\n array according to a mask and using alternative indexing semantics.\n","base.strided.smskmin":"\nbase.strided.smskmin( N:integer, x:Float32Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the minimum value of a single-precision floating-point strided\n array according to a mask.\n","base.strided.smskmin.ndarray":"\nbase.strided.smskmin.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the minimum value of a single-precision floating-point strided\n array according to a mask and using alternative indexing semantics.\n","base.strided.smskramp":"\nbase.strided.smskramp( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Evaluates the ramp function for each element in a single-precision floating-\n point strided array `x` according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`.\n","base.strided.smskramp.ndarray":"\nbase.strided.smskramp.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Evaluates the ramp function for each element in a single-precision floating-\n point strided array `x` according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.smskrange":"\nbase.strided.smskrange( N:integer, x:Float32Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the range of a single-precision floating-point strided array\n according to a mask.\n","base.strided.smskrange.ndarray":"\nbase.strided.smskrange.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the range of a single-precision floating-point strided array\n according to a mask and using alternative indexing semantics.\n","base.strided.smskrsqrt":"\nbase.strided.smskrsqrt( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Computes the reciprocal square root for each element in a single-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a single-precision floating-point strided\n array `y`.\n","base.strided.smskrsqrt.ndarray":"\nbase.strided.smskrsqrt.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Computes the reciprocal square root for each element in a single-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a single-precision floating-point strided\n array `y` using alternative indexing semantics.\n","base.strided.smsksqrt":"\nbase.strided.smsksqrt( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Computes the principal square root for each element in a single-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a single-precision floating-point strided\n array `y`.\n","base.strided.smsksqrt.ndarray":"\nbase.strided.smsksqrt.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Computes the principal square root for each element in a single-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a single-precision floating-point strided\n array `y` using alternative indexing semantics.\n","base.strided.smsktrunc":"\nbase.strided.smsktrunc( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward zero according to a strided mask array and assigns the results to\n elements in a single-precision floating-point strided array `y`.\n","base.strided.smsktrunc.ndarray":"\nbase.strided.smsktrunc.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward zero according to a strided mask array and assigns the results to\n elements in a single-precision floating-point strided array `y` using\n alternative indexing semantics.\n","base.strided.snanmax":"\nbase.strided.snanmax( N:integer, x:Float32Array, stride:integer )\n Computes the maximum value of a single-precision floating-point strided\n array, ignoring `NaN` values.\n","base.strided.snanmax.ndarray":"\nbase.strided.snanmax.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the maximum value of a single-precision floating-point strided\n array, ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.snanmaxabs":"\nbase.strided.snanmaxabs( N:integer, x:Float32Array, stride:integer )\n Computes the maximum absolute value of a single-precision floating-point\n strided array, ignoring `NaN` values.\n","base.strided.snanmaxabs.ndarray":"\nbase.strided.snanmaxabs.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the maximum absolute value of a single-precision floating-point\n strided array, ignoring `NaN` values and using alternative indexing\n semantics.\n","base.strided.snanmean":"\nbase.strided.snanmean( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values.\n","base.strided.snanmean.ndarray":"\nbase.strided.snanmean.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.snanmeanors":"\nbase.strided.snanmeanors( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using ordinary recursive summation.\n","base.strided.snanmeanors.ndarray":"\nbase.strided.snanmeanors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using ordinary recursive summation and\n alternative indexing semantics.\n","base.strided.snanmeanpn":"\nbase.strided.snanmeanpn( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using a two-pass error correction\n algorithm.\n","base.strided.snanmeanpn.ndarray":"\nbase.strided.snanmeanpn.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using a two-pass error correction algorithm\n and alternative indexing semantics.\n","base.strided.snanmeanwd":"\nbase.strided.snanmeanwd( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using Welford's algorithm.\n","base.strided.snanmeanwd.ndarray":"\nbase.strided.snanmeanwd.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using Welford's algorithm and alternative\n indexing semantics.\n","base.strided.snanmin":"\nbase.strided.snanmin( N:integer, x:Float32Array, stride:integer )\n Computes the minimum value of a single-precision floating-point strided\n array, ignoring `NaN` values.\n","base.strided.snanmin.ndarray":"\nbase.strided.snanmin.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the minimum value of a single-precision floating-point strided\n array, ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.snanminabs":"\nbase.strided.snanminabs( N:integer, x:Float32Array, stride:integer )\n Computes the minimum absolute value of a single-precision floating-point\n strided array, ignoring `NaN` values.\n","base.strided.snanminabs.ndarray":"\nbase.strided.snanminabs.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the minimum absolute value of a single-precision floating-point\n strided array, ignoring `NaN` values and using alternative indexing\n semantics.\n","base.strided.snanmskmax":"\nbase.strided.snanmskmax( N:integer, x:Float32Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the maximum value of a single-precision floating-point strided\n array according to a mask, ignoring `NaN` values.\n","base.strided.snanmskmax.ndarray":"\nbase.strided.snanmskmax.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the maximum value of a single-precision floating-point strided\n array according to a mask, ignoring `NaN` values and using alternative\n indexing semantics.\n","base.strided.snanmskmin":"\nbase.strided.snanmskmin( N:integer, x:Float32Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the minimum value of a single-precision floating-point strided\n array according to a mask, ignoring `NaN` values.\n","base.strided.snanmskmin.ndarray":"\nbase.strided.snanmskmin.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the minimum value of a single-precision floating-point strided\n array according to a mask, ignoring `NaN` values and using alternative\n indexing semantics.\n","base.strided.snanmskrange":"\nbase.strided.snanmskrange( N:integer, x:Float32Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the range of a single-precision floating-point strided array\n according to a mask, ignoring `NaN` values.\n","base.strided.snanmskrange.ndarray":"\nbase.strided.snanmskrange.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the range of a single-precision floating-point strided array\n according to a mask, ignoring `NaN` values and using alternative indexing\n semantics.\n","base.strided.snanrange":"\nbase.strided.snanrange( N:integer, x:Float32Array, stride:integer )\n Computes the range of a single-precision floating-point strided array,\n ignoring `NaN` values.\n","base.strided.snanrange.ndarray":"\nbase.strided.snanrange.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the range of a single-precision floating-point strided array,\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.snanstdev":"\nbase.strided.snanstdev( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values.\n","base.strided.snanstdev.ndarray":"\nbase.strided.snanstdev.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and alternative indexing semantics.\n","base.strided.snanstdevch":"\nbase.strided.snanstdevch( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using a one-pass trial mean algorithm.\n","base.strided.snanstdevch.ndarray":"\nbase.strided.snanstdevch.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using a one-pass trial mean algorithm and\n alternative indexing semantics.\n","base.strided.snanstdevpn":"\nbase.strided.snanstdevpn( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using a two-pass algorithm.\n","base.strided.snanstdevpn.ndarray":"\nbase.strided.snanstdevpn.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using a two-pass algorithm and alternative\n indexing semantics.\n","base.strided.snanstdevtk":"\nbase.strided.snanstdevtk( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using a one-pass textbook algorithm.\n","base.strided.snanstdevtk.ndarray":"\nbase.strided.snanstdevtk.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using a one-pass textbook algorithm and\n alternative indexing semantics.\n","base.strided.snanstdevwd":"\nbase.strided.snanstdevwd( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using Welford's algorithm.\n","base.strided.snanstdevwd.ndarray":"\nbase.strided.snanstdevwd.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using Welford's algorithm and alternative\n indexing semantics.\n","base.strided.snanstdevyc":"\nbase.strided.snanstdevyc( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using a one-pass algorithm proposed by\n Youngs and Cramer.\n","base.strided.snanstdevyc.ndarray":"\nbase.strided.snanstdevyc.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using a one-pass algorithm proposed by\n Youngs and Cramer and alternative indexing semantics.\n","base.strided.snansum":"\nbase.strided.snansum( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values.\n","base.strided.snansum.ndarray":"\nbase.strided.snansum.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.snansumkbn":"\nbase.strided.snansumkbn( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using an improved Kahan–Babuška algorithm.\n","base.strided.snansumkbn.ndarray":"\nbase.strided.snansumkbn.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using an improved Kahan–Babuška algorithm and\n alternative indexing semantics.\n","base.strided.snansumkbn2":"\nbase.strided.snansumkbn2( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using a second-order iterative Kahan–Babuška\n algorithm.\n","base.strided.snansumkbn2.ndarray":"\nbase.strided.snansumkbn2.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using a second-order iterative Kahan–Babuška\n algorithm and alternative indexing semantics.\n","base.strided.snansumors":"\nbase.strided.snansumors( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation.\n","base.strided.snansumors.ndarray":"\nbase.strided.snansumors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation and alternative\n indexing semantics.\n","base.strided.snansumpw":"\nbase.strided.snansumpw( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation.\n","base.strided.snansumpw.ndarray":"\nbase.strided.snansumpw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation and alternative indexing\n semantics.\n","base.strided.snanvariance":"\nbase.strided.snanvariance( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values.\n","base.strided.snanvariance.ndarray":"\nbase.strided.snanvariance.ndarray( N:integer, correction:number, \n x:Float32Array, stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.snanvariancech":"\nbase.strided.snanvariancech( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using a one-pass trial mean algorithm.\n","base.strided.snanvariancech.ndarray":"\nbase.strided.snanvariancech.ndarray( N:integer, correction:number, \n x:Float32Array, stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using a one-pass trial mean algorithm and\n alternative indexing semantics.\n","base.strided.snanvariancepn":"\nbase.strided.snanvariancepn( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using a two-pass algorithm.\n","base.strided.snanvariancepn.ndarray":"\nbase.strided.snanvariancepn.ndarray( N:integer, correction:number, \n x:Float32Array, stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using a two-pass algorithm and alternative\n indexing semantics.\n","base.strided.snanvariancetk":"\nbase.strided.snanvariancetk( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using a one-pass textbook algorithm.\n","base.strided.snanvariancetk.ndarray":"\nbase.strided.snanvariancetk.ndarray( N:integer, correction:number, \n x:Float32Array, stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using a one-pass textbook algorithm and\n alternative indexing semantics.\n","base.strided.snanvariancewd":"\nbase.strided.snanvariancewd( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using Welford's algorithm.\n","base.strided.snanvariancewd.ndarray":"\nbase.strided.snanvariancewd.ndarray( N:integer, correction:number, \n x:Float32Array, stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using Welford's algorithm and alternative indexing\n semantics.\n","base.strided.snanvarianceyc":"\nbase.strided.snanvarianceyc( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and\n Cramer.\n","base.strided.snanvarianceyc.ndarray":"\nbase.strided.snanvarianceyc.ndarray( N:integer, correction:number, \n x:Float32Array, stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and\n Cramer and alternative indexing semantics.\n","base.strided.snrm2":"\nbase.strided.snrm2( N:integer, x:Float32Array, stride:integer )\n Computes the L2-norm of a single-precision floating-point vector.\n","base.strided.snrm2.ndarray":"\nbase.strided.snrm2.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the L2-norm of a single-precision floating-point vector using\n alternative indexing semantics.\n","base.strided.sramp":"\nbase.strided.sramp( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Evaluates the ramp function for each element in a single-precision floating-\n point strided array `x` and assigns the results to elements in a single-\n precision floating-point strided array `y`.\n","base.strided.sramp.ndarray":"\nbase.strided.sramp.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Evaluates the ramp function for each element in a single-precision floating-\n point strided array `x` and assigns the results to elements in a single-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.srange":"\nbase.strided.srange( N:integer, x:Float32Array, stride:integer )\n Computes the range of a single-precision floating-point strided array.\n","base.strided.srange.ndarray":"\nbase.strided.srange.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the range of a single-precision floating-point strided array using\n alternative indexing semantics.\n","base.strided.srev":"\nbase.strided.srev( N:integer, x:Float32Array, stride:integer )\n Reverses a single-precision floating-point strided array in-place.\n","base.strided.srev.ndarray":"\nbase.strided.srev.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Reverses a single-precision floating-point strided array in-place using\n alternative indexing semantics.\n","base.strided.srsqrt":"\nbase.strided.srsqrt( N:integer, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the reciprocal square root for each element in a single-precision\n floating-point strided array `x` and assigns the results to elements in a\n single-precision floating-point strided array `y`.\n","base.strided.srsqrt.ndarray":"\nbase.strided.srsqrt.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the reciprocal square root for each element in a single-precision\n floating-point strided array `x` and assigns the results to elements in a\n single-precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.sscal":"\nbase.strided.sscal( N:integer, alpha:number, x:Float32Array, stride:integer )\n Multiplies a single-precision floating-point vector `x` by a constant\n `alpha`.\n","base.strided.sscal.ndarray":"\nbase.strided.sscal.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Multiplies a single-precision floating-point vector `x` by a constant\n `alpha` using alternative indexing semantics.\n","base.strided.ssort2hp":"\nbase.strided.ssort2hp( N:integer, order:number, x:Float32Array, \n strideX:integer, y:Float32Array, strideY:integer )\n Simultaneously sorts two single-precision floating-point strided arrays\n based on the sort order of the first array using heapsort.\n","base.strided.ssort2hp.ndarray":"\nbase.strided.ssort2hp.ndarray( N:integer, order:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Simultaneously sorts two single-precision floating-point strided arrays\n based on the sort order of the first array using heapsort and alternative\n indexing semantics.\n","base.strided.ssort2ins":"\nbase.strided.ssort2ins( N:integer, order:number, x:Float32Array, \n strideX:integer, y:Float32Array, strideY:integer )\n Simultaneously sorts two single-precision floating-point strided arrays\n based on the sort order of the first array using insertion sort.\n","base.strided.ssort2ins.ndarray":"\nbase.strided.ssort2ins.ndarray( N:integer, order:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Simultaneously sorts two single-precision floating-point strided arrays\n based on the sort order of the first array using insertion sort and\n alternative indexing semantics.\n","base.strided.ssort2sh":"\nbase.strided.ssort2sh( N:integer, order:number, x:Float32Array, \n strideX:integer, y:Float32Array, strideY:integer )\n Simultaneously sorts two single-precision floating-point strided arrays\n based on the sort order of the first array using Shellsort.\n","base.strided.ssort2sh.ndarray":"\nbase.strided.ssort2sh.ndarray( N:integer, order:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Simultaneously sorts two single-precision floating-point strided arrays\n based on the sort order of the first array using Shellsort and alternative\n indexing semantics.\n","base.strided.ssorthp":"\nbase.strided.ssorthp( N:integer, order:number, x:Float32Array, stride:integer )\n Sorts a single-precision floating-point strided array using heapsort.\n","base.strided.ssorthp.ndarray":"\nbase.strided.ssorthp.ndarray( N:integer, order:number, x:Float32Array, \n stride:integer, offset:integer )\n Sorts a single-precision floating-point strided array using heapsort and\n alternative indexing semantics.\n","base.strided.ssortins":"\nbase.strided.ssortins( N:integer, order:number, x:Float32Array, stride:integer )\n Sorts a single-precision floating-point strided array using insertion sort.\n","base.strided.ssortins.ndarray":"\nbase.strided.ssortins.ndarray( N:integer, order:number, x:Float32Array, \n stride:integer, offset:integer )\n Sorts a single-precision floating-point strided array using insertion sort\n and alternative indexing semantics.\n","base.strided.ssortsh":"\nbase.strided.ssortsh( N:integer, order:number, x:Float32Array, stride:integer )\n Sorts a single-precision floating-point strided array using Shellsort.\n","base.strided.ssortsh.ndarray":"\nbase.strided.ssortsh.ndarray( N:integer, order:number, x:Float32Array, \n stride:integer, offset:integer )\n Sorts a single-precision floating-point strided array using Shellsort and\n alternative indexing semantics.\n","base.strided.ssqrt":"\nbase.strided.ssqrt( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Computes the principal square root for each element in a single-precision\n floating-point strided array `x` and assigns the results to elements in a\n single-precision floating-point strided array `y`.\n","base.strided.ssqrt.ndarray":"\nbase.strided.ssqrt.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the principal square root for each element in a single-precision\n floating-point strided array `x` and assigns the results to elements in a\n single-precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.sstdev":"\nbase.strided.sstdev( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array.\n","base.strided.sstdev.ndarray":"\nbase.strided.sstdev.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.sstdevch":"\nbase.strided.sstdevch( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using a one-pass trial mean algorithm.\n","base.strided.sstdevch.ndarray":"\nbase.strided.sstdevch.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using a one-pass trial mean algorithm and alternative indexing\n semantics.\n","base.strided.sstdevpn":"\nbase.strided.sstdevpn( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using a two-pass algorithm.\n","base.strided.sstdevpn.ndarray":"\nbase.strided.sstdevpn.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using a two-pass algorithm and alternative indexing semantics.\n","base.strided.sstdevtk":"\nbase.strided.sstdevtk( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using a one-pass textbook algorithm.\n","base.strided.sstdevtk.ndarray":"\nbase.strided.sstdevtk.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using a one-pass textbook algorithm and alternative indexing\n semantics.\n","base.strided.sstdevwd":"\nbase.strided.sstdevwd( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using Welford's algorithm.\n","base.strided.sstdevwd.ndarray":"\nbase.strided.sstdevwd.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using Welford's algorithm and alternative indexing semantics.\n","base.strided.sstdevyc":"\nbase.strided.sstdevyc( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using a one-pass algorithm proposed by Youngs and Cramer.\n","base.strided.sstdevyc.ndarray":"\nbase.strided.sstdevyc.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using a one-pass algorithm proposed by Youngs and Cramer and\n alternative indexing semantics.\n","base.strided.ssum":"\nbase.strided.ssum( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements.\n","base.strided.ssum.ndarray":"\nbase.strided.ssum.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using alternative indexing semantics.\n","base.strided.ssumkbn":"\nbase.strided.ssumkbn( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements\n using an improved Kahan–Babuška algorithm.\n","base.strided.ssumkbn.ndarray":"\nbase.strided.ssumkbn.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using an improved Kahan–Babuška algorithm and alternative indexing\n semantics.\n","base.strided.ssumkbn2":"\nbase.strided.ssumkbn2( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements\n using a second-order iterative Kahan–Babuška algorithm.\n","base.strided.ssumkbn2.ndarray":"\nbase.strided.ssumkbn2.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using a second-order iterative Kahan–Babuška algorithm and alternative\n indexing semantics.\n","base.strided.ssumors":"\nbase.strided.ssumors( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements\n using ordinary recursive summation.\n","base.strided.ssumors.ndarray":"\nbase.strided.ssumors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using ordinary recursive summation and alternative indexing semantics.\n","base.strided.ssumpw":"\nbase.strided.ssumpw( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements\n using pairwise summation.\n","base.strided.ssumpw.ndarray":"\nbase.strided.ssumpw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using pairwise summation and alternative indexing semantics.\n","base.strided.sswap":"\nbase.strided.sswap( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Interchanges two single-precision floating-point vectors.\n","base.strided.sswap.ndarray":"\nbase.strided.sswap.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Interchanges two single-precision floating-point vectors using alternative\n indexing semantics.\n","base.strided.stdev":"\nbase.strided.stdev( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array.\n","base.strided.stdev.ndarray":"\nbase.strided.stdev.ndarray( N:integer, correction:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Computes the standard deviation of a strided array using alternative\n indexing semantics.\n","base.strided.stdevch":"\nbase.strided.stdevch( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array using a one-pass trial\n mean algorithm.\n","base.strided.stdevch.ndarray":"\nbase.strided.stdevch.ndarray( N:integer, correction:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Computes the standard deviation of a strided array using a one-pass trial\n mean algorithm and alternative indexing semantics.\n","base.strided.stdevpn":"\nbase.strided.stdevpn( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array using a two-pass\n algorithm.\n","base.strided.stdevpn.ndarray":"\nbase.strided.stdevpn.ndarray( N:integer, correction:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Computes the standard deviation of a strided array using a two-pass\n algorithm and alternative indexing semantics.\n","base.strided.stdevtk":"\nbase.strided.stdevtk( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array using a one-pass textbook\n algorithm.\n","base.strided.stdevtk.ndarray":"\nbase.strided.stdevtk.ndarray( N:integer, correction:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Computes the standard deviation of a strided array using a one-pass textbook\n algorithm and alternative indexing semantics.\n","base.strided.stdevwd":"\nbase.strided.stdevwd( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array using Welford's\n algorithm.\n","base.strided.stdevwd.ndarray":"\nbase.strided.stdevwd.ndarray( N:integer, correction:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Computes the standard deviation of a strided array using Welford's algorithm\n and alternative indexing semantics.\n","base.strided.stdevyc":"\nbase.strided.stdevyc( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array using a one-pass\n algorithm proposed by Youngs and Cramer.\n","base.strided.stdevyc.ndarray":"\nbase.strided.stdevyc.ndarray( N:integer, correction:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Computes the standard deviation of a strided array using a one-pass\n algorithm proposed by Youngs and Cramer and alternative indexing semantics.\n","base.strided.strunc":"\nbase.strided.strunc( N:integer, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward zero and assigns the results to elements in a single-precision\n floating-point strided array `y`.\n","base.strided.strunc.ndarray":"\nbase.strided.strunc.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward zero and assigns the results to elements in a single-precision\n floating-point strided array `y` using alternative indexing semantics.\n","base.strided.svariance":"\nbase.strided.svariance( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array.\n","base.strided.svariance.ndarray":"\nbase.strided.svariance.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n using alternative indexing semantics.\n","base.strided.svariancech":"\nbase.strided.svariancech( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n using a one-pass trial mean algorithm.\n","base.strided.svariancech.ndarray":"\nbase.strided.svariancech.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n using a one-pass trial mean algorithm and alternative indexing semantics.\n","base.strided.svariancepn":"\nbase.strided.svariancepn( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n using a two-pass algorithm.\n","base.strided.svariancepn.ndarray":"\nbase.strided.svariancepn.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n using a two-pass algorithm and alternative indexing semantics.\n","base.strided.svariancetk":"\nbase.strided.svariancetk( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n using a one-pass textbook algorithm.\n","base.strided.svariancetk.ndarray":"\nbase.strided.svariancetk.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n using a one-pass textbook algorithm and alternative indexing semantics.\n","base.strided.svariancewd":"\nbase.strided.svariancewd( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n using Welford's algorithm.\n","base.strided.svariancewd.ndarray":"\nbase.strided.svariancewd.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n using Welford's algorithm and alternative indexing semantics.\n","base.strided.svarianceyc":"\nbase.strided.svarianceyc( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n using a one-pass algorithm proposed by Youngs and Cramer.\n","base.strided.svarianceyc.ndarray":"\nbase.strided.svarianceyc.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n using a one-pass algorithm proposed by Youngs and Cramer and alternative\n indexing semantics.\n","base.strided.ternary":"\nbase.strided.ternary( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n fcn:Function )\n Applies a ternary callback to strided input array elements and assigns\n results to elements in a strided output array.\n","base.strided.ternary.ndarray":"\nbase.strided.ternary.ndarray( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n offsets:ArrayLikeObject, fcn:Function )\n Applies a ternary callback to strided input array elements and assigns\n results to elements in a strided output array using alternative indexing\n semantics.\n","base.strided.unary":"\nbase.strided.unary( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n fcn:Function )\n Applies a unary callback to elements in a strided input array and assigns\n results to elements in a strided output array.\n","base.strided.unary.ndarray":"\nbase.strided.unary.ndarray( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n offsets:ArrayLikeObject, fcn:Function )\n Applies a unary callback to elements in a strided input array and assigns\n results to elements in a strided output array using alternative indexing\n semantics.\n","base.strided.variance":"\nbase.strided.variance( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array.\n","base.strided.variance.ndarray":"\nbase.strided.variance.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array using alternative indexing\n semantics.\n","base.strided.variancech":"\nbase.strided.variancech( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array using a one-pass trial mean\n algorithm.\n","base.strided.variancech.ndarray":"\nbase.strided.variancech.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array using a one-pass trial mean\n algorithm and alternative indexing semantics.\n","base.strided.variancepn":"\nbase.strided.variancepn( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array using a two-pass algorithm.\n","base.strided.variancepn.ndarray":"\nbase.strided.variancepn.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array using a two-pass algorithm and\n alternative indexing semantics.\n","base.strided.variancetk":"\nbase.strided.variancetk( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array using a one-pass textbook\n algorithm.\n","base.strided.variancetk.ndarray":"\nbase.strided.variancetk.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array using a one-pass textbook algorithm\n and alternative indexing semantics.\n","base.strided.variancewd":"\nbase.strided.variancewd( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array using Welford's algorithm.\n","base.strided.variancewd.ndarray":"\nbase.strided.variancewd.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array using Welford's algorithm and\n alternative indexing semantics.\n","base.strided.varianceyc":"\nbase.strided.varianceyc( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array using a one-pass algorithm proposed\n by Youngs and Cramer.\n","base.strided.varianceyc.ndarray":"\nbase.strided.varianceyc.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array using a one-pass algorithm proposed\n by Youngs and Cramer and alternative indexing semantics.\n","base.strided.zmap":"\nbase.strided.zmap( N:integer, x:Complex128Array, strideX:integer, \n y:Complex128Array, strideY:integer, fcn:Function )\n Applies a unary function to a double-precision complex floating-point\n strided input array and assigns results to a double-precision complex\n floating-point strided output array.\n","base.strided.zmap.ndarray":"\nbase.strided.zmap.ndarray( N:integer, x:Complex128Array, strideX:integer, \n offsetX:integer, y:Complex128Array, strideY:integer, offsetY:integer, \n fcn:Function )\n Applies a unary function to a double-precision complex floating-point\n strided input array and assigns results to a double-precision complex\n floating-point strided output array using alternative indexing semantics.\n","base.sub":"\nbase.sub( x:number, y:number )\n Subtracts two double-precision floating-point numbers `x` and `y`.\n","base.subf":"\nbase.subf( x:number, y:number )\n Subtracts two single-precision floating-point numbers `x` and `y`.\n","base.sumSeries":"\nbase.sumSeries( generator:Function[, options:Object] )\n Sum the elements of the series given by the supplied function.\n","base.tan":"\nbase.tan( x:number )\n Computes the tangent of a number.\n","base.tanh":"\nbase.tanh( x:number )\n Computes the hyperbolic tangent of a number.\n","base.toBinaryString":"\nbase.toBinaryString( x:number )\n Returns a string giving the literal bit representation of a double-precision\n floating-point number.\n","base.toBinaryStringf":"\nbase.toBinaryStringf( x:float )\n Returns a string giving the literal bit representation of a single-precision\n floating-point number.\n","base.toBinaryStringUint8":"\nbase.toBinaryStringUint8( x:integer )\n Returns a string giving the literal bit representation of an unsigned 8-bit\n integer.\n","base.toBinaryStringUint16":"\nbase.toBinaryStringUint16( x:integer )\n Returns a string giving the literal bit representation of an unsigned 16-bit\n integer.\n","base.toBinaryStringUint32":"\nbase.toBinaryStringUint32( x:integer )\n Returns a string giving the literal bit representation of an unsigned 32-bit\n integer.\n","base.toWordf":"\nbase.toWordf( x:float )\n Returns an unsigned 32-bit integer corresponding to the IEEE 754 binary\n representation of a single-precision floating-point number.\n","base.toWords":"\nbase.toWords( [out:Array|TypedArray|Object,] x:number )\n Splits a double-precision floating-point number into a higher order word\n (unsigned 32-bit integer) and a lower order word (unsigned 32-bit integer).\n","base.transpose":"\nbase.transpose( x:ndarray )\n Transposes a matrix (or a stack of matrices).\n","base.tribonacci":"\nbase.tribonacci( n:integer )\n Computes the nth Tribonacci number.\n","base.trigamma":"\nbase.trigamma( x:number )\n Evaluates the trigamma function.\n","base.trunc":"\nbase.trunc( x:number )\n Rounds a double-precision floating-point number toward zero.\n","base.trunc2":"\nbase.trunc2( x:number )\n Rounds a numeric value to the nearest power of two toward zero.\n","base.trunc10":"\nbase.trunc10( x:number )\n Rounds a numeric value to the nearest power of ten toward zero.\n","base.truncb":"\nbase.truncb( x:number, n:integer, b:integer )\n Rounds a numeric value to the nearest multiple of `b^n` toward zero.\n","base.truncf":"\nbase.truncf( x:number )\n Rounds a single-precision floating-point number toward zero.\n","base.truncn":"\nbase.truncn( x:number, n:integer )\n Rounds a numeric value to the nearest multiple of `10^n` toward zero.\n","base.truncsd":"\nbase.truncsd( x:number, n:integer[, b:integer] )\n Rounds a numeric value to the nearest number toward zero with `n`\n significant figures.\n","base.umul":"\nbase.umul( a:integer, b:integer )\n Performs C-like multiplication of two unsigned 32-bit integers.\n","base.umuldw":"\nbase.umuldw( [out:ArrayLikeObject,] a:integer, b:integer )\n Multiplies two unsigned 32-bit integers and returns an array of two unsigned\n 32-bit integers which represents the unsigned 64-bit integer product.\n","base.uint32ToInt32":"\nbase.uint32ToInt32( x:integer )\n Converts an unsigned 32-bit integer to a signed 32-bit integer.\n","base.vercos":"\nbase.vercos( x:number )\n Computes the versed cosine.\n","base.versin":"\nbase.versin( x:number )\n Computes the versed sine.\n","base.wrap":"\nbase.wrap( v:number, min:number, max:number )\n Wraps a value on the half-open interval `[min,max)`.\n","base.xlog1py":"\nbase.xlog1py( x:number, y:number )\n Computes `x * ln(y+1)` so that the result is `0` if `x = 0`.\n","base.xlogy":"\nbase.xlogy( x:number, y:number )\n Computes `x * ln(y)` so that the result is `0` if `x = 0`.\n","base.zeta":"\nbase.zeta( s:number )\n Evaluates the Riemann zeta function as a function of a real variable `s`.\n","BERNDT_CPS_WAGES_1985":"\nBERNDT_CPS_WAGES_1985()\n Returns a random sample of 534 workers from the Current Population Survey\n (CPS) from 1985, including their wages and and other characteristics.\n","bifurcate":"\nbifurcate( collection:Array|TypedArray|Object, [options:Object,] \n filter:Array|TypedArray|Object )\n Splits values into two groups.\n","bifurcateBy":"\nbifurcateBy( collection:Array|TypedArray|Object, [options:Object,] \n predicate:Function )\n Splits values into two groups according to a predicate function.\n","bifurcateByAsync":"\nbifurcateByAsync( collection:Array|TypedArray|Object, [options:Object,] \n predicate:Function, done:Function )\n Splits values into two groups according to a predicate function.\n","bifurcateByAsync.factory":"\nbifurcateByAsync.factory( [options:Object,] predicate:Function )\n Returns a function which splits values into two groups according to an\n predicate function.\n","bifurcateIn":"\nbifurcateIn( obj:Object|Array|TypedArray, [options:Object,] predicate:Function )\n Splits values into two groups according to a predicate function.\n","bifurcateOwn":"\nbifurcateOwn( obj:Object|Array|TypedArray, [options:Object,] \n predicate:Function )\n Splits values into two groups according to a predicate function.\n","BigInt":"\nBigInt( value:integer|string )\n Returns a BigInt.\n","binomialTest":"\nbinomialTest( x:(number|Array[, n:Array][, options:Object] )\n Computes an exact test for the success probability in a Bernoulli\n experiment.\n","Boolean":"\nBoolean( value:any )\n Returns a boolean.\n","Boolean.prototype.toString":"\nBoolean.prototype.toString()\n Returns a string representing the `Boolean` object.\n","Boolean.prototype.valueOf":"\nBoolean.prototype.valueOf()\n Returns the primitive value of a `Boolean` object.\n","Buffer":"\nBuffer\n\nBuffer( size:integer )\n Allocates a buffer having a specified number of bytes.\n\nBuffer( buffer:Buffer )\n Copies buffer data to a new Buffer instance.\n\nBuffer( array:Array )\n Allocates a buffer using an array of octets.\n\nBuffer( str:string[, encoding:string] )\n Allocates a buffer containing a provided string.\n","buffer2json":"\nbuffer2json( buffer:Buffer )\n Returns a JSON representation of a buffer.\n","BYTE_ORDER":"\nBYTE_ORDER\n Platform byte order.\n","camelcase":"\ncamelcase( str:string )\n Converts a string to camel case.\n","capitalize":"\ncapitalize( str:string )\n Capitalizes the first character in a string.\n","capitalizeKeys":"\ncapitalizeKeys( obj:Object )\n Converts the first letter of each object key to uppercase.\n","CATALAN":"\nCATALAN\n Catalan's constant.\n","CBRT_EPS":"\nCBRT_EPS\n Cube root of double-precision floating-point epsilon.\n","CDC_NCHS_US_BIRTHS_1969_1988":"\nCDC_NCHS_US_BIRTHS_1969_1988()\n Returns US birth data from 1969 to 1988, as provided by the Center for\n Disease Control and Prevention's National Center for Health Statistics.\n","CDC_NCHS_US_BIRTHS_1994_2003":"\nCDC_NCHS_US_BIRTHS_1994_2003()\n Returns US birth data from 1994 to 2003, as provided by the Center for\n Disease Control and Prevention's National Center for Health Statistics.\n","CDC_NCHS_US_INFANT_MORTALITY_BW_1915_2013":"\nCDC_NCHS_US_INFANT_MORTALITY_BW_1915_2013()\n Returns US infant mortality data, by race, from 1915 to 2013, as provided by\n the Center for Disease Control and Prevention's National Center for Health\n Statistics.\n","chdir":"\nchdir( path:string )\n Changes the current working directory.\n","chi2gof":"\nchi2gof( x:ndarray|Array|TypedArray, y:ndarray|Array|TypedArray|string[, \n ...args:number][, options:Object] )\n Performs a chi-square goodness-of-fit test.\n","chi2test":"\nchi2test( x:(MatrixLike|Array[, options:Object] )\n Performs a chi-square independence test.\n","circarray2iterator":"\ncircarray2iterator( src:ArrayLikeObject[, options:Object][, mapFcn:Function[, \n thisArg:any]] )\n Returns an iterator which repeatedly iterates over the elements of an array-\n like object.\n","circularArrayStream":"\ncircularArrayStream( src:ArrayLikeObject[, options:Object] )\n Creates a readable stream from an array-like object which repeatedly\n iterates over the provided value's elements.\n","circularArrayStream.factory":"\ncircularArrayStream.factory( [options:Object] )\n Returns a function for creating readable streams from array-like objects\n which repeatedly iterate over the elements of provided values.\n","circularArrayStream.objectMode":"\ncircularArrayStream.objectMode( src:ArrayLikeObject[, options:Object] )\n Returns an \"objectMode\" readable stream from an array-like object which\n repeatedly iterates over a provided value's elements.\n","CircularBuffer":"\nCircularBuffer( buffer:integer|ArrayLike )\n Circular buffer constructor.\n","CircularBuffer.prototype.clear":"\nCircularBuffer.prototype.clear()\n Clears a buffer.\n","CircularBuffer.prototype.count":"\nCircularBuffer.prototype.count\n Read-only property returning the number of elements currently in the buffer.\n","CircularBuffer.prototype.full":"\nCircularBuffer.prototype.full\n Read-only property returning a boolean indicating whether a circular buffer\n is full.\n","CircularBuffer.prototype.iterator":"\nCircularBuffer.prototype.iterator( [niters:integer] )\n Returns an iterator for iterating over a circular buffer.\n","CircularBuffer.prototype.length":"\nCircularBuffer.prototype.length\n Read-only property returning the buffer length (i.e., capacity).\n","CircularBuffer.prototype.push":"\nCircularBuffer.prototype.push( value:any )\n Adds a value to a circular buffer.\n","CircularBuffer.prototype.toArray":"\nCircularBuffer.prototype.toArray()\n Returns an array of circular buffer values.\n","CircularBuffer.prototype.toJSON":"\nCircularBuffer.prototype.toJSON()\n Serializes a circular buffer as JSON.\n","close":"\nclose( fd:integer, clbk:Function )\n Asynchronously closes a file descriptor, so that the file descriptor no\n longer refers to any file and may be reused.\n","close.sync":"\nclose.sync( fd:integer )\n Synchronously closes a file descriptor.\n","CMUDICT":"\nCMUDICT( [options:Object] )\n Returns datasets from the Carnegie Mellon Pronouncing Dictionary (CMUdict).\n","codePointAt":"\ncodePointAt( str:string, idx:integer[, backward:boolean] )\n Returns a Unicode code point from a string at a specified position.\n","commonKeys":"\ncommonKeys( obj1:any, obj2:any[, ...obj:any] )\n Returns the common own property names of two or more objects.\n","commonKeysIn":"\ncommonKeysIn( obj1:any, obj2:any[, ...obj:any] )\n Returns the common own and inherited property names of two or more objects.\n","complex":"\ncomplex( real:number, imag:number[, dtype:string] )\n Creates a complex number.\n","Complex64":"\nComplex64( real:number, imag:number )\n 64-bit complex number constructor.\n","COMPLEX64_NUM_BYTES":"\nCOMPLEX64_NUM_BYTES\n Size (in bytes) of a 64-bit complex number.\n","Complex128":"\nComplex128( real:number, imag:number )\n 128-bit complex number constructor.\n","COMPLEX128_NUM_BYTES":"\nCOMPLEX128_NUM_BYTES\n Size (in bytes) of a 128-bit complex number.\n","complexarray":"\ncomplexarray( [dtype:string] )\n Creates a complex typed array.\n\ncomplexarray( length:integer[, dtype:string] )\n Returns a complex number typed array having a specified length.\n\ncomplexarray( complexarray:ComplexArray[, dtype:string] )\n Creates a complex number typed array from another complex number typed\n array.\n\ncomplexarray( obj:Object[, dtype:string] )\n Creates a complex number typed array from an array-like object or iterable.\n\ncomplexarray( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]][, \n dtype:string] )\n Returns a complex number typed array view of an ArrayBuffer.\n","complexarrayCtors":"\ncomplexarrayCtors( dtype:string )\n Returns a complex typed array constructor.\n","complexarrayDataTypes":"\ncomplexarrayDataTypes()\n Returns a list of complex typed array data types.\n","complexCtors":"\ncomplexCtors( dtype:string )\n Returns a complex number constructor.\n","complexDataType":"\ncomplexDataType( value:any )\n Returns the data type of a complex number object.\n","complexDataTypes":"\ncomplexDataTypes()\n Returns a list of complex number data types.\n","complexPromotionRules":"\ncomplexPromotionRules( [dtype1:string, dtype2:string] )\n Returns the complex number data type with the smallest size and closest\n \"kind\" to which data types can be safely cast.\n","compose":"\ncompose( ...f:Function )\n Function composition.\n","composeAsync":"\ncomposeAsync( ...f:Function )\n Function composition.\n","configdir":"\nconfigdir( [p:string] )\n Returns a directory for user-specific configuration files.\n","conj":"\nconj( z:Complex128 )\n Returns the complex conjugate of a double-precision complex floating-point\n number.\n","conjf":"\nconjf( z:Complex64 )\n Returns the complex conjugate of a single-precision complex floating-point\n number.\n","constantcase":"\nconstantcase( str:string )\n Converts a string to constant case.\n","constantFunction":"\nconstantFunction( val:any )\n Creates a function which always returns the same value.\n","constantStream":"\nconstantStream( value:string|Buffer|Uint8Array|any[, options:Object] )\n Returns a readable stream which always streams the same value.\n","constantStream.factory":"\nconstantStream.factory( [value:string|Buffer|Uint8Array|any, ][options:Object] )\n Returns a function for creating readable streams which always stream the\n same value.\n","constantStream.objectMode":"\nconstantStream.objectMode( value:any[, options:Object] )\n Returns an \"objectMode\" readable stream which always streams the same value.\n","constructorName":"\nconstructorName( val:any )\n Determines the name of a value's constructor.\n","contains":"\ncontains( val:ArrayLike, searchValue:any[, position:integer] )\n Tests if an array-like value contains a search value.\n","convertArray":"\nconvertArray( arr:ArrayLikeObject, dtype:string )\n Converts an input array to an array of a different data type.\n","convertArraySame":"\nconvertArraySame( x:ArrayLikeObject, y:Array|TypedArray )\n Converts an input array to the same data type as a second input array.\n","convertPath":"\nconvertPath( from:string, to:string )\n Converts between POSIX and Windows paths.\n","copy":"\ncopy( value:any[, level:integer] )\n Copy or deep clone a value to an arbitrary depth.\n","copyBuffer":"\ncopyBuffer( buffer:Buffer )\n Copies buffer data to a new Buffer instance.\n","countBy":"\ncountBy( collection:Array|TypedArray|Object, [options:Object,] \n indicator:Function )\n Groups values according to an indicator function and returns group counts.\n","countByAsync":"\ncountByAsync( collection:Array|TypedArray|Object, [options:Object,] \n indicator:Function, done:Function )\n Groups values according to an indicator function and returns group counts.\n","countByAsync.factory":"\ncountByAsync.factory( [options:Object,] indicator:Function )\n Returns a function which groups values according to an indicator function\n and returns group counts.\n","currentYear":"\ncurrentYear()\n Returns the current year.\n","curry":"\ncurry( fcn:Function[, arity:integer][, thisArg:any] )\n Transforms a function into a sequence of functions each accepting a single\n argument.\n","curryRight":"\ncurryRight( fcn:Function[, arity:integer][, thisArg:any] )\n Transforms a function into a sequence of functions each accepting a single\n argument.\n","cwd":"\ncwd()\n Returns the current working directory.\n","DALE_CHALL_NEW":"\nDALE_CHALL_NEW()\n Returns a list of familiar English words.\n","datasets":"\ndatasets( name:string[, options:Object] )\n Returns a dataset.\n","DataView":"\nDataView( buffer:ArrayBuffer|SharedArrayBuffer[, byteOffset:integer[, \n byteLength:integer]] )\n Returns a data view representing a provided array buffer.\n","DataView.prototype.buffer":"\nDataView.prototype.buffer\n Read-only property which returns the underyling array buffer.\n","DataView.prototype.byteLength":"\nDataView.prototype.byteLength\n Read-only property which returns the length (in bytes) of the view.\n","DataView.prototype.byteOffset":"\nDataView.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the view to the\n start of the underlying array buffer.\n","datespace":"\ndatespace( start:number, stop:number[, length:integer][ , options:Object] )\n Generates an array of linearly spaced dates.\n","dayOfQuarter":"\ndayOfQuarter( [month:string|integer|Date[, day:integer, year:integer]] )\n Returns the day of the quarter.\n","dayOfYear":"\ndayOfYear( [month:string|integer|Date[, day:integer, year:integer]] )\n Returns the day of the year.\n","daysInMonth":"\ndaysInMonth( [month:string|integer|Date[, year:integer]] )\n Returns the number of days in a month.\n","daysInYear":"\ndaysInYear( [value:integer|Date] )\n Returns the number of days in a year according to the Gregorian calendar.\n","ddot":"\nddot( x:ndarray, y:ndarray )\n Computes the dot product of two double-precision floating-point vectors.\n","debugSinkStream":"\ndebugSinkStream( [options:Object,] [clbk:Function] )\n Returns a writable stream for debugging stream pipelines.\n","debugSinkStream.factory":"\ndebugSinkStream.factory( [options:Object] )\n Returns a function for creating writable streams for debugging stream\n pipelines.\n","debugSinkStream.objectMode":"\ndebugSinkStream.objectMode( [options:Object,] [clbk:Function] )\n Returns an \"objectMode\" writable stream for debugging stream pipelines.\n","debugStream":"\ndebugStream( [options:Object,] [clbk:Function] )\n Returns a transform stream for debugging stream pipelines.\n","debugStream.factory":"\ndebugStream.factory( [options:Object] )\n Returns a function for creating transform streams for debugging stream\n pipelines.\n","debugStream.objectMode":"\ndebugStream.objectMode( [options:Object,] [clbk:Function] )\n Returns an \"objectMode\" transform stream for debugging stream pipelines.\n","decorateAfter":"\ndecorateAfter( fcn:Function, arity:integer, after:Function[, thisArg:any] )\n Decorates a provided function such that the function's return value is\n provided as an argument to another function.\n","decorateAfter.factory":"\ndecorateAfter.factory( fcn:Function, arity:integer, after:Function[, \n thisArg:any] )\n Uses code generation to decorate a provided function such that the\n function's return value is provided as an argument to another function.\n","deepEqual":"\ndeepEqual( a:any, b:any )\n Tests for deep equality between two values.\n","deepGet":"\ndeepGet( obj:ObjectLike, path:string|Array[, options:Object] )\n Returns a nested property value.\n","deepGet.factory":"\ndeepGet.factory( path:string|Array[, options:Object] )\n Creates a reusable deep get function.\n","deepHasOwnProp":"\ndeepHasOwnProp( value:any, path:string|Array[, options:Object] )\n Returns a boolean indicating whether an object contains a nested key path.\n","deepHasOwnProp.factory":"\ndeepHasOwnProp.factory( path:string|Array[, options:Object] )\n Returns a function which tests whether an object contains a nested key path.\n","deepHasProp":"\ndeepHasProp( value:any, path:string|Array[, options:Object] )\n Returns a boolean indicating whether an object contains a nested key path,\n either own or inherited.\n","deepHasProp.factory":"\ndeepHasProp.factory( path:string|Array[, options:Object] )\n Returns a function which tests whether an object contains a nested key path,\n either own or inherited.\n","deepPluck":"\ndeepPluck( arr:Array, path:string|Array[, options:Object] )\n Extracts a nested property value from each element of an object array.\n","deepSet":"\ndeepSet( obj:ObjectLike, path:string|Array, value:any[, options:Object] )\n Sets a nested property value.\n","deepSet.factory":"\ndeepSet.factory( path:string|Array[, options:Object] )\n Creates a reusable deep set function.\n","defineMemoizedProperty":"\ndefineMemoizedProperty( obj:Object, prop:string|symbol, descriptor:Object )\n Defines a memoized object property.\n","defineProperties":"\ndefineProperties( obj:Object, properties:Object )\n Defines (and/or modifies) object properties.\n","defineProperty":"\ndefineProperty( obj:Object, prop:string|symbol, descriptor:Object )\n Defines (or modifies) an object property.\n","dirname":"\ndirname( path:string )\n Returns a directory name.\n","DoublyLinkedList":"\nDoublyLinkedList()\n Doubly linked list constructor.\n","doUntil":"\ndoUntil( fcn:Function, predicate:Function[, thisArg:any] )\n Invokes a function until a test condition is true.\n","doUntilAsync":"\ndoUntilAsync( fcn:Function, predicate:Function, done:Function[, thisArg:any] )\n Invokes a function until a test condition is true.\n","doUntilEach":"\ndoUntilEach( collection:Array|TypedArray|Object, fcn:Function, \n predicate:Function[, thisArg:any] )\n Until a test condition is true, invokes a function for each element in a\n collection.\n","doUntilEachRight":"\ndoUntilEachRight( collection:Array|TypedArray|Object, fcn:Function, \n predicate:Function[, thisArg:any] )\n Until a test condition is true, invokes a function for each element in a\n collection, iterating from right to left.\n","doWhile":"\ndoWhile( fcn:Function, predicate:Function[, thisArg:any] )\n Invokes a function while a test condition is true.\n","doWhileAsync":"\ndoWhileAsync( fcn:Function, predicate:Function, done:Function[, thisArg:any] )\n Invokes a function while a test condition is true.\n","doWhileEach":"\ndoWhileEach( collection:Array|TypedArray|Object, fcn:Function, \n predicate:Function[, thisArg:any] )\n While a test condition is true, invokes a function for each element in a\n collection.\n","doWhileEachRight":"\ndoWhileEachRight( collection:Array|TypedArray|Object, fcn:Function, \n predicate:Function[, thisArg:any] )\n While a test condition is true, invokes a function for each element in a\n collection, iterating from right to left.\n","dswap":"\ndswap( x:ndarray, y:ndarray )\n Interchanges two double-precision floating-point vectors.\n","E":"\nE\n Euler's number.\n","EMOJI":"\nEMOJI()\n Returns an emoji database.\n","EMOJI_CODE_PICTO":"\nEMOJI_CODE_PICTO()\n Returns an object mapping emoji codes to pictographs.\n","EMOJI_PICTO_CODE":"\nEMOJI_PICTO_CODE()\n Returns an object mapping emoji pictographs to codes.\n","emptyStream":"\nemptyStream( [options:Object] )\n Returns an \"empty\" readable stream.\n","emptyStream.factory":"\nemptyStream.factory( [options:Object] )\n Returns a function for creating empty readable streams.\n","emptyStream.objectMode":"\nemptyStream.objectMode()\n Returns an \"objectMode\" empty readable stream.\n","endsWith":"\nendsWith( str:string, search:string[, len:integer] )\n Tests if a string ends with the characters of another string.\n","enumerableProperties":"\nenumerableProperties( value:any )\n Returns an array of an object's own enumerable property names and symbols.\n","enumerablePropertiesIn":"\nenumerablePropertiesIn( value:any )\n Returns an array of an object's own and inherited enumerable property names\n and symbols.\n","enumerablePropertySymbols":"\nenumerablePropertySymbols( value:any )\n Returns an array of an object's own enumerable symbol properties.\n","enumerablePropertySymbolsIn":"\nenumerablePropertySymbolsIn( value:any )\n Returns an array of an object's own and inherited enumerable symbol\n properties.\n","ENV":"\nENV\n An object containing the user environment.\n","EPS":"\nEPS\n Difference between one and the smallest value greater than one that can be\n represented as a double-precision floating-point number.\n","error2json":"\nerror2json( error:Error )\n Returns a JSON representation of an error object.\n","EULERGAMMA":"\nEULERGAMMA\n The Euler-Mascheroni constant.\n","every":"\nevery( collection:Array|TypedArray|Object )\n Tests whether all elements in a collection are truthy.\n","everyBy":"\neveryBy( collection:Array|TypedArray|Object, predicate:Function[, \n thisArg:any ] )\n Tests whether all elements in a collection pass a test implemented by a\n predicate function.\n","everyByAsync":"\neveryByAsync( collection:Array|TypedArray|Object, [options:Object,] \n predicate:Function, done:Function )\n Tests whether all elements in a collection pass a test implemented by a\n predicate function.\n","everyByAsync.factory":"\neveryByAsync.factory( [options:Object,] predicate:Function )\n Returns a function which tests whether all elements in a collection pass a\n test implemented by a predicate function.\n","everyByRight":"\neveryByRight( collection:Array|TypedArray|Object, predicate:Function[, \n thisArg:any ] )\n Tests whether all elements in a collection pass a test implemented by a\n predicate function, iterating from right to left.\n","everyByRightAsync":"\neveryByRightAsync( collection:Array|TypedArray|Object, [options:Object,] \n predicate:Function, done:Function )\n Tests whether all elements in a collection pass a test implemented by a\n predicate function, iterating from right to left.\n","everyByRightAsync.factory":"\neveryByRightAsync.factory( [options:Object,] predicate:Function )\n Returns a function which tests whether all elements in a collection pass a\n test implemented by a predicate function, iterating from right to left.\n","evil":"\nevil( str:string )\n Alias for `eval` global.\n","EXEC_PATH":"\nEXEC_PATH\n Absolute pathname of the executable which started the current Node.js\n process.\n","exists":"\nexists( path:string|Buffer, clbk:Function )\n Asynchronously tests whether a path exists on the filesystem.\n","exists.sync":"\nexists.sync( path:string|Buffer )\n Synchronously tests whether a path exists on the filesystem.\n","expandAcronyms":"\nexpandAcronyms( str:string )\n Expands acronyms in a string.\n","expandContractions":"\nexpandContractions( str:string )\n Expands all contractions to their formal equivalents.\n","extname":"\nextname( filename:string )\n Returns a filename extension.\n","fastmath.abs":"\nfastmath.abs( x:number )\n Computes an absolute value.\n","fastmath.acosh":"\nfastmath.acosh( x:number )\n Computes the hyperbolic arccosine of a number.\n","fastmath.ampbm":"\nfastmath.ampbm( x:number, y:number )\n Computes the hypotenuse using the alpha max plus beta min algorithm.\n","fastmath.ampbm.factory":"\nfastmath.ampbm.factory( alpha:number, beta:number, [nonnegative:boolean[, \n ints:boolean]] )\n Returns a function to compute a hypotenuse using the alpha max plus beta min\n algorithm.\n","fastmath.asinh":"\nfastmath.asinh( x:number )\n Computes the hyperbolic arcsine of a number.\n","fastmath.atanh":"\nfastmath.atanh( x:number )\n Computes the hyperbolic arctangent of a number.\n","fastmath.hypot":"\nfastmath.hypot( x:number, y:number )\n Computes the hypotenuse.\n","fastmath.log2Uint32":"\nfastmath.log2Uint32( x:uinteger )\n Returns an approximate binary logarithm (base two) of an unsigned 32-bit\n integer `x`.\n","fastmath.max":"\nfastmath.max( x:number, y:number )\n Returns the maximum value.\n","fastmath.min":"\nfastmath.min( x:number, y:number )\n Returns the minimum value.\n","fastmath.powint":"\nfastmath.powint( x:number, y:integer )\n Evaluates the exponential function given a signed 32-bit integer exponent.\n","fastmath.sqrtUint32":"\nfastmath.sqrtUint32( x:uinteger )\n Returns an approximate square root of an unsigned 32-bit integer `x`.\n","FEMALE_FIRST_NAMES_EN":"\nFEMALE_FIRST_NAMES_EN()\n Returns a list of common female first names in English speaking countries.\n","FIFO":"\nFIFO()\n First-in-first-out (FIFO) queue constructor.\n","filledarray":"\nfilledarray( [dtype:string] )\n Creates a filled array.\n\nfilledarray( value:any, length:integer[, dtype:string] )\n Returns a filled array having a specified length.\n\nfilledarray( value:any, array:ArrayLikeObject[, dtype:string] )\n Creates a filled array from another array (or array-like object).\n\nfilledarray( value:any, iterable:Iterable[, dtype:string] )\n Creates a filled array from an iterable.\n\nfilledarray( value:any, buffer:ArrayBuffer[, byteOffset:integer[, \n length:integer]][, dtype:string] )\n Returns a filled typed array view of an ArrayBuffer.\n","filledarrayBy":"\nfilledarrayBy( [dtype:string] )\n Creates a filled array.\n\nfilledarrayBy( length:integer[, dtype:string], clbk:Function[, thisArg:any] )\n Returns a filled array according to a provided callback function and having\n a specified length.\n\nfilledarrayBy( array:ArrayLikeObject[, dtype:string], clbk:Function[, \n thisArg:any] )\n Creates a filled array from another array (or array-like object) according\n to a provided callback function.\n\nfilledarrayBy( iterable:Iterable[, dtype:string], clbk:Function[, thisArg:any] )\n Creates a filled array from an iterable according to a provided callback\n function.\n\nfilledarrayBy( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]][, \n dtype:string], clbk:Function[, thisArg:any] )\n Returns a filled typed array view of an ArrayBuffer according to a provided\n callback function.\n","filterArguments":"\nfilterArguments( fcn:Function, predicate:Function[, thisArg:any] )\n Returns a function that applies arguments to a provided function according\n to a predicate function.\n","find":"\nfind( arr:Array|TypedArray|string, [options:Object,] clbk:Function )\n Finds elements in an array-like object that satisfy a test condition.\n","FIVETHIRTYEIGHT_FFQ":"\nFIVETHIRTYEIGHT_FFQ()\n Returns FiveThirtyEight reader responses to a food frequency questionnaire\n (FFQ).\n","flattenArray":"\nflattenArray( arr:ArrayLikeObject[, options:Object] )\n Flattens an array.\n","flattenArray.factory":"\nflattenArray.factory( dims:ArrayLike[, options:Object] )\n Returns a function for flattening arrays having specified dimensions.\n","flattenObject":"\nflattenObject( obj:ObjectLike[, options:Object] )\n Flattens an object.\n","flattenObject.factory":"\nflattenObject.factory( [options:Object] )\n Returns a function to flatten an object.\n","flignerTest":"\nflignerTest( ...x:Array[, options:Object] )\n Computes the Fligner-Killeen test for equal variances.\n","FLOAT_WORD_ORDER":"\nFLOAT_WORD_ORDER\n Platform float word order.\n","FLOAT16_CBRT_EPS":"\nFLOAT16_CBRT_EPS\n Cube root of half-precision floating-point epsilon.\n","FLOAT16_EPS":"\nFLOAT16_EPS\n Difference between one and the smallest value greater than one that can be\n represented as a half-precision floating-point number.\n","FLOAT16_EXPONENT_BIAS":"\nFLOAT16_EXPONENT_BIAS\n The bias of a half-precision floating-point number's exponent.\n","FLOAT16_MAX":"\nFLOAT16_MAX\n Maximum half-precision floating-point number.\n","FLOAT16_MAX_SAFE_INTEGER":"\nFLOAT16_MAX_SAFE_INTEGER\n Maximum safe half-precision floating-point integer.\n","FLOAT16_MIN_SAFE_INTEGER":"\nFLOAT16_MIN_SAFE_INTEGER\n Minimum safe half-precision floating-point integer.\n","FLOAT16_NINF":"\nFLOAT16_NINF\n Half-precision floating-point negative infinity.\n","FLOAT16_NUM_BYTES":"\nFLOAT16_NUM_BYTES\n Size (in bytes) of a half-precision floating-point number.\n","FLOAT16_PINF":"\nFLOAT16_PINF\n Half-precision floating-point positive infinity.\n","FLOAT16_PRECISION":"\nFLOAT16_PRECISION\n Effective number of bits in the significand of a half-precision floating-\n point number.\n","FLOAT16_SMALLEST_NORMAL":"\nFLOAT16_SMALLEST_NORMAL\n Smallest positive normalized half-precision floating-point number.\n","FLOAT16_SMALLEST_SUBNORMAL":"\nFLOAT16_SMALLEST_SUBNORMAL\n Smallest positive denormalized half-precision floating-point number.\n","FLOAT16_SQRT_EPS":"\nFLOAT16_SQRT_EPS\n Square root of half-precision floating-point epsilon.\n","FLOAT32_CBRT_EPS":"\nFLOAT32_CBRT_EPS\n Cube root of single-precision floating-point epsilon.\n","FLOAT32_EPS":"\nFLOAT32_EPS\n Difference between one and the smallest value greater than one that can be\n represented as a single-precision floating-point number.\n","FLOAT32_EXPONENT_BIAS":"\nFLOAT32_EXPONENT_BIAS\n The bias of a single-precision floating-point number's exponent.\n","FLOAT32_MAX":"\nFLOAT32_MAX\n Maximum single-precision floating-point number.\n","FLOAT32_MAX_SAFE_INTEGER":"\nFLOAT32_MAX_SAFE_INTEGER\n Maximum safe single-precision floating-point integer.\n","FLOAT32_MIN_SAFE_INTEGER":"\nFLOAT32_MIN_SAFE_INTEGER\n Minimum safe single-precision floating-point integer.\n","FLOAT32_NINF":"\nFLOAT32_NINF\n Single-precision floating-point negative infinity.\n","FLOAT32_NUM_BYTES":"\nFLOAT32_NUM_BYTES\n Size (in bytes) of a single-precision floating-point number.\n","FLOAT32_PINF":"\nFLOAT32_PINF\n Single-precision floating-point positive infinity.\n","FLOAT32_PRECISION":"\nFLOAT32_PRECISION\n Effective number of bits in the significand of a single-precision floating-\n point number.\n","FLOAT32_SMALLEST_NORMAL":"\nFLOAT32_SMALLEST_NORMAL\n Smallest positive normalized single-precision floating-point number.\n","FLOAT32_SMALLEST_SUBNORMAL":"\nFLOAT32_SMALLEST_SUBNORMAL\n Smallest positive denormalized single-precision floating-point number.\n","FLOAT32_SQRT_EPS":"\nFLOAT32_SQRT_EPS\n Square root of single-precision floating-point epsilon.\n","Float32Array":"\nFloat32Array()\n A typed array constructor which returns a typed array representing an array\n of single-precision floating-point numbers in the platform byte order.\n\nFloat32Array( length:integer )\n Returns a typed array having a specified length.\n\nFloat32Array( typedarray:TypedArray )\n Creates a typed array from another typed array.\n\nFloat32Array( obj:Object )\n Creates a typed array from an array-like object or iterable.\n\nFloat32Array( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Returns a typed array view of an ArrayBuffer.\n","Float32Array.from":"\nFloat32Array.from( src:ArrayLike|Iterable[, map:Function[, thisArg:Any]] )\n Creates a new typed array from an array-like object or an iterable.\n","Float32Array.of":"\nFloat32Array.of( element0:number[, element1:number[, ...elementN:number]] )\n Creates a new typed array from a variable number of arguments.\n","Float32Array.BYTES_PER_ELEMENT":"\nFloat32Array.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Float32Array.name":"\nFloat32Array.name\n Typed array constructor name.\n","Float32Array.prototype.buffer":"\nFloat32Array.prototype.buffer\n Read-only property which returns the ArrayBuffer referenced by the typed\n array.\n","Float32Array.prototype.byteLength":"\nFloat32Array.prototype.byteLength\n Read-only property which returns the length (in bytes) of the typed array.\n","Float32Array.prototype.byteOffset":"\nFloat32Array.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the typed array\n from the start of its ArrayBuffer.\n","Float32Array.prototype.BYTES_PER_ELEMENT":"\nFloat32Array.prototype.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Float32Array.prototype.length":"\nFloat32Array.prototype.length\n Read-only property which returns the number of view elements.\n","Float32Array.prototype.copyWithin":"\nFloat32Array.prototype.copyWithin( target:integer, start:integer[, \n end:integer] )\n Copies a sequence of elements within the array starting at `start` and\n ending at `end` (non-inclusive) to the position starting at `target`.\n","Float32Array.prototype.entries":"\nFloat32Array.prototype.entries()\n Returns an iterator for iterating over array key-value pairs.\n","Float32Array.prototype.every":"\nFloat32Array.prototype.every( predicate:Function[, thisArg:Any] )\n Tests whether all array elements pass a test implemented by a predicate\n function.\n","Float32Array.prototype.fill":"\nFloat32Array.prototype.fill( value:number[, start:integer[, end:integer]] )\n Fills an array from a start index to an end index (non-inclusive) with a\n provided value.\n","Float32Array.prototype.filter":"\nFloat32Array.prototype.filter( predicate:Function[, thisArg:Any] )\n Creates a new array which includes those elements for which a predicate\n function returns a truthy value.\n","Float32Array.prototype.find":"\nFloat32Array.prototype.find( predicate:Function[, thisArg:Any] )\n Returns the first array element for which a provided predicate function\n returns a truthy value.\n","Float32Array.prototype.findIndex":"\nFloat32Array.prototype.findIndex( predicate:Function[, thisArg:Any] )\n Returns the index of the first array element for which a provided predicate\n function returns a truthy value.\n","Float32Array.prototype.forEach":"\nFloat32Array.prototype.forEach( fcn:Function[, thisArg:Any] )\n Invokes a callback for each array element.\n","Float32Array.prototype.includes":"\nFloat32Array.prototype.includes( searchElement:number[, fromIndex:integer] )\n Returns a boolean indicating whether an array includes a search element.\n","Float32Array.prototype.indexOf":"\nFloat32Array.prototype.indexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the first array element strictly equal to a search\n element.\n","Float32Array.prototype.join":"\nFloat32Array.prototype.join( [separator:string] )\n Serializes an array by joining all array elements as a string.\n","Float32Array.prototype.keys":"\nFloat32Array.prototype.keys()\n Returns an iterator for iterating over array keys.\n","Float32Array.prototype.lastIndexOf":"\nFloat32Array.prototype.lastIndexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the last array element strictly equal to a search\n element.\n","Float32Array.prototype.map":"\nFloat32Array.prototype.map( fcn:Function[, thisArg:Any] )\n Maps each array element to an element in a new typed array.\n","Float32Array.prototype.reduce":"\nFloat32Array.prototype.reduce( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","Float32Array.prototype.reduceRight":"\nFloat32Array.prototype.reduceRight( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result, iterating from right to left.\n","Float32Array.prototype.reverse":"\nFloat32Array.prototype.reverse()\n Reverses an array *in-place*.\n","Float32Array.prototype.set":"\nFloat32Array.prototype.set( arr:ArrayLike[, offset:integer] )\n Sets array elements.\n","Float32Array.prototype.slice":"\nFloat32Array.prototype.slice( [begin:integer[, end:integer]] )\n Copies array elements to a new array with the same underlying data type as\n the host array.\n","Float32Array.prototype.some":"\nFloat32Array.prototype.some( predicate:Function[, thisArg:Any] )\n Tests whether at least one array element passes a test implemented by a\n predicate function.\n","Float32Array.prototype.sort":"\nFloat32Array.prototype.sort( [compareFunction:Function] )\n Sorts an array *in-place*.\n","Float32Array.prototype.subarray":"\nFloat32Array.prototype.subarray( [begin:integer[, end:integer]] )\n Creates a new typed array over the same underlying ArrayBuffer and with the\n same underlying data type as the host array.\n","Float32Array.prototype.toLocaleString":"\nFloat32Array.prototype.toLocaleString( [locales:string|Array[, \n options:Object]] )\n Serializes an array as a locale-specific string.\n","Float32Array.prototype.toString":"\nFloat32Array.prototype.toString()\n Serializes an array as a string.\n","Float32Array.prototype.values":"\nFloat32Array.prototype.values()\n Returns an iterator for iterating over array elements.\n","FLOAT64_EXPONENT_BIAS":"\nFLOAT64_EXPONENT_BIAS\n The bias of a double-precision floating-point number's exponent.\n","FLOAT64_HIGH_WORD_EXPONENT_MASK":"\nFLOAT64_HIGH_WORD_EXPONENT_MASK\n High word mask for the exponent of a double-precision floating-point number.\n","FLOAT64_HIGH_WORD_SIGNIFICAND_MASK":"\nFLOAT64_HIGH_WORD_SIGNIFICAND_MASK\n High word mask for the significand of a double-precision floating-point\n number.\n","FLOAT64_MAX":"\nFLOAT64_MAX\n Maximum double-precision floating-point number.\n","FLOAT64_MAX_BASE2_EXPONENT":"\nFLOAT64_MAX_BASE2_EXPONENT\n The maximum biased base 2 exponent for a double-precision floating-point\n number.\n","FLOAT64_MAX_BASE2_EXPONENT_SUBNORMAL":"\nFLOAT64_MAX_BASE2_EXPONENT_SUBNORMAL\n The maximum biased base 2 exponent for a subnormal double-precision\n floating-point number.\n","FLOAT64_MAX_BASE10_EXPONENT":"\nFLOAT64_MAX_BASE10_EXPONENT\n The maximum base 10 exponent for a double-precision floating-point number.\n","FLOAT64_MAX_BASE10_EXPONENT_SUBNORMAL":"\nFLOAT64_MAX_BASE10_EXPONENT_SUBNORMAL\n The maximum base 10 exponent for a subnormal double-precision floating-point\n number.\n","FLOAT64_MAX_LN":"\nFLOAT64_MAX_LN\n Natural logarithm of the maximum double-precision floating-point number.\n","FLOAT64_MAX_SAFE_FIBONACCI":"\nFLOAT64_MAX_SAFE_FIBONACCI\n Maximum safe Fibonacci number when stored in double-precision floating-point\n format.\n","FLOAT64_MAX_SAFE_INTEGER":"\nFLOAT64_MAX_SAFE_INTEGER\n Maximum safe double-precision floating-point integer.\n","FLOAT64_MAX_SAFE_LUCAS":"\nFLOAT64_MAX_SAFE_LUCAS\n Maximum safe Lucas number when stored in double-precision floating-point\n format.\n","FLOAT64_MAX_SAFE_NTH_FIBONACCI":"\nFLOAT64_MAX_SAFE_NTH_FIBONACCI\n Maximum safe nth Fibonacci number when stored in double-precision floating-\n point format.\n","FLOAT64_MAX_SAFE_NTH_LUCAS":"\nFLOAT64_MAX_SAFE_NTH_LUCAS\n Maximum safe nth Lucas number when stored in double-precision floating-point\n format.\n","FLOAT64_MIN_BASE2_EXPONENT":"\nFLOAT64_MIN_BASE2_EXPONENT\n The minimum biased base 2 exponent for a normalized double-precision\n floating-point number.\n","FLOAT64_MIN_BASE2_EXPONENT_SUBNORMAL":"\nFLOAT64_MIN_BASE2_EXPONENT_SUBNORMAL\n The minimum biased base 2 exponent for a subnormal double-precision\n floating-point number.\n","FLOAT64_MIN_BASE10_EXPONENT":"\nFLOAT64_MIN_BASE10_EXPONENT\n The minimum base 10 exponent for a normalized double-precision floating-\n point number.\n","FLOAT64_MIN_BASE10_EXPONENT_SUBNORMAL":"\nFLOAT64_MIN_BASE10_EXPONENT_SUBNORMAL\n The minimum base 10 exponent for a subnormal double-precision floating-\n point number.\n","FLOAT64_MIN_LN":"\nFLOAT64_MIN_LN\n Natural logarithm of the smallest normalized double-precision floating-point\n number.\n","FLOAT64_MIN_SAFE_INTEGER":"\nFLOAT64_MIN_SAFE_INTEGER\n Minimum safe double-precision floating-point integer.\n","FLOAT64_NUM_BYTES":"\nFLOAT64_NUM_BYTES\n Size (in bytes) of a double-precision floating-point number.\n","FLOAT64_PRECISION":"\nFLOAT64_PRECISION\n Effective number of bits in the significand of a double-precision floating-\n point number.\n","FLOAT64_SMALLEST_NORMAL":"\nFLOAT64_SMALLEST_NORMAL\n Smallest positive normalized double-precision floating-point number.\n","FLOAT64_SMALLEST_SUBNORMAL":"\nFLOAT64_SMALLEST_SUBNORMAL\n Smallest positive denormalized double-precision floating-point number.\n","Float64Array":"\nFloat64Array()\n A typed array constructor which returns a typed array representing an array\n of double-precision floating-point numbers in the platform byte order.\n\nFloat64Array( length:integer )\n Returns a typed array having a specified length.\n\nFloat64Array( typedarray:TypedArray )\n Creates a typed array from another typed array.\n\nFloat64Array( obj:Object )\n Creates a typed array from an array-like object or iterable.\n\nFloat64Array( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Returns a typed array view of an ArrayBuffer.\n","Float64Array.from":"\nFloat64Array.from( src:ArrayLike|Iterable[, map:Function[, thisArg:Any]] )\n Creates a new typed array from an array-like object or an iterable.\n","Float64Array.of":"\nFloat64Array.of( element0:number[, element1:number[, ...elementN:number]] )\n Creates a new typed array from a variable number of arguments.\n","Float64Array.BYTES_PER_ELEMENT":"\nFloat64Array.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Float64Array.name":"\nFloat64Array.name\n Typed array constructor name.\n","Float64Array.prototype.buffer":"\nFloat64Array.prototype.buffer\n Read-only property which returns the ArrayBuffer referenced by the typed\n array.\n","Float64Array.prototype.byteLength":"\nFloat64Array.prototype.byteLength\n Read-only property which returns the length (in bytes) of the typed array.\n","Float64Array.prototype.byteOffset":"\nFloat64Array.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the typed array\n from the start of its ArrayBuffer.\n","Float64Array.prototype.BYTES_PER_ELEMENT":"\nFloat64Array.prototype.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Float64Array.prototype.length":"\nFloat64Array.prototype.length\n Read-only property which returns the number of view elements.\n","Float64Array.prototype.copyWithin":"\nFloat64Array.prototype.copyWithin( target:integer, start:integer[, \n end:integer] )\n Copies a sequence of elements within the array starting at `start` and\n ending at `end` (non-inclusive) to the position starting at `target`.\n","Float64Array.prototype.entries":"\nFloat64Array.prototype.entries()\n Returns an iterator for iterating over array key-value pairs.\n","Float64Array.prototype.every":"\nFloat64Array.prototype.every( predicate:Function[, thisArg:Any] )\n Tests whether all array elements pass a test implemented by a predicate\n function.\n","Float64Array.prototype.fill":"\nFloat64Array.prototype.fill( value:number[, start:integer[, end:integer]] )\n Fills an array from a start index to an end index (non-inclusive) with a\n provided value.\n","Float64Array.prototype.filter":"\nFloat64Array.prototype.filter( predicate:Function[, thisArg:Any] )\n Creates a new array which includes those elements for which a predicate\n function returns a truthy value.\n","Float64Array.prototype.find":"\nFloat64Array.prototype.find( predicate:Function[, thisArg:Any] )\n Returns the first array element for which a provided predicate function\n returns a truthy value.\n","Float64Array.prototype.findIndex":"\nFloat64Array.prototype.findIndex( predicate:Function[, thisArg:Any] )\n Returns the index of the first array element for which a provided predicate\n function returns a truthy value.\n","Float64Array.prototype.forEach":"\nFloat64Array.prototype.forEach( fcn:Function[, thisArg:Any] )\n Invokes a callback for each array element.\n","Float64Array.prototype.includes":"\nFloat64Array.prototype.includes( searchElement:number[, fromIndex:integer] )\n Returns a boolean indicating whether an array includes a search element.\n","Float64Array.prototype.indexOf":"\nFloat64Array.prototype.indexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the first array element strictly equal to a search\n element.\n","Float64Array.prototype.join":"\nFloat64Array.prototype.join( [separator:string] )\n Serializes an array by joining all array elements as a string.\n","Float64Array.prototype.keys":"\nFloat64Array.prototype.keys()\n Returns an iterator for iterating over array keys.\n","Float64Array.prototype.lastIndexOf":"\nFloat64Array.prototype.lastIndexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the last array element strictly equal to a search\n element.\n","Float64Array.prototype.map":"\nFloat64Array.prototype.map( fcn:Function[, thisArg:Any] )\n Maps each array element to an element in a new typed array.\n","Float64Array.prototype.reduce":"\nFloat64Array.prototype.reduce( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","Float64Array.prototype.reduceRight":"\nFloat64Array.prototype.reduceRight( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result, iterating from right to left.\n","Float64Array.prototype.reverse":"\nFloat64Array.prototype.reverse()\n Reverses an array *in-place*.\n","Float64Array.prototype.set":"\nFloat64Array.prototype.set( arr:ArrayLike[, offset:integer] )\n Sets array elements.\n","Float64Array.prototype.slice":"\nFloat64Array.prototype.slice( [begin:integer[, end:integer]] )\n Copies array elements to a new array with the same underlying data type as\n the host array.\n","Float64Array.prototype.some":"\nFloat64Array.prototype.some( predicate:Function[, thisArg:Any] )\n Tests whether at least one array element passes a test implemented by a\n predicate function.\n","Float64Array.prototype.sort":"\nFloat64Array.prototype.sort( [compareFunction:Function] )\n Sorts an array *in-place*.\n","Float64Array.prototype.subarray":"\nFloat64Array.prototype.subarray( [begin:integer[, end:integer]] )\n Creates a new typed array over the same underlying ArrayBuffer and with the\n same underlying data type as the host array.\n","Float64Array.prototype.toLocaleString":"\nFloat64Array.prototype.toLocaleString( [locales:string|Array[, \n options:Object]] )\n Serializes an array as a locale-specific string.\n","Float64Array.prototype.toString":"\nFloat64Array.prototype.toString()\n Serializes an array as a string.\n","Float64Array.prototype.values":"\nFloat64Array.prototype.values()\n Returns an iterator for iterating over array elements.\n","forEach":"\nforEach( collection:Array|TypedArray|Object, fcn:Function[, thisArg:any] )\n Invokes a function for each element in a collection.\n","forEachAsync":"\nforEachAsync( collection:Array|TypedArray|Object, [options:Object,] \n fcn:Function, done:Function )\n Invokes a function once for each element in a collection.\n","forEachAsync.factory":"\nforEachAsync.factory( [options:Object,] fcn:Function )\n Returns a function which invokes a function once for each element in a\n collection.\n","forEachRight":"\nforEachRight( collection:Array|TypedArray|Object, fcn:Function[, thisArg:any] )\n Invokes a function for each element in a collection, iterating from right to\n left.\n","forEachRightAsync":"\nforEachRightAsync( collection:Array|TypedArray|Object, [options:Object,] \n fcn:Function, done:Function )\n Invokes a function once for each element in a collection, iterating from\n right to left.\n","forEachRightAsync.factory":"\nforEachRightAsync.factory( [options:Object,] fcn:Function )\n Returns a function which invokes a function once for each element in a\n collection, iterating from right to left.\n","forIn":"\nforIn( obj:Object, fcn:Function[, thisArg:any] )\n Invokes a function for each own and inherited enumerable property of an\n object.\n","forOwn":"\nforOwn( obj:Object, fcn:Function[, thisArg:any] )\n Invokes a function for each own enumerable property of an object.\n","FOURTH_PI":"\nFOURTH_PI\n One fourth times the mathematical constant `π`.\n","FOURTH_ROOT_EPS":"\nFOURTH_ROOT_EPS\n Fourth root of double-precision floating-point epsilon.\n","FRB_SF_WAGE_RIGIDITY":"\nFRB_SF_WAGE_RIGIDITY()\n Returns wage rates for U.S. workers that have not changed jobs within the\n year.\n","fromCodePoint":"\nfromCodePoint( ...pt:integer )\n Creates a string from a sequence of Unicode code points.\n","Function":"\nFunction( [...argNames:any,] body:string )\n Returns a Function object.\n","Function.prototype.apply":"\nFunction.prototype.apply( thisArg:any, args:Array )\n Calls a function with a given `this` value and arguments provided as an\n array (or array-like object).\n","Function.prototype.call":"\nFunction.prototype.call( thisArg:any, ...args:any )\n Calls a function with a given `this` value and arguments provided\n individually.\n","Function.prototype.bind":"\nFunction.prototype.bind( thisArg:any, ...args:any )\n Creates a new function which, when called, has its `this` keyword set to the\n provided value, with a given sequence of arguments preceding any provided\n when the new function is called.\n","Function.prototype.toString":"\nFunction.prototype.toString()\n Returns a string representation of the function.\n","Function.prototype.length":"\nFunction.prototype.length\n The number of arguments expected by the function.\n","Function.prototype.name":"\nFunction.prototype.name\n The name of the function.\n","Function.prototype.prototype":"\nFunction.prototype.prototype\n The prototype of the function.\n","function2string":"\nfunction2string( fcn:Function )\n Returns a string representing the source code of a provided function.\n","functionName":"\nfunctionName( fcn:Function )\n Returns the name of a function.\n","functionSequence":"\nfunctionSequence( ...fcn:Function )\n Returns a pipeline function.\n","functionSequenceAsync":"\nfunctionSequenceAsync( ...fcn:Function )\n Returns a pipeline function.\n","GAMMA_LANCZOS_G":"\nGAMMA_LANCZOS_G\n Arbitrary constant `g` to be used in Lanczos approximation functions.\n","gdot":"\ngdot( x:ndarray|ArrayLikeObject, y:ndarray|ArrayLikeObject )\n Computes the dot product of two vectors.\n","getegid":"\ngetegid()\n Returns the effective numeric group identity of the calling process.\n","geteuid":"\ngeteuid()\n Returns the effective numeric user identity of the calling process.\n","getgid":"\ngetgid()\n Returns the numeric group identity of the calling process.\n","getGlobal":"\ngetGlobal( [codegen:boolean] )\n Returns the global object.\n","getPrototypeOf":"\ngetPrototypeOf( value:any )\n Returns the prototype of a provided object.\n","getuid":"\ngetuid()\n Returns the numeric user identity of the calling process.\n","GLAISHER":"\nGLAISHER\n Glaisher-Kinkelin constant.\n","graphemeClusters2iterator":"\ngraphemeClusters2iterator( src:string[, mapFcn:Function[, thisArg:any]] )\n Returns an iterator which iterates over each grapheme cluster in a string.\n","group":"\ngroup( collection:Array|TypedArray|Object, [options:Object,] \n groups:Array|TypedArray|Object )\n Groups values as arrays associated with distinct keys.\n","groupBy":"\ngroupBy( collection:Array|TypedArray|Object, [options:Object,] \n indicator:Function )\n Groups values according to an indicator function.\n","groupByAsync":"\ngroupByAsync( collection:Array|TypedArray|Object, [options:Object,] \n indicator:Function, done:Function )\n Groups values according to an indicator function.\n","groupByAsync.factory":"\ngroupByAsync.factory( [options:Object,] indicator:Function )\n Returns a function which groups values according to an indicator function.\n","groupIn":"\ngroupIn( obj:Object|Array|TypedArray, [options:Object,] indicator:Function )\n Group values according to an indicator function.\n","groupOwn":"\ngroupOwn( obj:Object|Array|TypedArray, [options:Object,] indicator:Function )\n Group values according to an indicator function.\n","gswap":"\ngswap( x:ndarray|ArrayLikeObject, y:ndarray|ArrayLikeObject )\n Interchanges two vectors.\n","HALF_LN2":"\nHALF_LN2\n One half times the natural logarithm of `2`.\n","HALF_PI":"\nHALF_PI\n One half times the mathematical constant `π`.\n","HARRISON_BOSTON_HOUSE_PRICES":"\nHARRISON_BOSTON_HOUSE_PRICES()\n Returns a dataset derived from information collected by the US Census\n Service concerning housing in Boston, Massachusetts (1978).\n","HARRISON_BOSTON_HOUSE_PRICES_CORRECTED":"\nHARRISON_BOSTON_HOUSE_PRICES_CORRECTED()\n Returns a (corrected) dataset derived from information collected by the US\n Census Service concerning housing in Boston, Massachusetts (1978).\n","hasArrayBufferSupport":"\nhasArrayBufferSupport()\n Tests for native `ArrayBuffer` support.\n","hasAsyncAwaitSupport":"\nhasAsyncAwaitSupport()\n Tests for native `async`/`await` support.\n","hasAsyncIteratorSymbolSupport":"\nhasAsyncIteratorSymbolSupport()\n Tests for native `Symbol.asyncIterator` support.\n","hasBigInt64ArraySupport":"\nhasBigInt64ArraySupport()\n Tests for native `BigInt64Array` support.\n","hasBigIntSupport":"\nhasBigIntSupport()\n Tests for native `BigInt` support.\n","hasBigUint64ArraySupport":"\nhasBigUint64ArraySupport()\n Tests for native `BigUint64Array` support.\n","hasClassSupport":"\nhasClassSupport()\n Tests for native `class` support.\n","hasDefinePropertiesSupport":"\nhasDefinePropertiesSupport()\n Tests for `Object.defineProperties` support.\n","hasDefinePropertySupport":"\nhasDefinePropertySupport()\n Tests for `Object.defineProperty` support.\n","hasFloat32ArraySupport":"\nhasFloat32ArraySupport()\n Tests for native `Float32Array` support.\n","hasFloat64ArraySupport":"\nhasFloat64ArraySupport()\n Tests for native `Float64Array` support.\n","hasFunctionNameSupport":"\nhasFunctionNameSupport()\n Tests for native function `name` support.\n","hasGeneratorSupport":"\nhasGeneratorSupport()\n Tests whether an environment supports native generator functions.\n","hasGlobalThisSupport":"\nhasGlobalThisSupport()\n Tests for `globalThis` support.\n","hasInt8ArraySupport":"\nhasInt8ArraySupport()\n Tests for native `Int8Array` support.\n","hasInt16ArraySupport":"\nhasInt16ArraySupport()\n Tests for native `Int16Array` support.\n","hasInt32ArraySupport":"\nhasInt32ArraySupport()\n Tests for native `Int32Array` support.\n","hasIteratorSymbolSupport":"\nhasIteratorSymbolSupport()\n Tests for native `Symbol.iterator` support.\n","hasMapSupport":"\nhasMapSupport()\n Tests for native `Map` support.\n","hasNodeBufferSupport":"\nhasNodeBufferSupport()\n Tests for native `Buffer` support.\n","hasOwnProp":"\nhasOwnProp( value:any, property:any )\n Tests if an object has a specified property.\n","hasProp":"\nhasProp( value:any, property:any )\n Tests if an object has a specified property, either own or inherited.\n","hasProxySupport":"\nhasProxySupport()\n Tests whether an environment has native `Proxy` support.\n","hasSetSupport":"\nhasSetSupport()\n Tests for native `Set` support.\n","hasSharedArrayBufferSupport":"\nhasSharedArrayBufferSupport()\n Tests for native `SharedArrayBuffer` support.\n","hasSymbolSupport":"\nhasSymbolSupport()\n Tests for native `Symbol` support.\n","hasToStringTagSupport":"\nhasToStringTagSupport()\n Tests for native `toStringTag` support.\n","hasUint8ArraySupport":"\nhasUint8ArraySupport()\n Tests for native `Uint8Array` support.\n","hasUint8ClampedArraySupport":"\nhasUint8ClampedArraySupport()\n Tests for native `Uint8ClampedArray` support.\n","hasUint16ArraySupport":"\nhasUint16ArraySupport()\n Tests for native `Uint16Array` support.\n","hasUint32ArraySupport":"\nhasUint32ArraySupport()\n Tests for native `Uint32Array` support.\n","hasUTF16SurrogatePairAt":"\nhasUTF16SurrogatePairAt( str:string, pos:integer )\n Tests if a position in a string marks the start of a UTF-16 surrogate pair.\n","hasWeakMapSupport":"\nhasWeakMapSupport()\n Tests for native `WeakMap` support.\n","hasWeakSetSupport":"\nhasWeakSetSupport()\n Tests for native `WeakSet` support.\n","hasWebAssemblySupport":"\nhasWebAssemblySupport()\n Tests for native WebAssembly support.\n","HERNDON_VENUS_SEMIDIAMETERS":"\nHERNDON_VENUS_SEMIDIAMETERS()\n Returns fifteen observations of the vertical semidiameter of Venus, made by\n Lieutenant Herndon, with the meridian circle at Washington, in the year\n 1846.\n","homedir":"\nhomedir()\n Returns the current user's home directory.\n","HOURS_IN_DAY":"\nHOURS_IN_DAY\n Number of hours in a day.\n","HOURS_IN_WEEK":"\nHOURS_IN_WEEK\n Number of hours in a week.\n","hoursInMonth":"\nhoursInMonth( [month:string|Date|integer[, year:integer]] )\n Returns the number of hours in a month.\n","hoursInYear":"\nhoursInYear( [value:integer|Date] )\n Returns the number of hours in a year according to the Gregorian calendar.\n","httpServer":"\nhttpServer( [options:Object,] [requestListener:Function] )\n Returns a function to create an HTTP server.\n","identity":"\nidentity( x:any )\n Identity function.\n","ifelse":"\nifelse( bool:boolean, x:any, y:any )\n If a condition is truthy, returns `x`; otherwise, returns `y`.\n","ifelseAsync":"\nifelseAsync( predicate:Function, x:any, y:any, done:Function )\n If a predicate function returns a truthy value, returns `x`; otherwise,\n returns `y`.\n","ifthen":"\nifthen( bool:boolean, x:Function, y:Function )\n If a condition is truthy, invoke `x`; otherwise, invoke `y`.\n","ifthenAsync":"\nifthenAsync( predicate:Function, x:Function, y:Function, done:Function )\n If a predicate function returns a truthy value, invokes `x`; otherwise,\n invokes `y`.\n","imag":"\nimag( z:Complex128 )\n Returns the imaginary component of a double-precision complex floating-point\n number.\n","imagf":"\nimagf( z:Complex64 )\n Returns the imaginary component of a single-precision complex floating-point\n number.\n","IMG_ACANTHUS_MOLLIS":"\nIMG_ACANTHUS_MOLLIS()\n Returns a `Buffer` containing image data of Karl Blossfeldt's gelatin silver\n print *Acanthus mollis*.\n","IMG_AIRPLANE_FROM_ABOVE":"\nIMG_AIRPLANE_FROM_ABOVE()\n Returns a `Buffer` containing image data of Fédèle Azari's gelatin silver\n print of an airplane, viewed from above looking down.\n","IMG_ALLIUM_OREOPHILUM":"\nIMG_ALLIUM_OREOPHILUM()\n Returns a `Buffer` containing image data of Karl Blossfeldt's gelatin silver\n print *Allium ostrowskianum*.\n","IMG_BLACK_CANYON":"\nIMG_BLACK_CANYON()\n Returns a `Buffer` containing image data of Timothy H. O'Sullivan's albumen\n silver print *Black Cañon, Colorado River, From Camp 8, Looking Above*.\n","IMG_DUST_BOWL_HOME":"\nIMG_DUST_BOWL_HOME()\n Returns a `Buffer` containing image data of Dorothea Lange's gelatin silver\n print of an abandoned Dust Bowl home.\n","IMG_FRENCH_ALPINE_LANDSCAPE":"\nIMG_FRENCH_ALPINE_LANDSCAPE()\n Returns a `Buffer` containing image data of Adolphe Braun's carbon print of\n a French alpine landscape.\n","IMG_LOCOMOTION_HOUSE_CAT":"\nIMG_LOCOMOTION_HOUSE_CAT()\n Returns a `Buffer` containing image data of Eadweard J. Muybridge's\n collotype of a house cat (24 views).\n","IMG_LOCOMOTION_NUDE_MALE":"\nIMG_LOCOMOTION_NUDE_MALE()\n Returns a `Buffer` containing image data of Eadweard J. Muybridge's\n collotype of a nude male moving in place (48 views).\n","IMG_MARCH_PASTORAL":"\nIMG_MARCH_PASTORAL()\n Returns a `Buffer` containing image data of Peter Henry Emerson's\n photogravure of sheep in a pastoral setting.\n","IMG_NAGASAKI_BOATS":"\nIMG_NAGASAKI_BOATS()\n Returns a `Buffer` containing image data of Felice Beato's albumen silver\n print of boats in a river in Nagasaki.\n","incrapcorr":"\nincrapcorr( [mx:number, my:number] )\n Returns an accumulator function which incrementally computes the absolute\n value of the sample Pearson product-moment correlation coefficient.\n","incrBinaryClassification":"\nincrBinaryClassification( N:integer[, options:Object] )\n Returns an accumulator function which incrementally performs binary\n classification using stochastic gradient descent (SGD).\n","incrcount":"\nincrcount()\n Returns an accumulator function which incrementally updates a count.\n","incrcovariance":"\nincrcovariance( [mx:number, my:number] )\n Returns an accumulator function which incrementally computes an unbiased\n sample covariance.\n","incrcovmat":"\nincrcovmat( out:integer|ndarray[, means:ndarray] )\n Returns an accumulator function which incrementally computes an unbiased\n sample covariance matrix.\n","incrcv":"\nincrcv( [mean:number] )\n Returns an accumulator function which incrementally computes the coefficient\n of variation (CV).\n","increwmean":"\nincrewmean( α:number )\n Returns an accumulator function which incrementally computes an\n exponentially weighted mean, where α is a smoothing factor between 0 and 1.\n","increwstdev":"\nincrewstdev( α:number )\n Returns an accumulator function which incrementally computes an\n exponentially weighted standard deviation, where α is a smoothing factor\n between 0 and 1.\n","increwvariance":"\nincrewvariance( α:number )\n Returns an accumulator function which incrementally computes an\n exponentially weighted variance, where α is a smoothing factor between 0 and\n 1.\n","incrgmean":"\nincrgmean()\n Returns an accumulator function which incrementally computes a geometric\n mean.\n","incrgrubbs":"\nincrgrubbs( [options:Object] )\n Returns an accumulator function which incrementally performs Grubbs' test\n for detecting outliers.\n","incrhmean":"\nincrhmean()\n Returns an accumulator function which incrementally computes a harmonic\n mean.\n","incrkmeans":"\nincrkmeans( k:integer|ndarray[, ndims:integer][, options:Object] )\n Returns an accumulator function which incrementally partitions data into `k`\n clusters.\n","incrkurtosis":"\nincrkurtosis()\n Returns an accumulator function which incrementally computes a corrected\n sample excess kurtosis.\n","incrmaape":"\nincrmaape()\n Returns an accumulator function which incrementally computes the mean\n arctangent absolute percentage error (MAAPE).\n","incrmae":"\nincrmae()\n Returns an accumulator function which incrementally computes the mean\n absolute error (MAE).\n","incrmapcorr":"\nincrmapcorr( W:integer[, mx:number, my:number] )\n Returns an accumulator function which incrementally computes a moving\n sample absolute Pearson product-moment correlation coefficient.\n","incrmape":"\nincrmape()\n Returns an accumulator function which incrementally computes the mean\n absolute percentage error (MAPE).\n","incrmax":"\nincrmax()\n Returns an accumulator function which incrementally computes a maximum\n value.\n","incrmaxabs":"\nincrmaxabs()\n Returns an accumulator function which incrementally computes a maximum\n absolute value.\n","incrmcovariance":"\nincrmcovariance( W:integer[, mx:number, my:number] )\n Returns an accumulator function which incrementally computes a moving\n unbiased sample covariance.\n","incrmcv":"\nincrmcv( W:integer[, mean:number] )\n Returns an accumulator function which incrementally computes a moving\n coefficient of variation (CV).\n","incrmda":"\nincrmda()\n Returns an accumulator function which incrementally computes the mean\n directional accuracy (MDA).\n","incrme":"\nincrme()\n Returns an accumulator function which incrementally computes the mean error\n (ME).\n","incrmean":"\nincrmean()\n Returns an accumulator function which incrementally computes an arithmetic\n mean.\n","incrmeanabs":"\nincrmeanabs()\n Returns an accumulator function which incrementally computes an arithmetic\n mean of absolute values.\n","incrmeanabs2":"\nincrmeanabs2()\n Returns an accumulator function which incrementally computes an arithmetic\n mean of squared absolute values.\n","incrmeanstdev":"\nincrmeanstdev( [out:Array|TypedArray] )\n Returns an accumulator function which incrementally computes an arithmetic\n mean and corrected sample standard deviation.\n","incrmeanvar":"\nincrmeanvar( [out:Array|TypedArray] )\n Returns an accumulator function which incrementally computes an arithmetic\n mean and unbiased sample variance.\n","incrmgmean":"\nincrmgmean( W:integer )\n Returns an accumulator function which incrementally computes a moving\n geometric mean.\n","incrmgrubbs":"\nincrmgrubbs( W:integer[, options:Object] )\n Returns an accumulator function which incrementally performs a moving\n Grubbs' test for detecting outliers.\n","incrmhmean":"\nincrmhmean( W:integer )\n Returns an accumulator function which incrementally computes a moving\n harmonic mean.\n","incrmidrange":"\nincrmidrange()\n Returns an accumulator function which incrementally computes a mid-range.\n","incrmin":"\nincrmin()\n Returns an accumulator function which incrementally computes a minimum\n value.\n","incrminabs":"\nincrminabs()\n Returns an accumulator function which incrementally computes a minimum\n absolute value.\n","incrminmax":"\nincrminmax( [out:Array|TypedArray] )\n Returns an accumulator function which incrementally computes a minimum and\n maximum.\n","incrminmaxabs":"\nincrminmaxabs( [out:Array|TypedArray] )\n Returns an accumulator function which incrementally computes a minimum and\n maximum absolute value.\n","incrmmaape":"\nincrmmaape( W:integer )\n Returns an accumulator function which incrementally computes a moving\n mean arctangent absolute percentage error (MAAPE).\n","incrmmae":"\nincrmmae( W:integer )\n Returns an accumulator function which incrementally computes a moving\n mean absolute error (MAE).\n","incrmmape":"\nincrmmape( W:integer )\n Returns an accumulator function which incrementally computes a moving\n mean absolute percentage error (MAPE).\n","incrmmax":"\nincrmmax( W:integer )\n Returns an accumulator function which incrementally computes a moving\n maximum value.\n","incrmmaxabs":"\nincrmmaxabs( W:integer )\n Returns an accumulator function which incrementally computes a moving\n maximum absolute value.\n","incrmmda":"\nincrmmda( W:integer )\n Returns an accumulator function which incrementally computes a moving\n mean directional accuracy (MDA).\n","incrmme":"\nincrmme( W:integer )\n Returns an accumulator function which incrementally computes a moving\n mean error (ME).\n","incrmmean":"\nincrmmean( W:integer )\n Returns an accumulator function which incrementally computes a moving\n arithmetic mean.\n","incrmmeanabs":"\nincrmmeanabs( W:integer )\n Returns an accumulator function which incrementally computes a moving\n arithmetic mean of absolute values.\n","incrmmeanabs2":"\nincrmmeanabs2( W:integer )\n Returns an accumulator function which incrementally computes a moving\n arithmetic mean of squared absolute values.\n","incrmmeanstdev":"\nincrmmeanstdev( [out:Array|TypedArray,] W:integer )\n Returns an accumulator function which incrementally computes a moving\n arithmetic mean and corrected sample standard deviation.\n","incrmmeanvar":"\nincrmmeanvar( [out:Array|TypedArray,] W:integer )\n Returns an accumulator function which incrementally computes a moving\n arithmetic mean and unbiased sample variance.\n","incrmmidrange":"\nincrmmidrange( W:integer )\n Returns an accumulator function which incrementally computes a moving mid-\n range.\n","incrmmin":"\nincrmmin( W:integer )\n Returns an accumulator function which incrementally computes a moving\n minimum value.\n","incrmminabs":"\nincrmminabs( W:integer )\n Returns an accumulator function which incrementally computes a moving\n minimum absolute value.\n","incrmminmax":"\nincrmminmax( [out:Array|TypedArray,] W:integer )\n Returns an accumulator function which incrementally computes a moving\n minimum and maximum.\n","incrmminmaxabs":"\nincrmminmaxabs( [out:Array|TypedArray,] W:integer )\n Returns an accumulator function which incrementally computes moving minimum\n and maximum absolute values.\n","incrmmpe":"\nincrmmpe( W:integer )\n Returns an accumulator function which incrementally computes a moving\n mean percentage error (MPE).\n","incrmmse":"\nincrmmse( W:integer )\n Returns an accumulator function which incrementally computes a moving mean\n squared error (MSE).\n","incrmpcorr":"\nincrmpcorr( W:integer[, mx:number, my:number] )\n Returns an accumulator function which incrementally computes a moving\n sample Pearson product-moment correlation coefficient.\n","incrmpcorr2":"\nincrmpcorr2( W:integer[, mx:number, my:number] )\n Returns an accumulator function which incrementally computes a moving\n squared sample Pearson product-moment correlation coefficient.\n","incrmpcorrdist":"\nincrmpcorrdist( W:integer[, mx:number, my:number] )\n Returns an accumulator function which incrementally computes a moving\n sample Pearson product-moment correlation distance.\n","incrmpe":"\nincrmpe()\n Returns an accumulator function which incrementally computes the mean\n percentage error (MPE).\n","incrmprod":"\nincrmprod( W:integer )\n Returns an accumulator function which incrementally computes a moving\n product.\n","incrmrange":"\nincrmrange( W:integer )\n Returns an accumulator function which incrementally computes a moving range.\n","incrmrmse":"\nincrmrmse( W:integer )\n Returns an accumulator function which incrementally computes a moving root\n mean squared error (RMSE).\n","incrmrss":"\nincrmrss( W:integer )\n Returns an accumulator function which incrementally computes a moving\n residual sum of squares (RSS).\n","incrmse":"\nincrmse()\n Returns an accumulator function which incrementally computes the mean\n squared error (MSE).\n","incrmstdev":"\nincrmstdev( W:integer[, mean:number] )\n Returns an accumulator function which incrementally computes a moving\n corrected sample standard deviation.\n","incrmsum":"\nincrmsum( W:integer )\n Returns an accumulator function which incrementally computes a moving sum.\n","incrmsumabs":"\nincrmsumabs( W:integer )\n Returns an accumulator function which incrementally computes a moving sum of\n absolute values.\n","incrmsumabs2":"\nincrmsumabs2( W:integer )\n Returns an accumulator function which incrementally computes a moving sum of\n squared absolute values.\n","incrmsummary":"\nincrmsummary( W:integer )\n Returns an accumulator function which incrementally computes a moving\n statistical summary.\n","incrmsumprod":"\nincrmsumprod( W:integer )\n Returns an accumulator function which incrementally computes a moving sum of\n products.\n","incrmvariance":"\nincrmvariance( W:integer[, mean:number] )\n Returns an accumulator function which incrementally computes a moving\n unbiased sample variance.\n","incrmvmr":"\nincrmvmr( W:integer[, mean:number] )\n Returns an accumulator function which incrementally computes a moving\n variance-to-mean (VMR).\n","incrnancount":"\nincrnancount()\n Returns an accumulator function which incrementally updates a count,\n ignoring `NaN` values.\n","incrnansum":"\nincrnansum()\n Returns an accumulator function which incrementally computes a sum, ignoring\n `NaN` values.\n","incrnansumabs":"\nincrnansumabs()\n Returns an accumulator function which incrementally computes a sum of\n absolute values, ignoring NaN values.\n","incrnansumabs2":"\nincrnansumabs2()\n Returns an accumulator function which incrementally computes a sum of\n squared absolute values, ignoring NaN values.\n","incrpcorr":"\nincrpcorr( [mx:number, my:number] )\n Returns an accumulator function which incrementally computes a sample\n Pearson product-moment correlation coefficient.\n","incrpcorr2":"\nincrpcorr2( [mx:number, my:number] )\n Returns an accumulator function which incrementally computes the squared\n sample Pearson product-moment correlation coefficient.\n","incrpcorrdist":"\nincrpcorrdist( [mx:number, my:number] )\n Returns an accumulator function which incrementally computes a sample\n Pearson product-moment correlation distance.\n","incrpcorrdistmat":"\nincrpcorrdistmat( out:integer|ndarray[, means:ndarray] )\n Returns an accumulator function which incrementally computes a sample\n Pearson product-moment correlation distance matrix.\n","incrpcorrmat":"\nincrpcorrmat( out:integer|ndarray[, means:ndarray] )\n Returns an accumulator function which incrementally computes a sample\n Pearson product-moment correlation matrix.\n","incrprod":"\nincrprod()\n Returns an accumulator function which incrementally computes a product.\n","incrrange":"\nincrrange()\n Returns an accumulator function which incrementally computes a range.\n","incrrmse":"\nincrrmse()\n Returns an accumulator function which incrementally computes the root mean\n squared error (RMSE).\n","incrrss":"\nincrrss()\n Returns an accumulator function which incrementally computes the residual\n sum of squares (RSS).\n","incrskewness":"\nincrskewness()\n Returns an accumulator function which incrementally computes a corrected\n sample skewness.\n","incrspace":"\nincrspace( start:number, stop:number[, increment:number] )\n Generates a linearly spaced numeric array using a provided increment.\n","incrstdev":"\nincrstdev( [mean:number] )\n Returns an accumulator function which incrementally computes a corrected\n sample standard deviation.\n","incrsum":"\nincrsum()\n Returns an accumulator function which incrementally computes a sum.\n","incrsumabs":"\nincrsumabs()\n Returns an accumulator function which incrementally computes a sum of\n absolute values.\n","incrsumabs2":"\nincrsumabs2()\n Returns an accumulator function which incrementally computes a sum of\n squared absolute values.\n","incrsummary":"\nincrsummary()\n Returns an accumulator function which incrementally computes a statistical\n summary.\n","incrsumprod":"\nincrsumprod()\n Returns an accumulator function which incrementally computes a sum of\n products.\n","incrvariance":"\nincrvariance( [mean:number] )\n Returns an accumulator function which incrementally computes an unbiased\n sample variance.\n","incrvmr":"\nincrvmr( [mean:number] )\n Returns an accumulator function which incrementally computes a variance-to-\n mean ratio (VMR).\n","incrwmean":"\nincrwmean()\n Returns an accumulator function which incrementally computes a weighted\n arithmetic mean.\n","ind2sub":"\nind2sub( shape:ArrayLike, idx:integer[, options:Object] )\n Converts a linear index to an array of subscripts.\n","ind2sub.assign":"\nind2sub.assign( shape:ArrayLike, idx:integer[, options:Object], \n out:Array|TypedArray|Object )\n Converts a linear index to an array of subscripts and assigns results to a\n provided output array.\n","indexOf":"\nindexOf( arr:ArrayLike, searchElement:any[, fromIndex:integer] )\n Returns the first index at which a given element can be found.\n","inherit":"\ninherit( ctor:Object|Function, superCtor:Object|Function )\n Prototypical inheritance by replacing the prototype of one constructor with\n the prototype of another constructor.\n","inheritedEnumerableProperties":"\ninheritedEnumerableProperties( value:any[, level:integer] )\n Returns an array of an object's inherited enumerable property names and\n symbols.\n","inheritedEnumerablePropertySymbols":"\ninheritedEnumerablePropertySymbols( value:any[, level:integer] )\n Returns an array of an object's inherited enumerable symbol properties.\n","inheritedKeys":"\ninheritedKeys( value:any[, level:integer] )\n Returns an array of an object's inherited enumerable property names.\n","inheritedNonEnumerableProperties":"\ninheritedNonEnumerableProperties( value:any[, level:integer] )\n Returns an array of an object's inherited non-enumerable property names and\n symbols.\n","inheritedNonEnumerablePropertyNames":"\ninheritedNonEnumerablePropertyNames( value:any[, level:integer] )\n Returns an array of an object's inherited non-enumerable property names.\n","inheritedNonEnumerablePropertySymbols":"\ninheritedNonEnumerablePropertySymbols( value:any[, level:integer] )\n Returns an array of an object's inherited non-enumerable symbol properties.\n","inheritedProperties":"\ninheritedProperties( value:any[, level:integer] )\n Returns an array of an object's inherited property names and symbols.\n","inheritedPropertyDescriptor":"\ninheritedPropertyDescriptor( value:any, property:string|symbol[, \n level:integer] )\n Returns a property descriptor for an object's inherited property.\n","inheritedPropertyDescriptors":"\ninheritedPropertyDescriptors( value:any[, level:integer] )\n Returns an object's inherited property descriptors.\n","inheritedPropertyNames":"\ninheritedPropertyNames( value:any[, level:integer] )\n Returns an array of an object's inherited enumerable and non-enumerable\n property names.\n","inheritedPropertySymbols":"\ninheritedPropertySymbols( value:any[, level:integer] )\n Returns an array of an object's inherited symbol properties.\n","inheritedWritableProperties":"\ninheritedWritableProperties( value:any[, level:integer] )\n Returns an array of an object's inherited writable property names and\n symbols.\n","inheritedWritablePropertyNames":"\ninheritedWritablePropertyNames( value:any[, level:integer] )\n Returns an array of an object's inherited writable property names.\n","inheritedWritablePropertySymbols":"\ninheritedWritablePropertySymbols( value:any[, level:integer] )\n Returns an array of an object's inherited writable symbol properties.\n","inmap":"\ninmap( collection:Array|TypedArray|Object, fcn:Function[, thisArg:any] )\n Invokes a function for each element in a collection and updates the\n collection in-place.\n","inmapAsync":"\ninmapAsync( collection:Array|TypedArray|Object, [options:Object,] fcn:Function, \n done:Function )\n Invokes a function once for each element in a collection and updates a\n collection in-place.\n","inmapAsync.factory":"\ninmapAsync.factory( [options:Object,] fcn:Function )\n Returns a function which invokes a function once for each element in a\n collection and updates a collection in-place.\n","inmapRight":"\ninmapRight( collection:Array|TypedArray|Object, fcn:Function[, thisArg:any] )\n Invokes a function for each element in a collection and updates the\n collection in-place, iterating from right to left.\n","inmapRightAsync":"\ninmapRightAsync( collection:Array|TypedArray|Object, [options:Object,] \n fcn:Function, done:Function )\n Invokes a function once for each element in a collection and updates a\n collection in-place, iterating from right to left.\n","inmapRightAsync.factory":"\ninmapRightAsync.factory( [options:Object,] fcn:Function )\n Returns a function which invokes a function once for each element in a\n collection and updates a collection in-place, iterating from right to left.\n","inspectSinkStream":"\ninspectSinkStream( [options:Object,] clbk:Function )\n Returns a writable stream for inspecting stream data.\n","inspectSinkStream.factory":"\ninspectSinkStream.factory( [options:Object] )\n Returns a function for creating writable streams for inspecting stream data.\n","inspectSinkStream.objectMode":"\ninspectSinkStream.objectMode( [options:Object,] clbk:Function )\n Returns an \"objectMode\" writable stream for inspecting stream data.\n","inspectStream":"\ninspectStream( [options:Object,] clbk:Function )\n Returns a transform stream for inspecting stream data.\n","inspectStream.factory":"\ninspectStream.factory( [options:Object] )\n Returns a function for creating transform streams for inspecting stream\n data.\n","inspectStream.objectMode":"\ninspectStream.objectMode( [options:Object,] clbk:Function )\n Returns an \"objectMode\" transform stream for inspecting stream data.\n","instanceOf":"\ninstanceOf( value:any, constructor:Function )\n Tests whether a value has in its prototype chain a specified constructor as\n a prototype property.\n","INT8_MAX":"\nINT8_MAX\n Maximum signed 8-bit integer.\n","INT8_MIN":"\nINT8_MIN\n Minimum signed 8-bit integer.\n","INT8_NUM_BYTES":"\nINT8_NUM_BYTES\n Size (in bytes) of an 8-bit signed integer.\n","Int8Array":"\nInt8Array()\n A typed array constructor which returns a typed array representing an array\n of twos-complement 8-bit signed integers in the platform byte order.\n\nInt8Array( length:integer )\n Returns a typed array having a specified length.\n\nInt8Array( typedarray:TypedArray )\n Creates a typed array from another typed array.\n\nInt8Array( obj:Object )\n Creates a typed array from an array-like object or iterable.\n\nInt8Array( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Returns a typed array view of an ArrayBuffer.\n","Int8Array.from":"\nInt8Array.from( src:ArrayLike|Iterable[, map:Function[, thisArg:Any]] )\n Creates a new typed array from an array-like object or an iterable.\n","Int8Array.of":"\nInt8Array.of( element0:number[, element1:number[, ...elementN:number]] )\n Creates a new typed array from a variable number of arguments.\n","Int8Array.BYTES_PER_ELEMENT":"\nInt8Array.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Int8Array.name":"\nInt8Array.name\n Typed array constructor name.\n","Int8Array.prototype.buffer":"\nInt8Array.prototype.buffer\n Read-only property which returns the ArrayBuffer referenced by the typed\n array.\n","Int8Array.prototype.byteLength":"\nInt8Array.prototype.byteLength\n Read-only property which returns the length (in bytes) of the typed array.\n","Int8Array.prototype.byteOffset":"\nInt8Array.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the typed array\n from the start of its ArrayBuffer.\n","Int8Array.prototype.BYTES_PER_ELEMENT":"\nInt8Array.prototype.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Int8Array.prototype.length":"\nInt8Array.prototype.length\n Read-only property which returns the number of view elements.\n","Int8Array.prototype.copyWithin":"\nInt8Array.prototype.copyWithin( target:integer, start:integer[, end:integer] )\n Copies a sequence of elements within the array starting at `start` and\n ending at `end` (non-inclusive) to the position starting at `target`.\n","Int8Array.prototype.entries":"\nInt8Array.prototype.entries()\n Returns an iterator for iterating over array key-value pairs.\n","Int8Array.prototype.every":"\nInt8Array.prototype.every( predicate:Function[, thisArg:Any] )\n Tests whether all array elements pass a test implemented by a predicate\n function.\n","Int8Array.prototype.fill":"\nInt8Array.prototype.fill( value:number[, start:integer[, end:integer]] )\n Fills an array from a start index to an end index (non-inclusive) with a\n provided value.\n","Int8Array.prototype.filter":"\nInt8Array.prototype.filter( predicate:Function[, thisArg:Any] )\n Creates a new array which includes those elements for which a predicate\n function returns a truthy value.\n","Int8Array.prototype.find":"\nInt8Array.prototype.find( predicate:Function[, thisArg:Any] )\n Returns the first array element for which a provided predicate function\n returns a truthy value.\n","Int8Array.prototype.findIndex":"\nInt8Array.prototype.findIndex( predicate:Function[, thisArg:Any] )\n Returns the index of the first array element for which a provided predicate\n function returns a truthy value.\n","Int8Array.prototype.forEach":"\nInt8Array.prototype.forEach( fcn:Function[, thisArg:Any] )\n Invokes a callback for each array element.\n","Int8Array.prototype.includes":"\nInt8Array.prototype.includes( searchElement:number[, fromIndex:integer] )\n Returns a boolean indicating whether an array includes a search element.\n","Int8Array.prototype.indexOf":"\nInt8Array.prototype.indexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the first array element strictly equal to a search\n element.\n","Int8Array.prototype.join":"\nInt8Array.prototype.join( [separator:string] )\n Serializes an array by joining all array elements as a string.\n","Int8Array.prototype.keys":"\nInt8Array.prototype.keys()\n Returns an iterator for iterating over array keys.\n","Int8Array.prototype.lastIndexOf":"\nInt8Array.prototype.lastIndexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the last array element strictly equal to a search\n element.\n","Int8Array.prototype.map":"\nInt8Array.prototype.map( fcn:Function[, thisArg:Any] )\n Maps each array element to an element in a new typed array.\n","Int8Array.prototype.reduce":"\nInt8Array.prototype.reduce( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","Int8Array.prototype.reduceRight":"\nInt8Array.prototype.reduceRight( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result, iterating from right to left.\n","Int8Array.prototype.reverse":"\nInt8Array.prototype.reverse()\n Reverses an array *in-place*.\n","Int8Array.prototype.set":"\nInt8Array.prototype.set( arr:ArrayLike[, offset:integer] )\n Sets array elements.\n","Int8Array.prototype.slice":"\nInt8Array.prototype.slice( [begin:integer[, end:integer]] )\n Copies array elements to a new array with the same underlying data type as\n the host array.\n","Int8Array.prototype.some":"\nInt8Array.prototype.some( predicate:Function[, thisArg:Any] )\n Tests whether at least one array element passes a test implemented by a\n predicate function.\n","Int8Array.prototype.sort":"\nInt8Array.prototype.sort( [compareFunction:Function] )\n Sorts an array *in-place*.\n","Int8Array.prototype.subarray":"\nInt8Array.prototype.subarray( [begin:integer[, end:integer]] )\n Creates a new typed array over the same underlying ArrayBuffer and with the\n same underlying data type as the host array.\n","Int8Array.prototype.toLocaleString":"\nInt8Array.prototype.toLocaleString( [locales:string|Array[, options:Object]] )\n Serializes an array as a locale-specific string.\n","Int8Array.prototype.toString":"\nInt8Array.prototype.toString()\n Serializes an array as a string.\n","Int8Array.prototype.values":"\nInt8Array.prototype.values()\n Returns an iterator for iterating over array elements.\n","INT16_MAX":"\nINT16_MAX\n Maximum signed 16-bit integer.\n","INT16_MIN":"\nINT16_MIN\n Minimum signed 16-bit integer.\n","INT16_NUM_BYTES":"\nINT16_NUM_BYTES\n Size (in bytes) of a 16-bit signed integer.\n","Int16Array":"\nInt16Array()\n A typed array constructor which returns a typed array representing an array\n of twos-complement 16-bit signed integers in the platform byte order.\n\nInt16Array( length:integer )\n Returns a typed array having a specified length.\n\nInt16Array( typedarray:TypedArray )\n Creates a typed array from another typed array.\n\nInt16Array( obj:Object )\n Creates a typed array from an array-like object or iterable.\n\nInt16Array( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Returns a typed array view of an ArrayBuffer.\n","Int16Array.from":"\nInt16Array.from( src:ArrayLike|Iterable[, map:Function[, thisArg:Any]] )\n Creates a new typed array from an array-like object or an iterable.\n","Int16Array.of":"\nInt16Array.of( element0:number[, element1:number[, ...elementN:number]] )\n Creates a new typed array from a variable number of arguments.\n","Int16Array.BYTES_PER_ELEMENT":"\nInt16Array.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Int16Array.name":"\nInt16Array.name\n Typed array constructor name.\n","Int16Array.prototype.buffer":"\nInt16Array.prototype.buffer\n Read-only property which returns the ArrayBuffer referenced by the typed\n array.\n","Int16Array.prototype.byteLength":"\nInt16Array.prototype.byteLength\n Read-only property which returns the length (in bytes) of the typed array.\n","Int16Array.prototype.byteOffset":"\nInt16Array.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the typed array\n from the start of its ArrayBuffer.\n","Int16Array.prototype.BYTES_PER_ELEMENT":"\nInt16Array.prototype.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Int16Array.prototype.length":"\nInt16Array.prototype.length\n Read-only property which returns the number of view elements.\n","Int16Array.prototype.copyWithin":"\nInt16Array.prototype.copyWithin( target:integer, start:integer[, end:integer] )\n Copies a sequence of elements within the array starting at `start` and\n ending at `end` (non-inclusive) to the position starting at `target`.\n","Int16Array.prototype.entries":"\nInt16Array.prototype.entries()\n Returns an iterator for iterating over array key-value pairs.\n","Int16Array.prototype.every":"\nInt16Array.prototype.every( predicate:Function[, thisArg:Any] )\n Tests whether all array elements pass a test implemented by a predicate\n function.\n","Int16Array.prototype.fill":"\nInt16Array.prototype.fill( value:number[, start:integer[, end:integer]] )\n Fills an array from a start index to an end index (non-inclusive) with a\n provided value.\n","Int16Array.prototype.filter":"\nInt16Array.prototype.filter( predicate:Function[, thisArg:Any] )\n Creates a new array which includes those elements for which a predicate\n function returns a truthy value.\n","Int16Array.prototype.find":"\nInt16Array.prototype.find( predicate:Function[, thisArg:Any] )\n Returns the first array element for which a provided predicate function\n returns a truthy value.\n","Int16Array.prototype.findIndex":"\nInt16Array.prototype.findIndex( predicate:Function[, thisArg:Any] )\n Returns the index of the first array element for which a provided predicate\n function returns a truthy value.\n","Int16Array.prototype.forEach":"\nInt16Array.prototype.forEach( fcn:Function[, thisArg:Any] )\n Invokes a callback for each array element.\n","Int16Array.prototype.includes":"\nInt16Array.prototype.includes( searchElement:number[, fromIndex:integer] )\n Returns a boolean indicating whether an array includes a search element.\n","Int16Array.prototype.indexOf":"\nInt16Array.prototype.indexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the first array element strictly equal to a search\n element.\n","Int16Array.prototype.join":"\nInt16Array.prototype.join( [separator:string] )\n Serializes an array by joining all array elements as a string.\n","Int16Array.prototype.keys":"\nInt16Array.prototype.keys()\n Returns an iterator for iterating over array keys.\n","Int16Array.prototype.lastIndexOf":"\nInt16Array.prototype.lastIndexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the last array element strictly equal to a search\n element.\n","Int16Array.prototype.map":"\nInt16Array.prototype.map( fcn:Function[, thisArg:Any] )\n Maps each array element to an element in a new typed array.\n","Int16Array.prototype.reduce":"\nInt16Array.prototype.reduce( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","Int16Array.prototype.reduceRight":"\nInt16Array.prototype.reduceRight( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result, iterating from right to left.\n","Int16Array.prototype.reverse":"\nInt16Array.prototype.reverse()\n Reverses an array *in-place*.\n","Int16Array.prototype.set":"\nInt16Array.prototype.set( arr:ArrayLike[, offset:integer] )\n Sets array elements.\n","Int16Array.prototype.slice":"\nInt16Array.prototype.slice( [begin:integer[, end:integer]] )\n Copies array elements to a new array with the same underlying data type as\n the host array.\n","Int16Array.prototype.some":"\nInt16Array.prototype.some( predicate:Function[, thisArg:Any] )\n Tests whether at least one array element passes a test implemented by a\n predicate function.\n","Int16Array.prototype.sort":"\nInt16Array.prototype.sort( [compareFunction:Function] )\n Sorts an array *in-place*.\n","Int16Array.prototype.subarray":"\nInt16Array.prototype.subarray( [begin:integer[, end:integer]] )\n Creates a new typed array over the same underlying ArrayBuffer and with the\n same underlying data type as the host array.\n","Int16Array.prototype.toLocaleString":"\nInt16Array.prototype.toLocaleString( [locales:string|Array[, options:Object]] )\n Serializes an array as a locale-specific string.\n","Int16Array.prototype.toString":"\nInt16Array.prototype.toString()\n Serializes an array as a string.\n","Int16Array.prototype.values":"\nInt16Array.prototype.values()\n Returns an iterator for iterating over array elements.\n","INT32_MAX":"\nINT32_MAX\n Maximum signed 32-bit integer.\n","INT32_MIN":"\nINT32_MIN\n Minimum signed 32-bit integer.\n","INT32_NUM_BYTES":"\nINT32_NUM_BYTES\n Size (in bytes) of a 32-bit signed integer.\n","Int32Array":"\nInt32Array()\n A typed array constructor which returns a typed array representing an array\n of twos-complement 32-bit signed integers in the platform byte order.\n\nInt32Array( length:integer )\n Returns a typed array having a specified length.\n\nInt32Array( typedarray:TypedArray )\n Creates a typed array from another typed array.\n\nInt32Array( obj:Object )\n Creates a typed array from an array-like object or iterable.\n\nInt32Array( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Returns a typed array view of an ArrayBuffer.\n","Int32Array.from":"\nInt32Array.from( src:ArrayLike|Iterable[, map:Function[, thisArg:Any]] )\n Creates a new typed array from an array-like object or an iterable.\n","Int32Array.of":"\nInt32Array.of( element0:number[, element1:number[, ...elementN:number]] )\n Creates a new typed array from a variable number of arguments.\n","Int32Array.BYTES_PER_ELEMENT":"\nInt32Array.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Int32Array.name":"\nInt32Array.name\n Typed array constructor name.\n","Int32Array.prototype.buffer":"\nInt32Array.prototype.buffer\n Read-only property which returns the ArrayBuffer referenced by the typed\n array.\n","Int32Array.prototype.byteLength":"\nInt32Array.prototype.byteLength\n Read-only property which returns the length (in bytes) of the typed array.\n","Int32Array.prototype.byteOffset":"\nInt32Array.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the typed array\n from the start of its ArrayBuffer.\n","Int32Array.prototype.BYTES_PER_ELEMENT":"\nInt32Array.prototype.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Int32Array.prototype.length":"\nInt32Array.prototype.length\n Read-only property which returns the number of view elements.\n","Int32Array.prototype.copyWithin":"\nInt32Array.prototype.copyWithin( target:integer, start:integer[, end:integer] )\n Copies a sequence of elements within the array starting at `start` and\n ending at `end` (non-inclusive) to the position starting at `target`.\n","Int32Array.prototype.entries":"\nInt32Array.prototype.entries()\n Returns an iterator for iterating over array key-value pairs.\n","Int32Array.prototype.every":"\nInt32Array.prototype.every( predicate:Function[, thisArg:Any] )\n Tests whether all array elements pass a test implemented by a predicate\n function.\n","Int32Array.prototype.fill":"\nInt32Array.prototype.fill( value:number[, start:integer[, end:integer]] )\n Fills an array from a start index to an end index (non-inclusive) with a\n provided value.\n","Int32Array.prototype.filter":"\nInt32Array.prototype.filter( predicate:Function[, thisArg:Any] )\n Creates a new array which includes those elements for which a predicate\n function returns a truthy value.\n","Int32Array.prototype.find":"\nInt32Array.prototype.find( predicate:Function[, thisArg:Any] )\n Returns the first array element for which a provided predicate function\n returns a truthy value.\n","Int32Array.prototype.findIndex":"\nInt32Array.prototype.findIndex( predicate:Function[, thisArg:Any] )\n Returns the index of the first array element for which a provided predicate\n function returns a truthy value.\n","Int32Array.prototype.forEach":"\nInt32Array.prototype.forEach( fcn:Function[, thisArg:Any] )\n Invokes a callback for each array element.\n","Int32Array.prototype.includes":"\nInt32Array.prototype.includes( searchElement:number[, fromIndex:integer] )\n Returns a boolean indicating whether an array includes a search element.\n","Int32Array.prototype.indexOf":"\nInt32Array.prototype.indexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the first array element strictly equal to a search\n element.\n","Int32Array.prototype.join":"\nInt32Array.prototype.join( [separator:string] )\n Serializes an array by joining all array elements as a string.\n","Int32Array.prototype.keys":"\nInt32Array.prototype.keys()\n Returns an iterator for iterating over array keys.\n","Int32Array.prototype.lastIndexOf":"\nInt32Array.prototype.lastIndexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the last array element strictly equal to a search\n element.\n","Int32Array.prototype.map":"\nInt32Array.prototype.map( fcn:Function[, thisArg:Any] )\n Maps each array element to an element in a new typed array.\n","Int32Array.prototype.reduce":"\nInt32Array.prototype.reduce( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","Int32Array.prototype.reduceRight":"\nInt32Array.prototype.reduceRight( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result, iterating from right to left.\n","Int32Array.prototype.reverse":"\nInt32Array.prototype.reverse()\n Reverses an array *in-place*.\n","Int32Array.prototype.set":"\nInt32Array.prototype.set( arr:ArrayLike[, offset:integer] )\n Sets array elements.\n","Int32Array.prototype.slice":"\nInt32Array.prototype.slice( [begin:integer[, end:integer]] )\n Copies array elements to a new array with the same underlying data type as\n the host array.\n","Int32Array.prototype.some":"\nInt32Array.prototype.some( predicate:Function[, thisArg:Any] )\n Tests whether at least one array element passes a test implemented by a\n predicate function.\n","Int32Array.prototype.sort":"\nInt32Array.prototype.sort( [compareFunction:Function] )\n Sorts an array *in-place*.\n","Int32Array.prototype.subarray":"\nInt32Array.prototype.subarray( [begin:integer[, end:integer]] )\n Creates a new typed array over the same underlying ArrayBuffer and with the\n same underlying data type as the host array.\n","Int32Array.prototype.toLocaleString":"\nInt32Array.prototype.toLocaleString( [locales:string|Array[, options:Object]] )\n Serializes an array as a locale-specific string.\n","Int32Array.prototype.toString":"\nInt32Array.prototype.toString()\n Serializes an array as a string.\n","Int32Array.prototype.values":"\nInt32Array.prototype.values()\n Returns an iterator for iterating over array elements.\n","IS_BIG_ENDIAN":"\nIS_BIG_ENDIAN\n Boolean indicating if the environment is big endian.\n","IS_BROWSER":"\nIS_BROWSER\n Boolean indicating if the runtime is a web browser.\n","IS_DARWIN":"\nIS_DARWIN\n Boolean indicating if the current process is running on Darwin.\n","IS_ELECTRON":"\nIS_ELECTRON\n Boolean indicating if the runtime is Electron.\n","IS_ELECTRON_MAIN":"\nIS_ELECTRON_MAIN\n Boolean indicating if the runtime is the main Electron process.\n","IS_ELECTRON_RENDERER":"\nIS_ELECTRON_RENDERER\n Boolean indicating if the runtime is the Electron renderer process.\n","IS_LITTLE_ENDIAN":"\nIS_LITTLE_ENDIAN\n Boolean indicating if the environment is little endian.\n","IS_NODE":"\nIS_NODE\n Boolean indicating if the runtime is Node.js.\n","IS_WEB_WORKER":"\nIS_WEB_WORKER\n Boolean indicating if the runtime is a web worker.\n","IS_WINDOWS":"\nIS_WINDOWS\n Boolean indicating if the current process is running on Windows.\n","isAbsolutePath":"\nisAbsolutePath( value:any )\n Tests if a value is an absolute path.\n","isAbsolutePath.posix":"\nisAbsolutePath.posix( value:any )\n Tests if a value is a POSIX absolute path.\n","isAbsolutePath.win32":"\nisAbsolutePath.win32( value:any )\n Tests if a value is a Windows absolute path.\n","isAccessorProperty":"\nisAccessorProperty( value:any, property:any )\n Tests if an object's own property has an accessor descriptor.\n","isAccessorPropertyIn":"\nisAccessorPropertyIn( value:any, property:any )\n Tests if an object's own or inherited property has an accessor descriptor.\n","isAlphagram":"\nisAlphagram( value:any )\n Tests if a value is an alphagram (i.e., a sequence of characters arranged in\n alphabetical order).\n","isAlphaNumeric":"\nisAlphaNumeric( str:string )\n Tests whether a string contains only alphanumeric characters.\n","isAnagram":"\nisAnagram( str:string, value:any )\n Tests if a value is an anagram.\n","isArguments":"\nisArguments( value:any )\n Tests if a value is an arguments object.\n","isArray":"\nisArray( value:any )\n Tests if a value is an array.\n","isArrayArray":"\nisArrayArray( value:any )\n Tests if a value is an array of arrays.\n","isArrayBuffer":"\nisArrayBuffer( value:any )\n Tests if a value is an ArrayBuffer.\n","isArrayBufferView":"\nisArrayBufferView( value:any )\n Tests if a value is a `ArrayBuffer` view.\n","isArrayLength":"\nisArrayLength( value:any )\n Tests if a value is a valid array length.\n","isArrayLike":"\nisArrayLike( value:any )\n Tests if a value is array-like.\n","isArrayLikeObject":"\nisArrayLikeObject( value:any )\n Tests if a value is an array-like object.\n","isASCII":"\nisASCII( str:string )\n Tests whether a character belongs to the ASCII character set and whether\n this is true for all characters in a provided string.\n","isBetween":"\nisBetween( value:any, a:any, b:any[, left:string, right:string] )\n Tests if a value is between two values.\n","isBetweenArray":"\nisBetweenArray( value:any, a:any, b:any[, left:string, right:string] )\n Tests if a value is an array-like object where every element is between two\n values.\n","isBigInt":"\nisBigInt( value:any )\n Tests if a value is a BigInt.\n","isBigUint64Array":"\nisBigUint64Array( value:any )\n Tests if a value is a BigUint64Array.\n","isBinaryString":"\nisBinaryString( value:any )\n Tests if a value is a binary string.\n","isBlankString":"\nisBlankString( value:any )\n Tests if a value is a blank string (i.e., an empty string or a string\n consisting only of whitespace characters).\n","isBoolean":"\nisBoolean( value:any )\n Tests if a value is a boolean.\n","isBoolean.isPrimitive":"\nisBoolean.isPrimitive( value:any )\n Tests if a value is a boolean primitive.\n","isBoolean.isObject":"\nisBoolean.isObject( value:any )\n Tests if a value is a boolean object.\n","isBooleanArray":"\nisBooleanArray( value:any )\n Tests if a value is an array-like object of booleans.\n","isBooleanArray.primitives":"\nisBooleanArray.primitives( value:any )\n Tests if a value is an array-like object containing only boolean primitives.\n","isBooleanArray.objects":"\nisBooleanArray.objects( value:any )\n Tests if a value is an array-like object containing only Boolean objects.\n","isBoxedPrimitive":"\nisBoxedPrimitive( value:any )\n Tests if a value is a JavaScript boxed primitive.\n","isBuffer":"\nisBuffer( value:any )\n Tests if a value is a Buffer instance.\n","isCapitalized":"\nisCapitalized( value:any )\n Tests if a value is a string having an uppercase first character.\n","isCentrosymmetricMatrix":"\nisCentrosymmetricMatrix( value:any )\n Tests if a value is a matrix which is symmetric about its center.\n","isCircular":"\nisCircular( value:any )\n Tests if an object-like value contains a circular reference.\n","isCircularArray":"\nisCircularArray( value:any )\n Tests if a value is an array containing a circular reference.\n","isCircularPlainObject":"\nisCircularPlainObject( value:any )\n Tests if a value is a plain object containing a circular reference.\n","isClass":"\nisClass( value:any )\n Tests if a value is a class.\n","isCollection":"\nisCollection( value:any )\n Tests if a value is a collection.\n","isComplex":"\nisComplex( value:any )\n Tests if a value is a 64-bit or 128-bit complex number.\n","isComplex64":"\nisComplex64( value:any )\n Tests if a value is a 64-bit complex number.\n","isComplex64Array":"\nisComplex64Array( value:any )\n Tests if a value is a Complex64Array.\n","isComplex128":"\nisComplex128( value:any )\n Tests if a value is a 128-bit complex number.\n","isComplex128Array":"\nisComplex128Array( value:any )\n Tests if a value is a Complex128Array.\n","isComplexLike":"\nisComplexLike( value:any )\n Tests if a value is a complex number-like object.\n","isComplexTypedArray":"\nisComplexTypedArray( value:any )\n Tests if a value is a complex typed array.\n","isComplexTypedArrayLike":"\nisComplexTypedArrayLike( value:any )\n Tests if a value is complex-typed-array-like.\n","isComposite":"\nisComposite( value:any )\n Tests if a value is a composite number.\n","isComposite.isPrimitive":"\nisComposite.isPrimitive( value:any )\n Tests if a value is a number primitive which is a composite number.\n","isComposite.isObject":"\nisComposite.isObject( value:any )\n Tests if a value is a number object having a value which is a composite\n number.\n","isConfigurableProperty":"\nisConfigurableProperty( value:any, property:any )\n Tests if an object's own property is configurable.\n","isConfigurablePropertyIn":"\nisConfigurablePropertyIn( value:any, property:any )\n Tests if an object's own or inherited property is configurable.\n","isCubeNumber":"\nisCubeNumber( value:any )\n Tests if a value is a cube number.\n","isCubeNumber.isPrimitive":"\nisCubeNumber.isPrimitive( value:any )\n Tests if a value is a number primitive which is a cube number.\n","isCubeNumber.isObject":"\nisCubeNumber.isObject( value:any )\n Tests if a value is a number object having a value which is a cube number.\n","isDataProperty":"\nisDataProperty( value:any, property:any )\n Tests if an object's own property has a data descriptor.\n","isDataPropertyIn":"\nisDataPropertyIn( value:any, property:any )\n Tests if an object's own or inherited property has a data descriptor.\n","isDataView":"\nisDataView( value:any )\n Tests if a value is a DataView.\n","isDateObject":"\nisDateObject( value:any )\n Tests if a value is a Date object.\n","isDateObjectArray":"\nisDateObjectArray( value:any )\n Tests if a value is an array-like object containing only Date objects.\n","isDigitString":"\nisDigitString( str:string )\n Tests whether a string contains only numeric digits.\n","isEmailAddress":"\nisEmailAddress( value:any )\n Tests if a value is an email address.\n","isEmptyArray":"\nisEmptyArray( value:any )\n Tests if a value is an empty array.\n","isEmptyArrayLikeObject":"\nisEmptyArrayLikeObject( value:any )\n Tests if a value is an empty array-like object.\n","isEmptyCollection":"\nisEmptyCollection( value:any )\n Tests if a value is an empty collection.\n","isEmptyObject":"\nisEmptyObject( value:any )\n Tests if a value is an empty object.\n","isEmptyString":"\nisEmptyString( value:any )\n Tests if a value is an empty string.\n","isEmptyString.isPrimitive":"\nisEmptyString.isPrimitive( value:any )\n Tests if a value is an empty string primitive.\n","isEmptyString.isObject":"\nisEmptyString.isObject( value:any )\n Tests if a value is an empty `String` object.\n","isEnumerableProperty":"\nisEnumerableProperty( value:any, property:any )\n Tests if an object's own property is enumerable.\n","isEnumerablePropertyIn":"\nisEnumerablePropertyIn( value:any, property:any )\n Tests if an object's own or inherited property is enumerable.\n","isError":"\nisError( value:any )\n Tests if a value is an Error object.\n","isEvalError":"\nisEvalError( value:any )\n Tests if a value is an EvalError object.\n","isEven":"\nisEven( value:any )\n Tests if a value is an even number.\n","isEven.isPrimitive":"\nisEven.isPrimitive( value:any )\n Tests if a value is a number primitive that is an even number.\n","isEven.isObject":"\nisEven.isObject( value:any )\n Tests if a value is a number object that is an even number.\n","isFalsy":"\nisFalsy( value:any )\n Tests if a value is a value which translates to `false` when evaluated in a\n boolean context.\n","isFalsyArray":"\nisFalsyArray( value:any )\n Tests if a value is an array-like object containing only falsy values.\n","isFinite":"\nisFinite( value:any )\n Tests if a value is a finite number.\n","isFinite.isPrimitive":"\nisFinite.isPrimitive( value:any )\n Tests if a value is a number primitive having a finite value.\n","isFinite.isObject":"\nisFinite.isObject( value:any )\n Tests if a value is a number object having a finite value.\n","isFiniteArray":"\nisFiniteArray( value:any )\n Tests if a value is an array-like object of finite numbers.\n","isFiniteArray.primitives":"\nisFiniteArray.primitives( value:any )\n Tests if a value is an array-like object containing only primitive finite\n numbers.\n","isFiniteArray.objects":"\nisFiniteArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having finite values.\n","isFloat32Array":"\nisFloat32Array( value:any )\n Tests if a value is a Float32Array.\n","isFloat32MatrixLike":"\nisFloat32MatrixLike( value:any )\n Tests if a value is a 2-dimensional ndarray-like object containing single-\n precision floating-point numbers.\n","isFloat32ndarrayLike":"\nisFloat32ndarrayLike( value:any )\n Tests if a value is an ndarray-like object containing single-precision\n floating-point numbers.\n","isFloat32VectorLike":"\nisFloat32VectorLike( value:any )\n Tests if a value is a 1-dimensional ndarray-like object containing single-\n precision floating-point numbers.\n","isFloat64Array":"\nisFloat64Array( value:any )\n Tests if a value is a Float64Array.\n","isFloat64MatrixLike":"\nisFloat64MatrixLike( value:any )\n Tests if a value is a 2-dimensional ndarray-like object containing double-\n precision floating-point numbers.\n","isFloat64ndarrayLike":"\nisFloat64ndarrayLike( value:any )\n Tests if a value is an ndarray-like object containing double-precision\n floating-point numbers.\n","isFloat64VectorLike":"\nisFloat64VectorLike( value:any )\n Tests if a value is a 1-dimensional ndarray-like object containing double-\n precision floating-point numbers.\n","isFunction":"\nisFunction( value:any )\n Tests if a value is a function.\n","isFunctionArray":"\nisFunctionArray( value:any )\n Tests if a value is an array-like object containing only functions.\n","isGeneratorObject":"\nisGeneratorObject( value:any )\n Tests if a value is a generator object.\n","isGeneratorObjectLike":"\nisGeneratorObjectLike( value:any )\n Tests if a value is generator object-like.\n","isgzipBuffer":"\nisgzipBuffer( value:any )\n Tests if a value is a gzip buffer.\n","isHexString":"\nisHexString( str:string )\n Tests whether a string contains only hexadecimal digits.\n","isInfinite":"\nisInfinite( value:any )\n Tests if a value is an infinite number.\n","isInfinite.isPrimitive":"\nisInfinite.isPrimitive( value:any )\n Tests if a value is a number primitive having an infinite value.\n","isInfinite.isObject":"\nisInfinite.isObject( value:any )\n Tests if a value is a number object having an infinite value.\n","isInheritedProperty":"\nisInheritedProperty( value:any, property:any )\n Tests if an object has an inherited property.\n","isInt8Array":"\nisInt8Array( value:any )\n Tests if a value is an Int8Array.\n","isInt16Array":"\nisInt16Array( value:any )\n Tests if a value is an Int16Array.\n","isInt32Array":"\nisInt32Array( value:any )\n Tests if a value is an Int32Array.\n","isInteger":"\nisInteger( value:any )\n Tests if a value is an integer.\n","isInteger.isPrimitive":"\nisInteger.isPrimitive( value:any )\n Tests if a value is a number primitive having an integer value.\n","isInteger.isObject":"\nisInteger.isObject( value:any )\n Tests if a value is a number object having an integer value.\n","isIntegerArray":"\nisIntegerArray( value:any )\n Tests if a value is an array-like object of integer values.\n","isIntegerArray.primitives":"\nisIntegerArray.primitives( value:any )\n Tests if a value is an array-like object containing only primitive integer\n values.\n","isIntegerArray.objects":"\nisIntegerArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having integer values.\n","isIterableLike":"\nisIterableLike( value:any )\n Tests if a value is iterable-like.\n","isIteratorLike":"\nisIteratorLike( value:any )\n Tests if a value is iterator-like.\n","isJSON":"\nisJSON( value:any )\n Tests if a value is a parseable JSON string.\n","isLeapYear":"\nisLeapYear( value:any )\n Tests whether a value corresponds to a leap year in the Gregorian calendar.\n","isLocalhost":"\nisLocalhost( value:any )\n Tests whether a value is a localhost hostname.\n","isLowercase":"\nisLowercase( value:any )\n Tests if a value is a lowercase string.\n","isMatrixLike":"\nisMatrixLike( value:any )\n Tests if a value is a 2-dimensional ndarray-like object.\n","isMethod":"\nisMethod( value:any, property:any )\n Tests if an object has a specified method name.\n","isMethodIn":"\nisMethodIn( value:any, property:any )\n Tests if an object has a specified method name, either own or inherited.\n","isNamedTypedTupleLike":"\nisNamedTypedTupleLike( value:any )\n Tests if a value is named typed tuple-like.\n","isnan":"\nisnan( value:any )\n Tests if a value is NaN.\n","isnan.isPrimitive":"\nisnan.isPrimitive( value:any )\n Tests if a value is a NaN number primitive.\n","isnan.isObject":"\nisnan.isObject( value:any )\n Tests if a value is a number object having a value of NaN.\n","isNaNArray":"\nisNaNArray( value:any )\n Tests if a value is an array-like object containing only NaN values.\n","isNaNArray.primitives":"\nisNaNArray.primitives( value:any )\n Tests if a value is an array-like object containing only primitive NaN\n values.\n","isNaNArray.objects":"\nisNaNArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having NaN values.\n","isNativeFunction":"\nisNativeFunction( value:any )\n Tests if a value is a native function.\n","isndarrayLike":"\nisndarrayLike( value:any )\n Tests if a value is ndarray-like.\n","isNegativeInteger":"\nisNegativeInteger( value:any )\n Tests if a value is a negative integer.\n","isNegativeInteger.isPrimitive":"\nisNegativeInteger.isPrimitive( value:any )\n Tests if a value is a number primitive having a negative integer value.\n","isNegativeInteger.isObject":"\nisNegativeInteger.isObject( value:any )\n Tests if a value is a number object having a negative integer value.\n","isNegativeIntegerArray":"\nisNegativeIntegerArray( value:any )\n Tests if a value is an array-like object containing only negative integers.\n","isNegativeIntegerArray.primitives":"\nisNegativeIntegerArray.primitives( value:any )\n Tests if a value is an array-like object containing only negative primitive\n integer values.\n","isNegativeIntegerArray.objects":"\nisNegativeIntegerArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having negative integer values.\n","isNegativeNumber":"\nisNegativeNumber( value:any )\n Tests if a value is a negative number.\n","isNegativeNumber.isPrimitive":"\nisNegativeNumber.isPrimitive( value:any )\n Tests if a value is a number primitive having a negative value.\n","isNegativeNumber.isObject":"\nisNegativeNumber.isObject( value:any )\n Tests if a value is a number object having a negative value.\n","isNegativeNumberArray":"\nisNegativeNumberArray( value:any )\n Tests if a value is an array-like object containing only negative numbers.\n","isNegativeNumberArray.primitives":"\nisNegativeNumberArray.primitives( value:any )\n Tests if a value is an array-like object containing only primitive negative\n numbers.\n","isNegativeNumberArray.objects":"\nisNegativeNumberArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having negative number values.\n","isNegativeZero":"\nisNegativeZero( value:any )\n Tests if a value is negative zero.\n","isNegativeZero.isPrimitive":"\nisNegativeZero.isPrimitive( value:any )\n Tests if a value is a number primitive equal to negative zero.\n","isNegativeZero.isObject":"\nisNegativeZero.isObject( value:any )\n Tests if a value is a number object having a value equal to negative zero.\n","isNodeBuiltin":"\nisNodeBuiltin( str:string )\n Tests whether a string matches a Node.js built-in module name.\n","isNodeDuplexStreamLike":"\nisNodeDuplexStreamLike( value:any )\n Tests if a value is Node duplex stream-like.\n","isNodeReadableStreamLike":"\nisNodeReadableStreamLike( value:any )\n Tests if a value is Node readable stream-like.\n","isNodeREPL":"\nisNodeREPL()\n Returns a boolean indicating if running in a Node.js REPL environment.\n","isNodeStreamLike":"\nisNodeStreamLike( value:any )\n Tests if a value is Node stream-like.\n","isNodeTransformStreamLike":"\nisNodeTransformStreamLike( value:any )\n Tests if a value is Node transform stream-like.\n","isNodeWritableStreamLike":"\nisNodeWritableStreamLike( value:any )\n Tests if a value is Node writable stream-like.\n","isNonConfigurableProperty":"\nisNonConfigurableProperty( value:any, property:any )\n Tests if an object's own property is non-configurable.\n","isNonConfigurablePropertyIn":"\nisNonConfigurablePropertyIn( value:any, property:any )\n Tests if an object's own or inherited property is non-configurable.\n","isNonEnumerableProperty":"\nisNonEnumerableProperty( value:any, property:any )\n Tests if an object's own property is non-enumerable.\n","isNonEnumerablePropertyIn":"\nisNonEnumerablePropertyIn( value:any, property:any )\n Tests if an object's own or inherited property is non-enumerable.\n","isNonNegativeInteger":"\nisNonNegativeInteger( value:any )\n Tests if a value is a nonnegative integer.\n","isNonNegativeInteger.isPrimitive":"\nisNonNegativeInteger.isPrimitive( value:any )\n Tests if a value is a number primitive having a nonnegative integer value.\n","isNonNegativeInteger.isObject":"\nisNonNegativeInteger.isObject( value:any )\n Tests if a value is a number object having a nonnegative integer value.\n","isNonNegativeIntegerArray":"\nisNonNegativeIntegerArray( value:any )\n Tests if a value is an array-like object containing only nonnegative\n integers.\n","isNonNegativeIntegerArray.primitives":"\nisNonNegativeIntegerArray.primitives( value:any )\n Tests if a value is an array-like object containing only nonnegative\n primitive integer values.\n","isNonNegativeIntegerArray.objects":"\nisNonNegativeIntegerArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having nonnegative integer values.\n","isNonNegativeNumber":"\nisNonNegativeNumber( value:any )\n Tests if a value is a nonnegative number.\n","isNonNegativeNumber.isPrimitive":"\nisNonNegativeNumber.isPrimitive( value:any )\n Tests if a value is a number primitive having a nonnegative value.\n","isNonNegativeNumber.isObject":"\nisNonNegativeNumber.isObject( value:any )\n Tests if a value is a number object having a nonnegative value.\n","isNonNegativeNumberArray":"\nisNonNegativeNumberArray( value:any )\n Tests if a value is an array-like object containing only nonnegative\n numbers.\n","isNonNegativeNumberArray.primitives":"\nisNonNegativeNumberArray.primitives( value:any )\n Tests if a value is an array-like object containing only primitive\n nonnegative numbers.\n","isNonNegativeNumberArray.objects":"\nisNonNegativeNumberArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having nonnegative number values.\n","isNonPositiveInteger":"\nisNonPositiveInteger( value:any )\n Tests if a value is a nonpositive integer.\n","isNonPositiveInteger.isPrimitive":"\nisNonPositiveInteger.isPrimitive( value:any )\n Tests if a value is a number primitive having a nonpositive integer value.\n","isNonPositiveInteger.isObject":"\nisNonPositiveInteger.isObject( value:any )\n Tests if a value is a number object having a nonpositive integer value.\n","isNonPositiveIntegerArray":"\nisNonPositiveIntegerArray( value:any )\n Tests if a value is an array-like object containing only nonpositive\n integers.\n","isNonPositiveIntegerArray.primitives":"\nisNonPositiveIntegerArray.primitives( value:any )\n Tests if a value is an array-like object containing only nonpositive\n primitive integer values.\n","isNonPositiveIntegerArray.objects":"\nisNonPositiveIntegerArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having nonpositive integer values.\n","isNonPositiveNumber":"\nisNonPositiveNumber( value:any )\n Tests if a value is a nonpositive number.\n","isNonPositiveNumber.isPrimitive":"\nisNonPositiveNumber.isPrimitive( value:any )\n Tests if a value is a number primitive having a nonpositive value.\n","isNonPositiveNumber.isObject":"\nisNonPositiveNumber.isObject( value:any )\n Tests if a value is a number object having a nonpositive value.\n","isNonPositiveNumberArray":"\nisNonPositiveNumberArray( value:any )\n Tests if a value is an array-like object containing only nonpositive\n numbers.\n","isNonPositiveNumberArray.primitives":"\nisNonPositiveNumberArray.primitives( value:any )\n Tests if a value is an array-like object containing only primitive\n nonpositive numbers.\n","isNonPositiveNumberArray.objects":"\nisNonPositiveNumberArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having nonpositive number values.\n","isNonSymmetricMatrix":"\nisNonSymmetricMatrix( value:any )\n Tests if a value is a non-symmetric matrix.\n","isNull":"\nisNull( value:any )\n Tests if a value is null.\n","isNullArray":"\nisNullArray( value:any )\n Tests if a value is an array-like object containing only null values.\n","isNumber":"\nisNumber( value:any )\n Tests if a value is a number.\n","isNumber.isPrimitive":"\nisNumber.isPrimitive( value:any )\n Tests if a value is a number primitive.\n","isNumber.isObject":"\nisNumber.isObject( value:any )\n Tests if a value is a `Number` object.\n","isNumberArray":"\nisNumberArray( value:any )\n Tests if a value is an array-like object containing only numbers.\n","isNumberArray.primitives":"\nisNumberArray.primitives( value:any )\n Tests if a value is an array-like object containing only number primitives.\n","isNumberArray.objects":"\nisNumberArray.objects( value:any )\n Tests if a value is an array-like object containing only `Number` objects.\n","isNumericArray":"\nisNumericArray( value:any )\n Tests if a value is a numeric array.\n","isObject":"\nisObject( value:any )\n Tests if a value is an object; e.g., `{}`.\n","isObjectArray":"\nisObjectArray( value:any )\n Tests if a value is an array-like object containing only objects.\n","isObjectLike":"\nisObjectLike( value:any )\n Tests if a value is object-like.\n","isOdd":"\nisOdd( value:any )\n Tests if a value is an odd number.\n","isOdd.isPrimitive":"\nisOdd.isPrimitive( value:any )\n Tests if a value is a number primitive that is an odd number.\n","isOdd.isObject":"\nisOdd.isObject( value:any )\n Tests if a value is a number object that has an odd number value.\n","isoWeeksInYear":"\nisoWeeksInYear( [year:integer] )\n Returns the number of ISO weeks in a year according to the Gregorian\n calendar.\n","isPersymmetricMatrix":"\nisPersymmetricMatrix( value:any )\n Tests if a value is a square matrix which is symmetric about its\n antidiagonal.\n","isPlainObject":"\nisPlainObject( value:any )\n Tests if a value is a plain object.\n","isPlainObjectArray":"\nisPlainObjectArray( value:any )\n Tests if a value is an array-like object containing only plain objects.\n","isPositiveInteger":"\nisPositiveInteger( value:any )\n Tests if a value is a positive integer.\n","isPositiveInteger.isPrimitive":"\nisPositiveInteger.isPrimitive( value:any )\n Tests if a value is a number primitive having a positive integer value.\n","isPositiveInteger.isObject":"\nisPositiveInteger.isObject( value:any )\n Tests if a value is a number object having a positive integer value.\n","isPositiveIntegerArray":"\nisPositiveIntegerArray( value:any )\n Tests if a value is an array-like object containing only positive integers.\n","isPositiveIntegerArray.primitives":"\nisPositiveIntegerArray.primitives( value:any )\n Tests if a value is an array-like object containing only positive primitive\n integer values.\n","isPositiveIntegerArray.objects":"\nisPositiveIntegerArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having positive integer values.\n","isPositiveNumber":"\nisPositiveNumber( value:any )\n Tests if a value is a positive number.\n","isPositiveNumber.isPrimitive":"\nisPositiveNumber.isPrimitive( value:any )\n Tests if a value is a number primitive having a positive value.\n","isPositiveNumber.isObject":"\nisPositiveNumber.isObject( value:any )\n Tests if a value is a number object having a positive value.\n","isPositiveNumberArray":"\nisPositiveNumberArray( value:any )\n Tests if a value is an array-like object containing only positive numbers.\n","isPositiveNumberArray.primitives":"\nisPositiveNumberArray.primitives( value:any )\n Tests if a value is an array-like object containing only positive primitive\n number values.\n","isPositiveNumberArray.objects":"\nisPositiveNumberArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having positive values.\n","isPositiveZero":"\nisPositiveZero( value:any )\n Tests if a value is positive zero.\n","isPositiveZero.isPrimitive":"\nisPositiveZero.isPrimitive( value:any )\n Tests if a value is a number primitive equal to positive zero.\n","isPositiveZero.isObject":"\nisPositiveZero.isObject( value:any )\n Tests if a value is a number object having a value equal to positive zero.\n","isPrime":"\nisPrime( value:any )\n Tests if a value is a prime number.\n","isPrime.isPrimitive":"\nisPrime.isPrimitive( value:any )\n Tests if a value is a number primitive which is a prime number.\n","isPrime.isObject":"\nisPrime.isObject( value:any )\n Tests if a value is a number object having a value which is a prime number.\n","isPrimitive":"\nisPrimitive( value:any )\n Tests if a value is a JavaScript primitive.\n","isPrimitiveArray":"\nisPrimitiveArray( value:any )\n Tests if a value is an array-like object containing only JavaScript\n primitives.\n","isPRNGLike":"\nisPRNGLike( value:any )\n Tests if a value is PRNG-like.\n","isProbability":"\nisProbability( value:any )\n Tests if a value is a probability.\n","isProbability.isPrimitive":"\nisProbability.isPrimitive( value:any )\n Tests if a value is a number primitive which is a probability.\n","isProbability.isObject":"\nisProbability.isObject( value:any )\n Tests if a value is a number object having a value which is a probability.\n","isProbabilityArray":"\nisProbabilityArray( value:any )\n Tests if a value is an array-like object containing only probabilities.\n","isProbabilityArray.primitives":"\nisProbabilityArray.primitives( value:any )\n Tests if a value is an array-like object containing only primitive\n probabilities.\n","isProbabilityArray.objects":"\nisProbabilityArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having probability values.\n","isPropertyKey":"\nisPropertyKey( value:any )\n Tests whether a value is a property key.\n","isPrototypeOf":"\nisPrototypeOf( value:any, proto:Object|Function )\n Tests if an object's prototype chain contains a provided prototype.\n","isRangeError":"\nisRangeError( value:any )\n Tests if a value is a RangeError object.\n","isReadableProperty":"\nisReadableProperty( value:any, property:any )\n Tests if an object's own property is readable.\n","isReadablePropertyIn":"\nisReadablePropertyIn( value:any, property:any )\n Tests if an object's own or inherited property is readable.\n","isReadOnlyProperty":"\nisReadOnlyProperty( value:any, property:any )\n Tests if an object's own property is read-only.\n","isReadOnlyPropertyIn":"\nisReadOnlyPropertyIn( value:any, property:any )\n Tests if an object's own or inherited property is read-only.\n","isReadWriteProperty":"\nisReadWriteProperty( value:any, property:any )\n Tests if an object's own property is readable and writable.\n","isReadWritePropertyIn":"\nisReadWritePropertyIn( value:any, property:any )\n Tests if an object's own or inherited property is readable and writable.\n","isReferenceError":"\nisReferenceError( value:any )\n Tests if a value is a ReferenceError object.\n","isRegExp":"\nisRegExp( value:any )\n Tests if a value is a regular expression.\n","isRegExpString":"\nisRegExpString( value:any )\n Tests if a value is a regular expression string.\n","isRelativePath":"\nisRelativePath( value:any )\n Tests if a value is a relative path.\n","isRelativePath.posix":"\nisRelativePath.posix( value:any )\n Tests if a value is a POSIX relative path.\n","isRelativePath.win32":"\nisRelativePath.win32( value:any )\n Tests if a value is a Windows relative path.\n","isSafeInteger":"\nisSafeInteger( value:any )\n Tests if a value is a safe integer.\n","isSafeInteger.isPrimitive":"\nisSafeInteger.isPrimitive( value:any )\n Tests if a value is a number primitive having a safe integer value.\n","isSafeInteger.isObject":"\nisSafeInteger.isObject( value:any )\n Tests if a value is a `Number` object having a safe integer value.\n","isSafeIntegerArray":"\nisSafeIntegerArray( value:any )\n Tests if a value is an array-like object containing only safe integers.\n","isSafeIntegerArray.primitives":"\nisSafeIntegerArray.primitives( value:any )\n Tests if a value is an array-like object containing only primitive safe\n integer values.\n","isSafeIntegerArray.objects":"\nisSafeIntegerArray.objects( value:any )\n Tests if a value is an array-like object containing only `Number` objects\n having safe integer values.\n","isSameNativeClass":"\nisSameNativeClass( a:any, b:any )\n Tests if two arguments have the same native class.\n","isSameType":"\nisSameType( a:any, b:any )\n Tests if two arguments have the same type.\n","isSameValue":"\nisSameValue( a:any, b:any )\n Tests if two arguments are the same value.\n","isSameValueZero":"\nisSameValueZero( a:any, b:any )\n Tests if two arguments are the same value.\n","isSharedArrayBuffer":"\nisSharedArrayBuffer( value:any )\n Tests if a value is a SharedArrayBuffer.\n","isSkewCentrosymmetricMatrix":"\nisSkewCentrosymmetricMatrix( value:any )\n Tests if a value is a skew-centrosymmetric matrix.\n","isSkewPersymmetricMatrix":"\nisSkewPersymmetricMatrix( value:any )\n Tests if a value is a skew-persymmetric matrix.\n","isSkewSymmetricMatrix":"\nisSkewSymmetricMatrix( value:any )\n Tests if a value is a skew-symmetric (or antisymmetric) matrix.\n","isSquareMatrix":"\nisSquareMatrix( value:any )\n Tests if a value is a 2-dimensional ndarray-like object having equal\n dimensions.\n","isSquareNumber":"\nisSquareNumber( value:any )\n Tests if a value is a square number.\n","isSquareNumber.isPrimitive":"\nisSquareNumber.isPrimitive( value:any )\n Tests if a value is a number primitive which is a square number.\n","isSquareNumber.isObject":"\nisSquareNumber.isObject( value:any )\n Tests if a value is a number object having a value which is a square number.\n","isSquareTriangularNumber":"\nisSquareTriangularNumber( value:any )\n Tests if a value is a square triangular number.\n","isSquareTriangularNumber.isPrimitive":"\nisSquareTriangularNumber.isPrimitive( value:any )\n Tests if a value is a number primitive which is a square triangular number.\n","isSquareTriangularNumber.isObject":"\nisSquareTriangularNumber.isObject( value:any )\n Tests if a value is a number object having a value which is a square\n triangular number.\n","isStrictEqual":"\nisStrictEqual( a:any, b:any )\n Tests if two arguments are strictly equal.\n","isString":"\nisString( value:any )\n Tests if a value is a string.\n","isString.isPrimitive":"\nisString.isPrimitive( value:any )\n Tests if a value is a string primitive.\n","isString.isObject":"\nisString.isObject( value:any )\n Tests if a value is a `String` object.\n","isStringArray":"\nisStringArray( value:any )\n Tests if a value is an array of strings.\n","isStringArray.primitives":"\nisStringArray.primitives( value:any )\n Tests if a value is an array containing only string primitives.\n","isStringArray.objects":"\nisStringArray.objects( value:any )\n Tests if a value is an array containing only `String` objects.\n","isSymbol":"\nisSymbol( value:any )\n Tests if a value is a symbol.\n","isSymbolArray":"\nisSymbolArray( value:any )\n Tests if a value is an array-like object containing only symbols.\n","isSymbolArray.primitives":"\nisSymbolArray.primitives( value:any )\n Tests if a value is an array-like object containing only `symbol`\n primitives.\n","isSymbolArray.objects":"\nisSymbolArray.objects( value:any )\n Tests if a value is an array-like object containing only `Symbol`\n objects.\n","isSymmetricMatrix":"\nisSymmetricMatrix( value:any )\n Tests if a value is a square matrix which equals its transpose.\n","isSyntaxError":"\nisSyntaxError( value:any )\n Tests if a value is a SyntaxError object.\n","isTriangularNumber":"\nisTriangularNumber( value:any )\n Tests if a value is a triangular number.\n","isTriangularNumber.isPrimitive":"\nisTriangularNumber.isPrimitive( value:any )\n Tests if a value is a number primitive which is a triangular number.\n","isTriangularNumber.isObject":"\nisTriangularNumber.isObject( value:any )\n Tests if a value is a number object having a value which is a triangular\n number.\n","isTruthy":"\nisTruthy( value:any )\n Tests if a value is a value which translates to `true` when evaluated in a\n boolean context.\n","isTruthyArray":"\nisTruthyArray( value:any )\n Tests if a value is an array-like object containing only truthy values.\n","isTypedArray":"\nisTypedArray( value:any )\n Tests if a value is a typed array.\n","isTypedArrayLength":"\nisTypedArrayLength( value:any )\n Tests if a value is a valid typed array length.\n","isTypedArrayLike":"\nisTypedArrayLike( value:any )\n Tests if a value is typed-array-like.\n","isTypeError":"\nisTypeError( value:any )\n Tests if a value is a TypeError object.\n","isUint8Array":"\nisUint8Array( value:any )\n Tests if a value is a Uint8Array.\n","isUint8ClampedArray":"\nisUint8ClampedArray( value:any )\n Tests if a value is a Uint8ClampedArray.\n","isUint16Array":"\nisUint16Array( value:any )\n Tests if a value is a Uint16Array.\n","isUint32Array":"\nisUint32Array( value:any )\n Tests if a value is a Uint32Array.\n","isUNCPath":"\nisUNCPath( value:any )\n Tests if a value is a UNC path.\n","isUndefined":"\nisUndefined( value:any )\n Tests if a value is undefined.\n","isUndefinedOrNull":"\nisUndefinedOrNull( value:any )\n Tests if a value is undefined or null.\n","isUnityProbabilityArray":"\nisUnityProbabilityArray( value:any )\n Tests if a value is an array of probabilities that sum to one.\n","isUppercase":"\nisUppercase( value:any )\n Tests if a value is an uppercase string.\n","isURI":"\nisURI( value:any )\n Tests if a value is a URI.\n","isURIError":"\nisURIError( value:any )\n Tests if a value is a URIError object.\n","isVectorLike":"\nisVectorLike( value:any )\n Tests if a value is a 1-dimensional ndarray-like object.\n","isWhitespace":"\nisWhitespace( str:string )\n Tests whether a string contains only white space characters.\n","isWritableProperty":"\nisWritableProperty( value:any, property:any )\n Tests if an object's own property is writable.\n","isWritablePropertyIn":"\nisWritablePropertyIn( value:any, property:any )\n Tests if an object's own or inherited property is writable.\n","isWriteOnlyProperty":"\nisWriteOnlyProperty( value:any, property:any )\n Tests if an object's own property is write-only.\n","isWriteOnlyPropertyIn":"\nisWriteOnlyPropertyIn( value:any, property:any )\n Tests if an object's own or inherited property is write-only.\n","iterAbs":"\niterAbs( iterator:Object )\n Returns an iterator which iteratively computes the absolute value.\n","iterAbs2":"\niterAbs2( iterator:Object )\n Returns an iterator which iteratively computes the squared absolute value.\n","iterAcos":"\niterAcos( iterator:Object )\n Returns an iterator which iteratively computes the arccosine.\n","iterAcosh":"\niterAcosh( iterator:Object )\n Returns an iterator which iteratively computes the hyperbolic arccosine.\n","iterAcot":"\niterAcot( iterator:Object )\n Returns an iterator which iteratively computes the inverse cotangent.\n","iterAcoth":"\niterAcoth( iterator:Object )\n Returns an iterator which iteratively computes the inverse hyperbolic\n cotangent.\n","iterAcovercos":"\niterAcovercos( iterator:Object )\n Returns an iterator which iteratively computes the inverse coversed cosine.\n","iterAcoversin":"\niterAcoversin( iterator:Object )\n Returns an iterator which iteratively computes the inverse coversed sine.\n","iterAdd":"\niterAdd( iter0:Object, ...iterator:Object )\n Returns an iterator which performs element-wise addition of two or more\n iterators.\n","iterAdvance":"\niterAdvance( iterator:Object[, n:integer] )\n Advances an entire iterator.\n","iterAhavercos":"\niterAhavercos( iterator:Object )\n Returns an iterator which iteratively computes the inverse half-value versed\n cosine.\n","iterAhaversin":"\niterAhaversin( iterator:Object )\n Returns an iterator which iteratively computes the inverse half-value versed\n sine.\n","iterAny":"\niterAny( iterator:Object )\n Tests whether at least one iterated value is truthy.\n","iterAnyBy":"\niterAnyBy( iterator:Object, predicate:Function[, thisArg:any ] )\n Tests whether at least one iterated value passes a test implemented by a\n predicate function.\n","iterAsin":"\niterAsin( iterator:Object )\n Returns an iterator which iteratively computes the arcsine.\n","iterAsinh":"\niterAsinh( iterator:Object )\n Returns an iterator which iteratively computes the hyperbolic arcsine.\n","iterAtan":"\niterAtan( iterator:Object )\n Returns an iterator which iteratively computes the arctangent.\n","iterAtan2":"\niterAtan2( y:Object|number, x:Object|number )\n Returns an iterator which iteratively computes the angle in the plane (in\n radians) between the positive x-axis and the ray from (0,0) to the point\n (x,y).\n","iterAtanh":"\niterAtanh( iterator:Object )\n Returns an iterator which iteratively computes the hyperbolic arctangent.\n","iterator2array":"\niterator2array( iterator:Object[, out:ArrayLikeObject][, mapFcn:Function[, \n thisArg:any]] )\n Creates (or fills) an array from an iterator.\n","iterator2arrayview":"\niterator2arrayview( iterator:Object, dest:ArrayLikeObject[, begin:integer[, \n end:integer]][, mapFcn:Function[, thisArg:any]] )\n Fills an array-like object view with values returned from an iterator.\n","iterator2arrayviewRight":"\niterator2arrayviewRight( iterator:Object, dest:ArrayLikeObject[, \n begin:integer[, end:integer]][, mapFcn:Function[, thisArg:any]] )\n Fills an array-like object view from right to left with values returned from\n an iterator.\n","iteratorStream":"\niteratorStream( iterator:Object[, options:Object] )\n Creates a readable stream from an iterator.\n","iteratorStream.factory":"\niteratorStream.factory( [options:Object] )\n Returns a function for creating readable streams from iterators.\n","iteratorStream.objectMode":"\niteratorStream.objectMode( iterator:Object[, options:Object] )\n Returns an \"objectMode\" readable stream from an iterator.\n","IteratorSymbol":"\nIteratorSymbol\n Iterator symbol.\n","iterAvercos":"\niterAvercos( iterator:Object )\n Returns an iterator which iteratively computes the inverse versed cosine.\n","iterAversin":"\niterAversin( iterator:Object )\n Returns an iterator which iteratively computes the inverse versed sine.\n","iterawgn":"\niterawgn( iterator:Object, sigma:number[, options:Object] )\n Returns an iterator which introduces additive white Gaussian noise (AWGN)\n with standard deviation `sigma`.\n","iterawln":"\niterawln( iterator:Object, sigma:number[, options:Object] )\n Returns an iterator which introduces additive white Laplacian noise (AWLN)\n with standard deviation `sigma`.\n","iterawun":"\niterawun( iterator:Object, sigma:number[, options:Object] )\n Returns an iterator which introduces additive white uniform noise (AWUN)\n with standard deviation `sigma`.\n","iterBartlettHannPulse":"\niterBartlettHannPulse( [options:Object] )\n Returns an iterator which generates a Bartlett-Hann pulse waveform.\n","iterBartlettPulse":"\niterBartlettPulse( [options:Object] )\n Returns an iterator which generates a Bartlett pulse waveform.\n","iterBesselj0":"\niterBesselj0( iterator:Object )\n Returns an iterator which iteratively evaluates the Bessel function of the\n first kind of order zero.\n","iterBesselj1":"\niterBesselj1( iterator:Object )\n Returns an iterator which iteratively evaluates the Bessel function of the\n first kind of order one.\n","iterBessely0":"\niterBessely0( iterator:Object )\n Returns an iterator which iteratively evaluates the Bessel function of the\n second kind of order zero.\n","iterBessely1":"\niterBessely1( iterator:Object )\n Returns an iterator which iteratively evaluates the Bessel function of the\n second kind of order one.\n","iterBeta":"\niterBeta( x:Object|number, y:Object|number )\n Returns an iterator which iteratively evaluates the beta function.\n","iterBetaln":"\niterBetaln( x:Object|number, y:Object|number )\n Returns an iterator which iteratively evaluates the natural logarithm of the\n beta function.\n","iterBinet":"\niterBinet( iterator:Object )\n Returns an iterator which iteratively evaluates Binet's formula extended to\n real numbers.\n","iterCbrt":"\niterCbrt( iterator:Object )\n Returns an iterator which iteratively computes the cube root.\n","iterCeil":"\niterCeil( iterator:Object )\n Returns an iterator which rounds each iterated value toward positive\n infinity.\n","iterCeil2":"\niterCeil2( iterator:Object )\n Returns an iterator which rounds each iterated value to the nearest power of\n two toward positive infinity.\n","iterCeil10":"\niterCeil10( iterator:Object )\n Returns an iterator which rounds each iterated value to the nearest power of\n 10 toward positive infinity.\n","iterCompositesSeq":"\niterCompositesSeq( [options:Object] )\n Returns an iterator which generates a sequence of composite numbers.\n","iterConcat":"\niterConcat( iter0:Object, ...iterator:Object )\n Returns an iterator which iterates over the values of two or more iterators.\n","iterConstant":"\niterConstant( value:any[, options:Object] )\n Returns an iterator which always returns the same value.\n","iterContinuedFraction":"\niterContinuedFraction( iterator:Object[, options:Object] )\n Evaluates the terms of a continued fraction.\n","iterContinuedFractionSeq":"\niterContinuedFractionSeq( x:number[, options:Object] )\n Returns an iterator which generates a list of all continued fraction terms\n which can be obtained given the precision of `x`.\n","iterCos":"\niterCos( iterator:Object )\n Returns an iterator which iteratively computes the cosine.\n","iterCosh":"\niterCosh( iterator:Object )\n Returns an iterator which iteratively computes the hyperbolic cosine.\n","iterCosineWave":"\niterCosineWave( [options:Object] )\n Returns an iterator which generates a cosine wave.\n","iterCosm1":"\niterCosm1( iterator:Object )\n Returns an iterator which iteratively computes `cos(x) - 1`.\n","iterCospi":"\niterCospi( iterator:Object )\n Returns an iterator which computes the cosine of each iterated value times\n π.\n","iterCounter":"\niterCounter( iterator:Object )\n Returns an iterator which iteratively computes the number of iterated\n values.\n","iterCovercos":"\niterCovercos( iterator:Object )\n Returns an iterator which iteratively computes the coversed cosine.\n","iterCoversin":"\niterCoversin( iterator:Object )\n Returns an iterator which iteratively computes the coversed sine.\n","iterCubesSeq":"\niterCubesSeq( [options:Object] )\n Returns an iterator which generates a sequence of cubes.\n","itercugmean":"\nitercugmean( iterator:Object )\n Returns an iterator which iteratively computes a cumulative geometric mean.\n","itercuhmean":"\nitercuhmean( iterator:Object )\n Returns an iterator which iteratively computes a cumulative harmonic mean.\n","itercumax":"\nitercumax( iterator:Object )\n Returns an iterator which iteratively computes a cumulative maximum value.\n","itercumaxabs":"\nitercumaxabs( iterator:Object )\n Returns an iterator which iteratively computes a cumulative maximum absolute\n value.\n","itercumean":"\nitercumean( iterator:Object )\n Returns an iterator which iteratively computes a cumulative arithmetic mean.\n","itercumeanabs":"\nitercumeanabs( iterator:Object )\n Returns an iterator which iteratively computes a cumulative arithmetic mean\n of absolute values.\n","itercumeanabs2":"\nitercumeanabs2( iterator:Object )\n Returns an iterator which iteratively computes a cumulative arithmetic mean\n of squared absolute values.\n","itercumidrange":"\nitercumidrange( iterator:Object )\n Returns an iterator which iteratively computes a cumulative mid-range.\n","itercumin":"\nitercumin( iterator:Object )\n Returns an iterator which iteratively computes a cumulative minimum value.\n","itercuminabs":"\nitercuminabs( iterator:Object )\n Returns an iterator which iteratively computes a cumulative minimum absolute\n value.\n","itercuprod":"\nitercuprod( iterator:Object )\n Returns an iterator which iteratively computes a cumulative product.\n","itercurange":"\nitercurange( iterator:Object )\n Returns an iterator which iteratively computes a cumulative range.\n","itercusum":"\nitercusum( iterator:Object )\n Returns an iterator which iteratively computes a cumulative sum.\n","itercusumabs":"\nitercusumabs( iterator:Object )\n Returns an iterator which iteratively computes a cumulative sum of absolute\n values.\n","itercusumabs2":"\nitercusumabs2( iterator:Object )\n Returns an iterator which iteratively computes a cumulative sum of squared\n absolute values.\n","iterDatespace":"\niterDatespace( start:integer|string|Date, stop:integer|string|Date[, \n N:integer][, options:Object] )\n Returns an iterator which returns evenly spaced dates over a specified\n interval.\n","iterDedupe":"\niterDedupe( iterator:Object[, limit:integer] )\n Returns an iterator which removes consecutive duplicated values.\n","iterDedupeBy":"\niterDedupeBy( iterator:Object, [limit:integer,] fcn:Function )\n Returns an iterator which removes consecutive values that resolve to the\n same value according to a provided function.\n","iterDeg2rad":"\niterDeg2rad( iterator:Object )\n Returns an iterator which iteratively converts an angle from degrees to\n radians.\n","iterDigamma":"\niterDigamma( iterator:Object )\n Returns an iterator which iteratively evaluates the digamma function.\n","iterDiracComb":"\niterDiracComb( [options:Object] )\n Returns an iterator which generates a Dirac comb.\n","iterDiracDelta":"\niterDiracDelta( iterator:Object )\n Returns an iterator which iteratively evaluates the Dirac delta function.\n","iterDivide":"\niterDivide( iter0:Object, ...iterator:Object )\n Returns an iterator which performs element-wise division of two or more\n iterators.\n","iterEllipe":"\niterEllipe( iterator:Object )\n Returns an iterator which iteratively computes the complete elliptic\n integral of the second kind.\n","iterEllipk":"\niterEllipk( iterator:Object )\n Returns an iterator which iteratively computes the complete elliptic\n integral of the first kind.\n","iterEmpty":"\niterEmpty()\n Returns an empty iterator.\n","iterErf":"\niterErf( iterator:Object )\n Returns an iterator which iteratively evaluates the error function.\n","iterErfc":"\niterErfc( iterator:Object )\n Returns an iterator which iteratively evaluates the complementary error\n function.\n","iterErfcinv":"\niterErfcinv( iterator:Object )\n Returns an iterator which iteratively evaluates the inverse complementary\n error function.\n","iterErfinv":"\niterErfinv( iterator:Object )\n Returns an iterator which iteratively evaluates the inverse error function.\n","iterEta":"\niterEta( iterator:Object )\n Returns an iterator which iteratively evaluates the Dirichlet eta function.\n","iterEvenIntegersSeq":"\niterEvenIntegersSeq( [options:Object] )\n Returns an iterator which generates an interleaved sequence of even\n integers.\n","iterEvery":"\niterEvery( iterator:Object )\n Tests whether all iterated values are truthy.\n","iterEveryBy":"\niterEveryBy( iterator:Object, predicate:Function[, thisArg:any ] )\n Tests whether every iterated value passes a test implemented by a predicate\n function.\n","iterExp":"\niterExp( iterator:Object )\n Returns an iterator which iteratively evaluates the natural exponential\n function.\n","iterExp2":"\niterExp2( iterator:Object )\n Returns an iterator which iteratively evaluates the base `2` exponential\n function.\n","iterExp10":"\niterExp10( iterator:Object )\n Returns an iterator which iteratively evaluates the base `10` exponential\n function.\n","iterExpit":"\niterExpit( iterator:Object )\n Returns an iterator which iteratively evaluates the standard logistic\n function.\n","iterExpm1":"\niterExpm1( iterator:Object )\n Returns an iterator which iteratively computes `exp(x) - 1`.\n","iterExpm1rel":"\niterExpm1rel( iterator:Object )\n Returns an iterator which iteratively evaluates the relative error\n exponential.\n","iterFactorial":"\niterFactorial( iterator:Object )\n Returns an iterator which iteratively evaluates the factorial function.\n","iterFactorialln":"\niterFactorialln( iterator:Object )\n Returns an iterator which iteratively evaluates the natural logarithm of the\n factorial function.\n","iterFactorialsSeq":"\niterFactorialsSeq( [options:Object] )\n Returns an iterator which generates a sequence of factorials.\n","iterFibonacciSeq":"\niterFibonacciSeq( [options:Object] )\n Returns an iterator which generates a Fibonacci sequence.\n","iterFifthPowersSeq":"\niterFifthPowersSeq( [options:Object] )\n Returns an iterator which generates a sequence of fifth powers.\n","iterFill":"\niterFill( iterator:Object, value:any[, begin:integer[, end:integer]] )\n Returns an iterator which replaces all values from a provided iterator from\n a start index to an end index with a static value.\n","iterFilter":"\niterFilter( iterator:Object, predicate:Function[, thisArg:any] )\n Returns an iterator which filters a provided iterator's values according to\n a predicate function.\n","iterFilterMap":"\niterFilterMap( iterator:Object, fcn:Function[, thisArg:any] )\n Returns an iterator which both filters and maps a provided iterator's\n values.\n","iterFirst":"\niterFirst( iterator:Object )\n Returns the first iterated value.\n","iterFlatTopPulse":"\niterFlatTopPulse( [options:Object] )\n Returns an iterator which generates a flat top pulse waveform.\n","iterFloor":"\niterFloor( iterator:Object )\n Returns an iterator which rounds each iterated value toward negative\n infinity.\n","iterFloor2":"\niterFloor2( iterator:Object )\n Returns an iterator which rounds each iterated value to the nearest power of\n two toward negative infinity.\n","iterFloor10":"\niterFloor10( iterator:Object )\n Returns an iterator which rounds each iterated value to the nearest power of\n 10 toward negative infinity.\n","iterFlow":"\niterFlow( methods:Object )\n Returns a fluent interface iterator constructor with a customized prototype\n based on provided methods.\n","iterForEach":"\niterForEach( iterator:Object, fcn:Function[, thisArg:any] )\n Returns an iterator which invokes a function for each iterated value before\n returning the iterated value.\n","iterFourthPowersSeq":"\niterFourthPowersSeq( [options:Object] )\n Returns an iterator which generates a sequence of fourth powers.\n","iterFresnelc":"\niterFresnelc( iterator:Object )\n Returns an iterator which iteratively computes the Fresnel integral C(x).\n","iterFresnels":"\niterFresnels( iterator:Object )\n Returns an iterator which iteratively computes the Fresnel integral S(x).\n","iterGamma":"\niterGamma( iterator:Object )\n Returns an iterator which iteratively evaluates the gamma function.\n","iterGamma1pm1":"\niterGamma1pm1( iterator:Object )\n Returns an iterator which iteratively computes `gamma(x+1) - 1` without\n cancellation errors for small `x`.\n","iterGammaln":"\niterGammaln( iterator:Object )\n Returns an iterator which iteratively evaluates the natural logarithm of the\n gamma function.\n","iterHacovercos":"\niterHacovercos( iterator:Object )\n Returns an iterator which iteratively computes the half-value coversed\n cosine.\n","iterHacoversin":"\niterHacoversin( iterator:Object )\n Returns an iterator which iteratively computes the half-value coversed sine.\n","iterHannPulse":"\niterHannPulse( [options:Object] )\n Returns an iterator which generates a Hann pulse waveform.\n","iterHavercos":"\niterHavercos( iterator:Object )\n Returns an iterator which iteratively computes the half-value versed cosine.\n","iterHaversin":"\niterHaversin( iterator:Object )\n Returns an iterator which iteratively computes the half-value versed sine.\n","iterHead":"\niterHead( iterator:Object, n:integer )\n Returns an iterator which returns the first `n` values of a provided\n iterator.\n","iterIncrspace":"\niterIncrspace( start:number, stop:number[, increment:number] )\n Returns an iterator which returns evenly spaced numbers according to a\n specified increment.\n","iterIntegersSeq":"\niterIntegersSeq( [options:Object] )\n Returns an iterator which generates an interleaved integer sequence.\n","iterIntersection":"\niterIntersection( iter0:Object, ...iterator:Object )\n Returns an iterator which returns the intersection of two or more iterators.\n","iterIntersectionByHash":"\niterIntersectionByHash( iter0:Object, ...iterator:Object, hashFcn:Function[, \n thisArg:any] )\n Returns an iterator which returns the intersection of two or more iterators\n according to a hash function.\n","iterInv":"\niterInv( iterator:Object )\n Returns an iterator which iteratively computes the multiplicative inverse.\n","iterLanczosPulse":"\niterLanczosPulse( [options:Object] )\n Returns an iterator which generates a Lanczos pulse waveform.\n","iterLast":"\niterLast( iterator:Object )\n Consumes an entire iterator and returns the last iterated value.\n","iterLength":"\niterLength( iterator:Object )\n Consumes an entire iterator and returns the number of iterated values.\n","iterLinspace":"\niterLinspace( start:number, stop:number[, N:integer] )\n Returns an iterator which returns evenly spaced numbers over a specified\n interval.\n","iterLn":"\niterLn( iterator:Object )\n Returns an iterator which iteratively evaluates the natural logarithm.\n","iterLog":"\niterLog( x:Object|number, b:Object|number )\n Returns an iterator which iteratively computes the base `b` logarithm.\n","iterLog1mexp":"\niterLog1mexp( iterator:Object )\n Returns an iterator which iteratively evaluates the natural logarithm of\n `1-exp(-|x|)`.\n","iterLog1p":"\niterLog1p( iterator:Object )\n Returns an iterator which iteratively evaluates the natural logarithm of\n `1+x`.\n","iterLog1pexp":"\niterLog1pexp( iterator:Object )\n Returns an iterator which iteratively evaluates the natural logarithm of\n `1+exp(x)`.\n","iterLog2":"\niterLog2( iterator:Object )\n Returns an iterator which iteratively evaluates the binary logarithm.\n","iterLog10":"\niterLog10( iterator:Object )\n Returns an iterator which iteratively evaluates the common logarithm\n (logarithm with base 10).\n","iterLogit":"\niterLogit( iterator:Object )\n Returns an iterator which iteratively evaluates the logit function.\n","iterLogspace":"\niterLogspace( start:number, stop:number[, N:integer][, options:Object] )\n Returns an iterator which returns evenly spaced numbers on a log scale.\n","iterLucasSeq":"\niterLucasSeq( [options:Object] )\n Returns an iterator which generates a Lucas sequence.\n","iterMap":"\niterMap( iterator:Object, fcn:Function[, thisArg:any] )\n Returns an iterator which invokes a function for each iterated value.\n","iterMapN":"\niterMapN( iter0:Object, ...iterator:Object, fcn:Function[, thisArg:any] )\n Returns an iterator which transforms iterated values from two or more\n iterators by applying the iterated values as arguments to a provided\n function.\n","itermax":"\nitermax( iterator:Object )\n Computes the maximum value of all iterated values.\n","itermaxabs":"\nitermaxabs( iterator:Object )\n Computes the maximum absolute value of all iterated values.\n","itermean":"\nitermean( iterator:Object )\n Computes an arithmetic mean over all iterated values.\n","itermeanabs":"\nitermeanabs( iterator:Object )\n Computes an arithmetic mean of absolute values for all iterated values.\n","itermeanabs2":"\nitermeanabs2( iterator:Object )\n Computes an arithmetic mean of squared absolute values for all iterated\n values.\n","itermidrange":"\nitermidrange( iterator:Object )\n Computes the mid-range of all iterated values.\n","itermin":"\nitermin( iterator:Object )\n Computes the minimum value of all iterated values.\n","iterminabs":"\niterminabs( iterator:Object )\n Computes the minimum absolute value of all iterated values.\n","itermmax":"\nitermmax( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving maximum value.\n","itermmaxabs":"\nitermmaxabs( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving maximum absolute\n value.\n","itermmean":"\nitermmean( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving arithmetic mean.\n","itermmeanabs":"\nitermmeanabs( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving arithmetic mean of\n absolute values.\n","itermmeanabs2":"\nitermmeanabs2( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving arithmetic mean of\n squared absolute values.\n","itermmidrange":"\nitermmidrange( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving mid-range.\n","itermmin":"\nitermmin( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving minimum value.\n","itermminabs":"\nitermminabs( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving minimum absolute\n value.\n","iterMod":"\niterMod( iter0:Object, ...iterator:Object )\n Returns an iterator which performs an element-wise modulo operation of two\n or more iterators.\n","itermprod":"\nitermprod( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving product.\n","itermrange":"\nitermrange( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving range.\n","itermsum":"\nitermsum( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving sum.\n","itermsumabs":"\nitermsumabs( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving sum of absolute\n values.\n","itermsumabs2":"\nitermsumabs2( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving sum of squared\n absolute values.\n","iterMultiply":"\niterMultiply( iter0:Object, ...iterator:Object )\n Returns an iterator which performs element-wise multiplication of two or\n more iterators.\n","iterNegaFibonacciSeq":"\niterNegaFibonacciSeq( [options:Object] )\n Returns an iterator which generates a negaFibonacci sequence.\n","iterNegaLucasSeq":"\niterNegaLucasSeq( [options:Object] )\n Returns an iterator which generates a negaLucas sequence.\n","iterNegativeEvenIntegersSeq":"\niterNegativeEvenIntegersSeq( [options:Object] )\n Returns an iterator which generates a sequence of negative even integers.\n","iterNegativeIntegersSeq":"\niterNegativeIntegersSeq( [options:Object] )\n Returns an iterator which generates a negative integer sequence.\n","iterNegativeOddIntegersSeq":"\niterNegativeOddIntegersSeq( [options:Object] )\n Returns an iterator which generates a sequence of negative odd integers.\n","iterNone":"\niterNone( iterator:Object )\n Tests whether all iterated values are falsy.\n","iterNoneBy":"\niterNoneBy( iterator:Object, predicate:Function[, thisArg:any ] )\n Tests whether every iterated value fails a test implemented by a predicate\n function.\n","iterNonFibonacciSeq":"\niterNonFibonacciSeq( [options:Object] )\n Returns an iterator which generates a non-Fibonacci integer sequence.\n","iterNonNegativeEvenIntegersSeq":"\niterNonNegativeEvenIntegersSeq( [options:Object] )\n Returns an iterator which generates a sequence of nonnegative even integers.\n","iterNonNegativeIntegersSeq":"\niterNonNegativeIntegersSeq( [options:Object] )\n Returns an iterator which generates a nonnegative integer sequence.\n","iterNonPositiveEvenIntegersSeq":"\niterNonPositiveEvenIntegersSeq( [options:Object] )\n Returns an iterator which generates a sequence of nonpositive even integers.\n","iterNonPositiveIntegersSeq":"\niterNonPositiveIntegersSeq( [options:Object] )\n Returns an iterator which generates a nonpositive integer sequence.\n","iterNonSquaresSeq":"\niterNonSquaresSeq( [options:Object] )\n Returns an iterator which generates a sequence of nonsquares.\n","iterNth":"\niterNth( iterator:Object, n:integer )\n Returns the nth iterated value.\n","iterOddIntegersSeq":"\niterOddIntegersSeq( [options:Object] )\n Returns an iterator which generates an interleaved sequence of odd integers.\n","iterPeriodicSinc":"\niterPeriodicSinc( n:integer[, options:Object] )\n Returns an iterator which generates a periodic sinc waveform.\n","iterPipeline":"\niterPipeline( iterFcn:Function|Array[, ...iterFcn:Function] )\n Returns an iterator pipeline.\n","iterPop":"\niterPop( iterator:Object[, clbk:Function[, thisArg:any]] )\n Returns an iterator which skips the last value of a provided iterator.\n","iterPositiveEvenIntegersSeq":"\niterPositiveEvenIntegersSeq( [options:Object] )\n Returns an iterator which generates a sequence of positive even integers.\n","iterPositiveIntegersSeq":"\niterPositiveIntegersSeq( [options:Object] )\n Returns an iterator which generates a positive integer sequence.\n","iterPositiveOddIntegersSeq":"\niterPositiveOddIntegersSeq( [options:Object] )\n Returns an iterator which generates a sequence of positive odd integers.\n","iterPow":"\niterPow( base:Object|number, exponent:Object|number )\n Returns an iterator which iteratively evaluates the exponential function.\n","iterPrimesSeq":"\niterPrimesSeq( [options:Object] )\n Returns an iterator which generates a sequence of prime numbers.\n","iterprod":"\niterprod( iterator:Object )\n Computes the product of all iterated values.\n","iterPulse":"\niterPulse( [options:Object] )\n Returns an iterator which generates a pulse waveform.\n","iterPush":"\niterPush( iterator:Object, ...items:any )\n Returns an iterator which appends additional values to the end of a provided\n iterator.\n","iterRad2deg":"\niterRad2deg( iterator:Object )\n Returns an iterator which iteratively converts an angle from radians to\n degrees.\n","iterRamp":"\niterRamp( iterator:Object )\n Returns an iterator which iteratively evaluates the ramp function.\n","iterrange":"\niterrange( iterator:Object )\n Computes the range of all iterated values.\n","iterReject":"\niterReject( iterator:Object, predicate:Function[, thisArg:any] )\n Returns an iterator which rejects a provided iterator's values according to\n a predicate function.\n","iterReplicate":"\niterReplicate( iterator:Object, n:integer )\n Returns an iterator which replicates each iterated value `n` times.\n","iterReplicateBy":"\niterReplicateBy( iterator:Object, fcn:Function[, thisArg:any] )\n Returns an iterator which replicates each iterated value according to a\n provided function.\n","iterRound":"\niterRound( iterator:Object )\n Returns an iterator which rounds each iterated value to the nearest integer.\n","iterRound2":"\niterRound2( iterator:Object )\n Returns an iterator which rounds each iterated value to the nearest power of\n two on a linear scale.\n","iterRound10":"\niterRound10( iterator:Object )\n Returns an iterator which rounds each iterated value to the nearest power of\n 10 on a linear scale.\n","iterRsqrt":"\niterRsqrt( iterator:Object )\n Returns an iterator which iteratively computes the reciprocal (inverse)\n square root.\n","iterSawtoothWave":"\niterSawtoothWave( [options:Object] )\n Returns an iterator which generates a sawtooth wave.\n","iterShift":"\niterShift( iterator:Object[, clbk:Function[, thisArg:any]] )\n Returns an iterator which skips the first value of a provided iterator.\n","iterSignum":"\niterSignum( iterator:Object )\n Returns an iterator which iteratively evaluates the signum function.\n","iterSin":"\niterSin( iterator:Object )\n Returns an iterator which iteratively computes the sine.\n","iterSinc":"\niterSinc( iterator:Object )\n Returns an iterator which iteratively computes the normalized cardinal sine.\n","iterSineWave":"\niterSineWave( [options:Object] )\n Returns an iterator which generates a sine wave.\n","iterSinh":"\niterSinh( iterator:Object )\n Returns an iterator which iteratively evaluates the hyperbolic sine.\n","iterSinpi":"\niterSinpi( iterator:Object )\n Returns an iterator which computes the sine of each iterated value times π.\n","iterSlice":"\niterSlice( iterator:Object[, begin:integer[, end:integer]] )\n Returns an iterator which returns a subsequence of iterated values from a\n provided iterator.\n","iterSome":"\niterSome( iterator:Object, n:number )\n Tests whether at least `n` iterated values are truthy.\n","iterSomeBy":"\niterSomeBy( iterator:Object, n:integer, predicate:Function[, thisArg:any ] )\n Tests whether at least `n` iterated values pass a test implemented by a\n predicate function.\n","iterSpence":"\niterSpence( iterator:Object )\n Returns an iterator which iteratively evaluates Spence's function.\n","iterSqrt":"\niterSqrt( iterator:Object )\n Returns an iterator which iteratively computes the principal square root.\n","iterSqrt1pm1":"\niterSqrt1pm1( iterator:Object )\n Returns an iterator which iteratively computes `sqrt(1+x) - 1` more \n accurately for small `x`.\n","iterSquaredTriangularSeq":"\niterSquaredTriangularSeq( [options:Object] )\n Returns an iterator which generates a sequence of squared triangular\n numbers.\n","iterSquaresSeq":"\niterSquaresSeq( [options:Object] )\n Returns an iterator which generates a sequence of squares.\n","iterSquareWave":"\niterSquareWave( [options:Object] )\n Returns an iterator which generates a square wave.\n","iterstdev":"\niterstdev( iterator:Object[, mean:number] )\n Computes a correct sample standard deviation over all iterated values.\n","iterStep":"\niterStep( start:number, increment:number[, N:number] )\n Returns an iterator which returns a sequence of numbers according to a\n specified increment.\n","iterStrided":"\niterStrided( iterator:Object, stride:integer[, offset:integer[, \n eager:boolean]] )\n Returns an iterator which steps by a specified amount.\n","iterStridedBy":"\niterStridedBy( iterator:Object, fcn:Function[, offset:integer[, \n eager:boolean]][, thisArg:any] )\n Returns an iterator which steps according to a provided callback function.\n","iterSubtract":"\niterSubtract( iter0:Object, ...iterator:Object )\n Returns an iterator which performs element-wise subtraction of two or more\n iterators.\n","itersum":"\nitersum( iterator:Object )\n Computes the sum of all iterated values.\n","itersumabs":"\nitersumabs( iterator:Object )\n Computes the sum of absolute values for all iterated values.\n","itersumabs2":"\nitersumabs2( iterator:Object )\n Computes the sum of squared absolute values for all iterated values.\n","iterTan":"\niterTan( iterator:Object )\n Returns an iterator which iteratively evaluates the tangent.\n","iterTanh":"\niterTanh( iterator:Object )\n Returns an iterator which iteratively evaluates the hyperbolic tangent.\n","iterThunk":"\niterThunk( iterFcn:Function[, ...args:any] )\n Returns an iterator \"thunk\".\n","iterTriangleWave":"\niterTriangleWave( [options:Object] )\n Returns an iterator which generates a triangle wave.\n","iterTriangularSeq":"\niterTriangularSeq( [options:Object] )\n Returns an iterator which generates a sequence of triangular numbers.\n","iterTrigamma":"\niterTrigamma( iterator:Object )\n Returns an iterator which iteratively evaluates the trigamma function.\n","iterTrunc":"\niterTrunc( iterator:Object )\n Returns an iterator which rounds each iterated value toward zero.\n","iterTrunc2":"\niterTrunc2( iterator:Object )\n Returns an iterator which rounds each iterated value to the nearest power of\n two toward zero.\n","iterTrunc10":"\niterTrunc10( iterator:Object )\n Returns an iterator which rounds each iterated value to the nearest power of\n 10 toward zero.\n","iterUnion":"\niterUnion( iter0:Object, ...iterator:Object )\n Returns an iterator which returns the union of two or more iterators.\n","iterUnique":"\niterUnique( iterator:Object )\n Returns an iterator which returns unique values.\n","iterUniqueBy":"\niterUniqueBy( iterator:Object, predicate:Function[, thisArg:any] )\n Returns an iterator which returns unique values according to a predicate\n function.\n","iterUniqueByHash":"\niterUniqueByHash( iterator:Object, hashFcn:Function[, thisArg:any] )\n Returns an iterator which returns unique values according to a hash\n function.\n","iterUnitspace":"\niterUnitspace( start:number[, stop:number] )\n Returns an iterator which returns numbers incremented by one.\n","iterUnshift":"\niterUnshift( iterator:Object, ...items:any )\n Returns an iterator which prepends values to the beginning of a provided\n iterator.\n","itervariance":"\nitervariance( iterator:Object[, mean:number] )\n Computes an unbiased sample variance over all iterated values.\n","iterVercos":"\niterVercos( iterator:Object )\n Returns an iterator which iteratively computes the versed cosine.\n","iterVersin":"\niterVersin( iterator:Object )\n Returns an iterator which iteratively computes the versed sine.\n","iterZeta":"\niterZeta( iterator:Object )\n Returns an iterator which iteratively evaluates the Riemann zeta function.\n","joinStream":"\njoinStream( [options:Object] )\n Returns a transform stream which joins streamed data.\n","joinStream.factory":"\njoinStream.factory( [options:Object] )\n Returns a function for creating transform streams for joined streamed data.\n","joinStream.objectMode":"\njoinStream.objectMode( [options:Object] )\n Returns an \"objectMode\" transform stream for joining streamed data.\n","kde2d":"\nkde2d( x:Array, y:Array[, options:Object] )\n Two-dimensional kernel density estimation.\n","kebabcase":"\nkebabcase( str:string )\n Converts a string to kebab case.\n","keyBy":"\nkeyBy( collection:Array|TypedArray|Object, fcn:Function[, thisArg:any] )\n Converts a collection to an object whose keys are determined by a provided\n function and whose values are the collection values.\n","keyByRight":"\nkeyByRight( collection:Array|TypedArray|Object, fcn:Function[, thisArg:any] )\n Converts a collection to an object whose keys are determined by a provided\n function and whose values are the collection values, iterating from right to\n left.\n","keysIn":"\nkeysIn( obj:any )\n Returns an array of an object's own and inherited enumerable property\n names.\n","kruskalTest":"\nkruskalTest( ...x:Array[, options:Object] )\n Computes the Kruskal-Wallis test for equal medians.\n","kstest":"\nkstest( x:Array, y:Function|string[, ...params:number][, \n options:Object] )\n Computes a Kolmogorov-Smirnov goodness-of-fit test.\n","leveneTest":"\nleveneTest( x:Array[, ...y:Array[, options:Object]] )\n Computes Levene's test for equal variances.\n","LinkedList":"\nLinkedList()\n Linked list constructor.\n","linspace":"\nlinspace( start:number|ComplexLike, stop:number|ComplexLike, length:integer[, \n options:Object] )\n Generates a linearly spaced array over a specified interval.\n","linspace.assign":"\nlinspace.assign( start:number|ComplexLike, stop:number|ComplexLike, \n out:ArrayLikeObject[, options:Object] )\n Generates a linearly spaced sequence over a specified interval and assigns\n the results to a provided output array.\n","LIU_NEGATIVE_OPINION_WORDS_EN":"\nLIU_NEGATIVE_OPINION_WORDS_EN()\n Returns a list of negative opinion words.\n","LIU_POSITIVE_OPINION_WORDS_EN":"\nLIU_POSITIVE_OPINION_WORDS_EN()\n Returns a list of positive opinion words.\n","LN_HALF":"\nLN_HALF\n Natural logarithm of `1/2`.\n","LN_PI":"\nLN_PI\n Natural logarithm of the mathematical constant `π`.\n","LN_SQRT_TWO_PI":"\nLN_SQRT_TWO_PI\n Natural logarithm of the square root of `2π`.\n","LN_TWO_PI":"\nLN_TWO_PI\n Natural logarithm of `2π`.\n","LN2":"\nLN2\n Natural logarithm of `2`.\n","LN10":"\nLN10\n Natural logarithm of `10`.\n","LOG2E":"\nLOG2E\n Base 2 logarithm of Euler's number.\n","LOG10E":"\nLOG10E\n Base 10 logarithm of Euler's number.\n","logspace":"\nlogspace( a:number, b:number[, length:integer] )\n Generates a logarithmically spaced numeric array between `10^a` and `10^b`.\n","lowercase":"\nlowercase( str:string )\n Converts a string to lowercase.\n","lowercaseKeys":"\nlowercaseKeys( obj:Object )\n Converts each object key to lowercase.\n","lowess":"\nlowess( x:Array, y:Array[, options:Object] )\n Locally-weighted polynomial regression via the LOWESS algorithm.\n","lpad":"\nlpad( str:string, len:integer[, pad:string] )\n Left pads a string such that the padded string has a length of at least\n `len`.\n","ltrim":"\nltrim( str:string )\n Trims whitespace from the beginning of a string.\n","MALE_FIRST_NAMES_EN":"\nMALE_FIRST_NAMES_EN()\n Returns a list of common male first names in English speaking countries.\n","map":"\nmap( arr:ArrayLikeObject|ndarray, fcn:Function[, thisArg:any] )\n Applies a function to each element in an array and assigns the result to an\n element in a new array.\n","map.assign":"\nmap.assign( arr:ArrayLikeObject|ndarray, out:ArrayLikeObject|ndarray, \n fcn:Function[, thisArg:any] )\n Applies a function to each element in an array and assigns the result to an\n element in an output array.\n","map2":"\nmap2( x:ArrayLikeObject|ndarray, y:ArrayLikeObject|ndarray, fcn:Function[, \n thisArg:any] )\n Applies a function to elements in two input arrays and assigns the results\n to a new array.\n","map2.assign":"\nmap2.assign( x:ArrayLikeObject|ndarray, y:ArrayLikeObject|ndarray, \n out:ArrayLikeObject|ndarray, fcn:Function[, thisArg:any] )\n Applies a function to elements in two input arrays and assigns the results\n to an output array.\n","map2d":"\nmap2d( arr:ArrayLikeObject, fcn:Function[, thisArg:any] )\n Applies a function to each nested element in an array of arrays and assigns\n the result to a nested element in a new array of arrays.\n","map2Right":"\nmap2Right( x:ArrayLikeObject|ndarray, y:ArrayLikeObject|ndarray, fcn:Function[, \n thisArg:any] )\n Applies a function to elements in two input arrays while iterating from\n right to left and assigns the results to a new array.\n","map2Right.assign":"\nmap2Right.assign( x:ArrayLikeObject|ndarray, y:ArrayLikeObject|ndarray, \n out:ArrayLikeObject|ndarray, fcn:Function[, thisArg:any] )\n Applies a function to elements in two input arrays while iterating from\n right to left and assigns the results to an output array.\n","map3d":"\nmap3d( arr:ArrayLikeObject>, fcn:Function[, \n thisArg:any] )\n Applies a function to each nested element in a three-dimensional nested\n array and assigns the result to a nested element in a new three-dimensional\n nested array.\n","map4d":"\nmap4d( arr:ArrayLikeObject, fcn:Function[, thisArg:any] )\n Applies a function to each nested element in a four-dimensional nested array\n and assigns the result to a nested element in a new four-dimensional nested\n array.\n","map5d":"\nmap5d( arr:ArrayLikeObject, fcn:Function[, thisArg:any] )\n Applies a function to each nested element in a five-dimensional nested array\n and assigns the result to a nested element in a new five-dimensional nested\n array.\n","mapArguments":"\nmapArguments( fcn:Function, clbk:Function[, thisArg:any] )\n Returns a function that applies arguments to a provided function after\n transforming arguments according to a callback function.\n","mapFun":"\nmapFun( fcn:Function, n:integer[, thisArg:any] )\n Invokes a function `n` times and returns an array of accumulated function\n return values.\n","mapFunAsync":"\nmapFunAsync( fcn:Function, n:integer, [options:Object,] done:Function )\n Invokes a function `n` times and returns an array of accumulated function\n return values.\n","mapFunAsync.factory":"\nmapFunAsync.factory( [options:Object,] fcn:Function )\n Returns a function which invokes a function `n` times and returns an array\n of accumulated function return values.\n","mapKeys":"\nmapKeys( obj:Object, transform:Function )\n Maps keys from one object to a new object having the same values.\n","mapKeysAsync":"\nmapKeysAsync( obj:Object, [options:Object,] transform:Function, done:Function )\n Maps keys from one object to a new object having the same values.\n","mapKeysAsync.factory":"\nmapKeysAsync.factory( [options:Object,] transform:Function )\n Returns a function which maps keys from one object to a new object having\n the same values.\n","mapReduce":"\nmapReduce( arr:ArrayLikeObject|ndarray, initial:any, mapper:Function, \n reducer:Function[, thisArg:any] )\n Performs a map-reduce operation for each element in an array and returns the\n accumulated result.\n","mapReduceRight":"\nmapReduceRight( arr:ArrayLikeObject|ndarray, initial:any, mapper:Function, \n reducer:Function[, thisArg:any] )\n Performs a map-reduce operation for each element in an array while iterating\n from right to left and returns the accumulated result.\n","mapRight":"\nmapRight( arr:ArrayLikeObject|ndarray, fcn:Function[, thisArg:any] )\n Applies a function to each element in an array and assigns the result to an\n element in a new array, iterating from right to left.\n","mapRight.assign":"\nmapRight.assign( arr:ArrayLikeObject|ndarray, out:ArrayLikeObject|ndarray, \n fcn:Function[, thisArg:any] )\n Applies a function to each element in an array and assigns the result to an\n element in an output array, iterating from right to left.\n","mapValues":"\nmapValues( obj:Object, transform:Function )\n Maps values from one object to a new object having the same keys.\n","mapValuesAsync":"\nmapValuesAsync( obj:Object, [options:Object,] transform:Function, \n done:Function )\n Maps values from one object to a new object having the same keys.\n","mapValuesAsync.factory":"\nmapValuesAsync.factory( [options:Object,] transform:Function )\n Returns a function which maps values from one object to a new object having\n the same keys.\n","maskArguments":"\nmaskArguments( fcn:Function, mask:ArrayLikeObject[, thisArg:any] )\n Returns a function that applies arguments to a provided function according\n to a specified mask.\n","MAX_ARRAY_LENGTH":"\nMAX_ARRAY_LENGTH\n Maximum length for a generic array.\n","MAX_TYPED_ARRAY_LENGTH":"\nMAX_TYPED_ARRAY_LENGTH\n Maximum length for a typed array.\n","memoize":"\nmemoize( fcn:Function[, hashFunction:Function] )\n Returns a memoized function.\n","merge":"\nmerge( target:Object, ...source:Object )\n Merges objects into a target object.\n","merge.factory":"\nmerge.factory( options:Object )\n Returns a function for merging and extending objects.\n","MILLISECONDS_IN_DAY":"\nMILLISECONDS_IN_DAY\n Number of milliseconds in a day.\n","MILLISECONDS_IN_HOUR":"\nMILLISECONDS_IN_HOUR\n Number of milliseconds in an hour.\n","MILLISECONDS_IN_MINUTE":"\nMILLISECONDS_IN_MINUTE\n Number of milliseconds in a minute.\n","MILLISECONDS_IN_SECOND":"\nMILLISECONDS_IN_SECOND\n Number of milliseconds in a second.\n","MILLISECONDS_IN_WEEK":"\nMILLISECONDS_IN_WEEK\n Number of milliseconds in a week.\n","MINARD_NAPOLEONS_MARCH":"\nMINARD_NAPOLEONS_MARCH( [options:Object] )\n Returns data for Charles Joseph Minard's cartographic depiction of\n Napoleon's Russian campaign of 1812.\n","MINUTES_IN_DAY":"\nMINUTES_IN_DAY\n Number of minutes in a day.\n","MINUTES_IN_HOUR":"\nMINUTES_IN_HOUR\n Number of minutes in an hour.\n","MINUTES_IN_WEEK":"\nMINUTES_IN_WEEK\n Number of minutes in a week.\n","minutesInMonth":"\nminutesInMonth( [month:string|Date|integer[, year:integer]] )\n Returns the number of minutes in a month.\n","minutesInYear":"\nminutesInYear( [value:integer|Date] )\n Returns the number of minutes in a year according to the Gregorian calendar.\n","MOBY_DICK":"\nMOBY_DICK()\n Returns the text of Moby Dick by Herman Melville.\n","MONTH_NAMES_EN":"\nMONTH_NAMES_EN()\n Returns a list of month names (English).\n","MONTHS_IN_YEAR":"\nMONTHS_IN_YEAR\n Number of months in a year.\n","moveProperty":"\nmoveProperty( source:Object, prop:string, target:Object )\n Moves a property from one object to another object.\n","namedtypedtuple":"\nnamedtypedtuple( fields:Array[, options:Object] )\n Returns a named typed tuple factory.\n","naryFunction":"\nnaryFunction( fcn:Function, arity:integer[, thisArg:any] )\n Returns a function that applies a specified number of arguments to a\n provided function.\n","nativeClass":"\nnativeClass( value:any )\n Returns a string value indicating a specification defined classification of\n an object.\n","ndarray":"\nndarray( dtype:string, buffer:ArrayLikeObject|TypedArray|Buffer, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n offset:integer, order:string[, options:Object] )\n Returns an ndarray.\n","ndarray.prototype.byteLength":"\nndarray.prototype.byteLength\n Size (in bytes) of the array (if known).\n","ndarray.prototype.BYTES_PER_ELEMENT":"\nndarray.prototype.BYTES_PER_ELEMENT\n Size (in bytes) of each array element (if known).\n","ndarray.prototype.data":"\nndarray.prototype.data\n Pointer to the underlying data buffer.\n","ndarray.prototype.dtype":"\nndarray.prototype.dtype\n Underlying data type.\n","ndarray.prototype.flags":"\nndarray.prototype.flags\n Meta information, such as information concerning the memory layout of the\n array.\n","ndarray.prototype.length":"\nndarray.prototype.length\n Length of the array (i.e., number of elements).\n","ndarray.prototype.ndims":"\nndarray.prototype.ndims\n Number of dimensions.\n","ndarray.prototype.offset":"\nndarray.prototype.offset\n Index offset which specifies the buffer index at which to start iterating\n over array elements.\n","ndarray.prototype.order":"\nndarray.prototype.order\n Array order.\n","ndarray.prototype.shape":"\nndarray.prototype.shape\n Array shape.\n","ndarray.prototype.strides":"\nndarray.prototype.strides\n Index strides which specify how to access data along corresponding array\n dimensions.\n","ndarray.prototype.get":"\nndarray.prototype.get( ...idx:integer )\n Returns an array element specified according to provided subscripts.\n","ndarray.prototype.iget":"\nndarray.prototype.iget( idx:integer )\n Returns an array element located at a specified linear index.\n","ndarray.prototype.set":"\nndarray.prototype.set( ...idx:integer, v:any )\n Sets an array element specified according to provided subscripts.\n","ndarray.prototype.iset":"\nndarray.prototype.iset( idx:integer, v:any )\n Sets an array element located at a specified linear index.\n","ndarray.prototype.toString":"\nndarray.prototype.toString()\n Serializes an ndarray as a string.\n","ndarray.prototype.toJSON":"\nndarray.prototype.toJSON()\n Serializes an ndarray as a JSON object.\n","ndarrayCastingModes":"\nndarrayCastingModes()\n Returns a list of ndarray casting modes.\n","ndarrayDataTypes":"\nndarrayDataTypes()\n Returns a list of ndarray data types.\n","ndarrayDispatch":"\nndarrayDispatch( fcns:Function|ArrayLikeObject, \n types:ArrayLikeObject, data:ArrayLikeObject|null, nargs:integer, nin:integer, \n nout:integer )\n Returns an ndarray function interface which performs multiple dispatch.\n","ndarrayIndexModes":"\nndarrayIndexModes()\n Returns a list of ndarray index modes.\n","ndarrayMinDataType":"\nndarrayMinDataType( value:any )\n Returns the minimum ndarray data type of the closest \"kind\" necessary for\n storing a provided scalar value.\n","ndarrayNextDataType":"\nndarrayNextDataType( [dtype:any] )\n Returns the next larger ndarray data type of the same kind.\n","ndarrayOrders":"\nndarrayOrders()\n Returns a list of ndarray orders.\n","ndarrayPromotionRules":"\nndarrayPromotionRules( [dtype1:any, dtype2:any] )\n Returns the ndarray data type with the smallest size and closest \"kind\" to\n which ndarray data types can be safely cast.\n","ndarraySafeCasts":"\nndarraySafeCasts( [dtype:any] )\n Returns a list of ndarray data types to which a provided ndarray data type\n can be safely cast.\n","ndarraySameKindCasts":"\nndarraySameKindCasts( [dtype:any] )\n Returns a list of ndarray data types to which a provided ndarray data type\n can be safely cast or cast within the same \"kind\".\n","ndzeros":"\nndzeros( shape:ArrayLikeObject|integer[, options:Object] )\n Returns a zero-filled ndarray having a specified shape and data type.\n","ndzerosLike":"\nndzerosLike( x:ndarray[, options:Object] )\n Returns a zero-filled ndarray having the same shape and data type as a\n provided input ndarray.\n","nextGraphemeClusterBreak":"\nnextGraphemeClusterBreak( str:string[, fromIndex:integer] )\n Returns the next extended grapheme cluster break in a string after a\n specified position.\n","nextTick":"\nnextTick( clbk[, ...args] )\n Adds a callback to the \"next tick queue\".\n","NIGHTINGALES_ROSE":"\nNIGHTINGALES_ROSE()\n Returns data for Nightingale's famous polar area diagram.\n","NINF":"\nNINF\n Double-precision floating-point negative infinity.\n","NODE_VERSION":"\nNODE_VERSION\n Node version.\n","none":"\nnone( collection:Array|TypedArray|Object )\n Tests whether all elements in a collection are falsy.\n","noneBy":"\nnoneBy( collection:Array|TypedArray|Object, predicate:Function[, thisArg:any ] )\n Tests whether all elements in a collection fail a test implemented by a\n predicate function.\n","noneByAsync":"\nnoneByAsync( collection:Array|TypedArray|Object, [options:Object,] \n predicate:Function, done:Function )\n Tests whether all elements in a collection fail a test implemented by a\n predicate function.\n","noneByAsync.factory":"\nnoneByAsync.factory( [options:Object,] predicate:Function )\n Returns a function which tests whether all elements in a collection fail a\n test implemented by a predicate function.\n","noneByRight":"\nnoneByRight( collection:Array|TypedArray|Object, predicate:Function[, \n thisArg:any ] )\n Tests whether all elements in a collection fail a test implemented by a\n predicate function, iterating from right to left.\n","noneByRightAsync":"\nnoneByRightAsync( collection:Array|TypedArray|Object, [options:Object,] \n predicate:Function, done:Function )\n Tests whether all elements in a collection fail a test implemented by a\n predicate function, iterating from right to left.\n","noneByRightAsync.factory":"\nnoneByRightAsync.factory( [options:Object,] predicate:Function )\n Returns a function which tests whether all elements in a collection fail a\n test implemented by a predicate function, iterating from right to left.\n","nonEnumerableProperties":"\nnonEnumerableProperties( value:any )\n Returns an array of an object's own non-enumerable property names and\n symbols.\n","nonEnumerablePropertiesIn":"\nnonEnumerablePropertiesIn( value:any )\n Returns an array of an object's own and inherited non-enumerable property\n names and symbols.\n","nonEnumerablePropertyNames":"\nnonEnumerablePropertyNames( value:any )\n Returns an array of an object's own non-enumerable property names.\n","nonEnumerablePropertyNamesIn":"\nnonEnumerablePropertyNamesIn( value:any )\n Returns an array of an object's own and inherited non-enumerable property\n names.\n","nonEnumerablePropertySymbols":"\nnonEnumerablePropertySymbols( value:any )\n Returns an array of an object's own non-enumerable symbol properties.\n","nonEnumerablePropertySymbolsIn":"\nnonEnumerablePropertySymbolsIn( value:any )\n Returns an array of an object's own and inherited non-enumerable symbol\n properties.\n","nonIndexKeys":"\nnonIndexKeys( obj:any )\n Returns an array of an object's own enumerable property names which are not\n integer indices.\n","noop":"\nnoop()\n A function which does nothing.\n","now":"\nnow()\n Returns the time in seconds since the epoch.\n","NUM_CPUS":"\nNUM_CPUS\n Number of CPUs.\n","Number":"\nNumber( value:number )\n Returns a Number object.\n","numGraphemeClusters":"\nnumGraphemeClusters( str:string )\n Returns the number of grapheme clusters in a string.\n","Object":"\nObject( value:any )\n Returns an object.\n","Object.assign":"\nObject.assign( target:Object, ...sources:Object )\n Assigns enumerable and own properties from source objects to a target\n object.\n","Object.create":"\nObject.create( prototype:Object, properties:Object )\n Creates a new object with a specified prototype object and properties.\n","Object.defineProperties":"\nObject.defineProperties( obj:Object, properties:Object )\n Defines properties for an object.\n","Object.defineProperty":"\nObject.defineProperty( obj:Object, key:string, descriptor:Object )\n Defines a property for an object.\n","Object.entries":"\nObject.entries( obj:Object )\n Returns an array of an object's own enumerable string-keyed property\n [key, value] pairs.\n","Object.freeze":"\nObject.freeze( obj:Object )\n Freezes an object.\n","Object.getOwnPropertyDescriptor":"\nObject.getOwnPropertyDescriptor( obj:Object, key:string )\n Returns an object's own property descriptor.\n","Object.getOwnPropertyDescriptors":"\nObject.getOwnPropertyDescriptors( obj:Object )\n Returns an object's own property descriptors.\n","Object.getOwnPropertyNames":"\nObject.getOwnPropertyNames( obj:Object )\n Returns an array of an object's own enumerable and non-enumerable\n property names.\n","Object.getOwnPropertySymbols":"\nObject.getOwnPropertySymbols( obj:Object )\n Returns an array of an object's own enumerable and non-enumerable\n symbol property names.\n","Object.getPrototypeOf":"\nObject.getPrototypeOf( obj:Object )\n Returns an object's prototype.\n","Object.hasOwn":"\nObject.hasOwn( obj:Object, p:string )\n Returns a boolean indicating whether an object has a property with the\n specified name.\n","Object.is":"\nObject.is( value1:any, value2:any )\n Returns a boolean indicating whether two values are the same value.\n","Object.isExtensible":"\nObject.isExtensible( obj:Object )\n Returns a boolean indicating whether an object is extensible.\n","Object.isFrozen":"\nObject.isFrozen( obj:Object )\n Returns a boolean indicating whether an object is frozen.\n","Object.isSealed":"\nObject.isSealed( obj:Object )\n Returns a boolean indicating whether an object is sealed.\n","Object.keys":"\nObject.keys( obj:Object )\n Returns an array of an object's own enumerable string-keyed property\n names.\n","Object.preventExtensions":"\nObject.preventExtensions( obj:Object )\n Prevents the addition of new properties to an object.\n","Object.seal":"\nObject.seal( obj:Object )\n Prevents the addition of new properties to an object and marks all\n existing properties as non-configurable.\n","Object.setPrototypeOf":"\nObject.setPrototypeOf( obj:Object, proto:Object )\n Sets an object's prototype.\n","Object.values":"\nObject.values( obj:Object )\n Returns an array of an object's own enumerable property values.\n","Object.prototype.toLocaleString":"\nObject.prototype.toLocaleString()\n Returns a string representing the object.\n","Object.prototype.toString":"\nObject.prototype.toString()\n Returns a string representing the object.\n","Object.prototype.valueOf":"\nObject.prototype.valueOf()\n Returns the primitive value of the object.\n","Object.prototype.hasOwnProperty":"\nObject.prototype.hasOwnProperty( p:string )\n Returns a boolean indicating whether an object has a property with the\n specified name.\n","Object.prototype.isPrototypeOf":"\nObject.prototype.isPrototypeOf( obj:Object )\n Returns a boolean indicating whether an object exists in another object's\n prototype chain.\n","Object.prototype.propertyIsEnumerable":"\nObject.prototype.propertyIsEnumerable( p:string )\n Returns a boolean indicating whether an object's property is enumerable.\n","Object.prototype.constructor":"\nObject.prototype.constructor\n Property whose value is a reference to the constructor function that\n created the instance object.\n","objectEntries":"\nobjectEntries( obj:ObjectLike )\n Returns an array of an object's own enumerable property `[key, value]`\n pairs.\n","objectEntriesIn":"\nobjectEntriesIn( obj:ObjectLike )\n Returns an array of an object's own and inherited enumerable property\n `[key, value]` pairs.\n","objectFromEntries":"\nobjectFromEntries( entries:Array )\n Creates an object from an array of key-value pairs.\n","objectInverse":"\nobjectInverse( obj:ObjectLike[, options:Object] )\n Inverts an object, such that keys become values and values become keys.\n","objectInverseBy":"\nobjectInverseBy( obj:ObjectLike, [options:Object,] transform:Function )\n Inverts an object, such that keys become values and values become keys,\n according to a transform function.\n","objectKeys":"\nobjectKeys( value:any )\n Returns an array of an object's own enumerable property names.\n","objectValues":"\nobjectValues( obj:ObjectLike )\n Returns an array of an object's own enumerable property values.\n","objectValuesIn":"\nobjectValuesIn( obj:ObjectLike )\n Returns an array of an object's own and inherited enumerable property\n values.\n","omit":"\nomit( obj:Object, keys:string|Array )\n Returns a partial object copy excluding specified keys.\n","omitBy":"\nomitBy( obj:Object, predicate:Function )\n Returns a partial object copy excluding properties for which a predicate\n returns a truthy value.\n","open":"\nopen( path:string|Buffer[, flags:string|number[, mode:integer]], clbk:Function )\n Asynchronously opens a file.\n","open.sync":"\nopen.sync( path:string|Buffer[, flags:string|number[, mode:integer]] )\n Synchronously opens a file.\n","openURL":"\nopenURL( url:string )\n Opens a URL in a user's default browser.\n","ordinalize":"\nordinalize( value:string|integer[, options:Object] )\n Converts an integer to an ordinal string (e.g., `1st`, `2nd`, etc.).\n","PACE_BOSTON_HOUSE_PRICES":"\nPACE_BOSTON_HOUSE_PRICES()\n Returns a (corrected) dataset derived from information collected by the US\n Census Service concerning housing in Boston, Massachusetts (1978).\n","pad":"\npad( str:string, len:integer[, options:Object] )\n Pads a `string` such that the padded `string` has length `len`.\n","padjust":"\npadjust( pvals:Array, method:string[, comparisons:integer] )\n Adjusts supplied p-values for multiple comparisons via a specified method.\n","papply":"\npapply( fcn:Function, ...args:any )\n Returns a function of smaller arity by partially applying arguments.\n","papplyRight":"\npapplyRight( fcn:Function, ...args:any )\n Returns a function of smaller arity by partially applying arguments from the\n right.\n","parallel":"\nparallel( files:Array, [options:Object,] clbk:Function )\n Executes scripts in parallel.\n","parseJSON":"\nparseJSON( str:string[, reviver:Function] )\n Attempts to parse a string as JSON.\n","pascalcase":"\npascalcase( str:string )\n Converts a string to Pascal case.\n","PATH_DELIMITER":"\nPATH_DELIMITER\n Platform-specific path delimiter.\n","PATH_DELIMITER_POSIX":"\nPATH_DELIMITER_POSIX\n POSIX path delimiter.\n","PATH_DELIMITER_WIN32":"\nPATH_DELIMITER_WIN32\n Windows path delimiter.\n","PATH_SEP":"\nPATH_SEP\n Platform-specific path segment separator.\n","PATH_SEP_POSIX":"\nPATH_SEP_POSIX\n POSIX path segment separator.\n","PATH_SEP_WIN32":"\nPATH_SEP_WIN32\n Windows path segment separator.\n","pcorrtest":"\npcorrtest( x:Array, y:Array[, options:Object] )\n Computes a Pearson product-moment correlation test between paired samples.\n","percentEncode":"\npercentEncode( str:string )\n Percent-encodes a UTF-16 encoded string according to RFC 3986.\n","PHI":"\nPHI\n Golden ratio.\n","PI":"\nPI\n The mathematical constant `π`.\n","PI_SQUARED":"\nPI_SQUARED\n Square of the mathematical constant `π`.\n","pick":"\npick( obj:Object, keys:string|Array )\n Returns a partial object copy containing only specified keys.\n","pickArguments":"\npickArguments( fcn:Function, indices:Array[, thisArg:any] )\n Returns a function that applies specified arguments to a provided function.\n","pickBy":"\npickBy( obj:Object, predicate:Function )\n Returns a partial object copy containing properties for which a predicate\n returns a truthy value.\n","PINF":"\nPINF\n Double-precision floating-point positive infinity.\n","pkg2alias":"\npkg2alias( pkg:string )\n Returns the alias associated with a specified package name.\n","pkg2related":"\npkg2related( pkg:string )\n Returns package names related to a specified package name.\n","pkg2standalone":"\npkg2standalone( pkg:string )\n Returns the standalone package name associated with a provided internal\n package name.\n","PLATFORM":"\nPLATFORM\n Platform on which the current process is running.\n","plot":"\nplot( [x:Array|Array, y:Array|Array,] [options:Object] )\n Returns a plot instance for creating 2-dimensional plots.\n","Plot":"\nPlot( [x:Array|Array, y:Array|Array,] [options:Object] )\n Returns a plot instance for creating 2-dimensional plots.\n","pluck":"\npluck( arr:Array, prop:string[, options:Object] )\n Extracts a property value from each element of an object array.\n","pop":"\npop( collection:Array|TypedArray|Object )\n Removes and returns the last element of a collection.\n","porterStemmer":"\nporterStemmer( word:string )\n Extracts the stem of a given word.\n","prepend":"\nprepend( collection1:Array|TypedArray|Object, \n collection2:Array|TypedArray|Object )\n Adds the elements of one collection to the beginning of another collection.\n","prevGraphemeClusterBreak":"\nprevGraphemeClusterBreak( str:string[, fromIndex:integer] )\n Returns the previous extended grapheme cluster break in a string before a\n specified position.\n","PRIMES_100K":"\nPRIMES_100K()\n Returns an array containing the first 100,000 prime numbers.\n","properties":"\nproperties( value:any )\n Returns an array of an object's own enumerable and non-enumerable property\n names and symbols.\n","propertiesIn":"\npropertiesIn( value:any )\n Returns an array of an object's own and inherited property names and\n symbols.\n","propertyDescriptor":"\npropertyDescriptor( value:any, property:string|symbol )\n Returns a property descriptor for an object's own property.\n","propertyDescriptorIn":"\npropertyDescriptorIn( value:any, property:string|symbol )\n Returns a property descriptor for an object's own or inherited property.\n","propertyDescriptors":"\npropertyDescriptors( value:any )\n Returns an object's own property descriptors.\n","propertyDescriptorsIn":"\npropertyDescriptorsIn( value:any )\n Returns an object's own and inherited property descriptors.\n","propertyNames":"\npropertyNames( value:any )\n Returns an array of an object's own enumerable and non-enumerable property\n names.\n","propertyNamesIn":"\npropertyNamesIn( value:any )\n Returns an array of an object's own and inherited enumerable and non-\n enumerable property names.\n","propertySymbols":"\npropertySymbols( value:any )\n Returns an array of an object's own symbol properties.\n","propertySymbolsIn":"\npropertySymbolsIn( value:any )\n Returns an array of an object's own and inherited symbol properties.\n","Proxy":"\nProxy( target:Object, handlers:Object )\n Returns a proxy object implementing custom behavior for specified object\n operations.\n","Proxy.revocable":"\nProxy.revocable( target:Object, handlers:Object )\n Returns a revocable proxy object.\n","push":"\npush( collection:Array|TypedArray|Object, ...items:any )\n Adds one or more elements to the end of a collection.\n","quarterOfYear":"\nquarterOfYear( [month:integer|string|Date] )\n Returns the quarter of the year.\n","random.iterators.arcsine":"\nrandom.iterators.arcsine( a:number, b:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from an\n arcsine distribution.\n","random.iterators.bernoulli":"\nrandom.iterators.bernoulli( p:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n Bernoulli distribution.\n","random.iterators.beta":"\nrandom.iterators.beta( α:number, β:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n beta distribution.\n","random.iterators.betaprime":"\nrandom.iterators.betaprime( α:number, β:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n beta prime distribution.\n","random.iterators.binomial":"\nrandom.iterators.binomial( n:integer, p:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n binomial distribution.\n","random.iterators.boxMuller":"\nrandom.iterators.boxMuller( [options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n standard normal distribution using the Box-Muller transform.\n","random.iterators.cauchy":"\nrandom.iterators.cauchy( x0:number, Ɣ:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n Cauchy distribution.\n","random.iterators.chi":"\nrandom.iterators.chi( k:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a chi\n distribution.\n","random.iterators.chisquare":"\nrandom.iterators.chisquare( k:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n chi-square distribution.\n","random.iterators.cosine":"\nrandom.iterators.cosine( μ:number, s:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a raised\n cosine distribution.\n","random.iterators.discreteUniform":"\nrandom.iterators.discreteUniform( a:integer, b:integer[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n discrete uniform distribution.\n","random.iterators.erlang":"\nrandom.iterators.erlang( k:integer, λ:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from an Erlang\n distribution.\n","random.iterators.exponential":"\nrandom.iterators.exponential( λ:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from an\n exponential distribution.\n","random.iterators.f":"\nrandom.iterators.f( d1:number, d2:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from an F\n distribution.\n","random.iterators.frechet":"\nrandom.iterators.frechet( α:number, s:number, m:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a Fréchet\n distribution.\n","random.iterators.gamma":"\nrandom.iterators.gamma( α:number, β:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a gamma\n distribution.\n","random.iterators.geometric":"\nrandom.iterators.geometric( p:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n geometric distribution.\n","random.iterators.gumbel":"\nrandom.iterators.gumbel( μ:number, β:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a Gumbel\n distribution.\n","random.iterators.hypergeometric":"\nrandom.iterators.hypergeometric( N:integer, K:integer, n:integer[, \n options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n hypergeometric distribution.\n","random.iterators.improvedZiggurat":"\nrandom.iterators.improvedZiggurat( [options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n standard normal distribution using the Improved Ziggurat algorithm.\n","random.iterators.invgamma":"\nrandom.iterators.invgamma( α:number, β:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from an\n inverse gamma distribution.\n","random.iterators.kumaraswamy":"\nrandom.iterators.kumaraswamy( a:number, b:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n Kumaraswamy's double bounded distribution.\n","random.iterators.laplace":"\nrandom.iterators.laplace( μ:number, b:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a Laplace\n (double exponential) distribution.\n","random.iterators.levy":"\nrandom.iterators.levy( μ:number, c:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a Lévy\n distribution.\n","random.iterators.logistic":"\nrandom.iterators.logistic( μ:number, s:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n logistic distribution.\n","random.iterators.lognormal":"\nrandom.iterators.lognormal( μ:number, σ:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n lognormal distribution.\n","random.iterators.minstd":"\nrandom.iterators.minstd( [options:Object] )\n Returns an iterator for generating pseudorandom integers on the interval\n `[1, 2147483646]`.\n","random.iterators.minstdShuffle":"\nrandom.iterators.minstdShuffle( [options:Object] )\n Returns an iterator for generating pseudorandom integers on the interval\n `[1, 2147483646]`.\n","random.iterators.mt19937":"\nrandom.iterators.mt19937( [options:Object] )\n Returns an iterator for generating pseudorandom integers on the interval\n `[1, 4294967295]`.\n","random.iterators.negativeBinomial":"\nrandom.iterators.negativeBinomial( r:number, p:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n negative binomial distribution.\n","random.iterators.normal":"\nrandom.iterators.normal( μ:number, σ:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a normal\n distribution.\n","random.iterators.pareto1":"\nrandom.iterators.pareto1( α:number, β:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a Pareto\n (Type I) distribution.\n","random.iterators.poisson":"\nrandom.iterators.poisson( λ:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a Poisson\n distribution.\n","random.iterators.randi":"\nrandom.iterators.randi( [options:Object] )\n Create an iterator for generating pseudorandom numbers having integer\n values.\n","random.iterators.randn":"\nrandom.iterators.randn( [options:Object] )\n Create an iterator for generating pseudorandom numbers drawn from a standard\n normal distribution.\n","random.iterators.randu":"\nrandom.iterators.randu( [options:Object] )\n Create an iterator for generating uniformly distributed pseudorandom numbers\n between 0 and 1.\n","random.iterators.rayleigh":"\nrandom.iterators.rayleigh( σ:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n Rayleigh distribution.\n","random.iterators.t":"\nrandom.iterators.t( v:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n Student's t distribution.\n","random.iterators.triangular":"\nrandom.iterators.triangular( a:number, b:number, c:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n triangular distribution.\n","random.iterators.uniform":"\nrandom.iterators.uniform( a:number, b:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n continuous uniform distribution.\n","random.iterators.weibull":"\nrandom.iterators.weibull( k:number, λ:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n Weibull distribution.\n","random.streams.arcsine":"\nrandom.streams.arcsine( a:number, b:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from an\n arcsine distribution.\n","random.streams.arcsine.factory":"\nrandom.streams.arcsine.factory( [a:number, b:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from an arcsine distribution.\n","random.streams.arcsine.objectMode":"\nrandom.streams.arcsine.objectMode( a:number, b:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from an arcsine distribution.\n","random.streams.bernoulli":"\nrandom.streams.bernoulli( p:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Bernoulli distribution.\n","random.streams.bernoulli.factory":"\nrandom.streams.bernoulli.factory( [p:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Bernoulli distribution.\n","random.streams.bernoulli.objectMode":"\nrandom.streams.bernoulli.objectMode( p:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Bernoulli distribution.\n","random.streams.beta":"\nrandom.streams.beta( α:number, β:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n beta distribution.\n","random.streams.beta.factory":"\nrandom.streams.beta.factory( [α:number, β:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a beta distribution.\n","random.streams.beta.objectMode":"\nrandom.streams.beta.objectMode( α:number, β:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a beta distribution.\n","random.streams.betaprime":"\nrandom.streams.betaprime( α:number, β:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n beta prime distribution.\n","random.streams.betaprime.factory":"\nrandom.streams.betaprime.factory( [α:number, β:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a beta prime distribution.\n","random.streams.betaprime.objectMode":"\nrandom.streams.betaprime.objectMode( α:number, β:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a beta prime distribution.\n","random.streams.binomial":"\nrandom.streams.binomial( n:integer, p:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n binomial distribution.\n","random.streams.binomial.factory":"\nrandom.streams.binomial.factory( [n:integer, p:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a binomial distribution.\n","random.streams.binomial.objectMode":"\nrandom.streams.binomial.objectMode( n:integer, p:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a binomial distribution.\n","random.streams.boxMuller":"\nrandom.streams.boxMuller( [options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n standard normal distribution using the Box-Muller transform.\n","random.streams.boxMuller.factory":"\nrandom.streams.boxMuller.factory( [options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a standard normal distribution using the Box-Muller\n transform.\n","random.streams.boxMuller.objectMode":"\nrandom.streams.boxMuller.objectMode( [options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a standard normal distribution using the Box-Muller transform.\n","random.streams.cauchy":"\nrandom.streams.cauchy( x0:number, γ:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Cauchy distribution.\n","random.streams.cauchy.factory":"\nrandom.streams.cauchy.factory( [x0:number, γ:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Cauchy distribution.\n","random.streams.cauchy.objectMode":"\nrandom.streams.cauchy.objectMode( x0:number, γ:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Cauchy distribution.\n","random.streams.chi":"\nrandom.streams.chi( k:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n chi distribution.\n","random.streams.chi.factory":"\nrandom.streams.chi.factory( [k:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a chi distribution.\n","random.streams.chi.objectMode":"\nrandom.streams.chi.objectMode( k:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a chi distribution.\n","random.streams.chisquare":"\nrandom.streams.chisquare( k:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n chi-square distribution.\n","random.streams.chisquare.factory":"\nrandom.streams.chisquare.factory( [k:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a chi-square distribution.\n","random.streams.chisquare.objectMode":"\nrandom.streams.chisquare.objectMode( k:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a chi-square distribution.\n","random.streams.cosine":"\nrandom.streams.cosine( μ:number, s:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n raised cosine distribution.\n","random.streams.cosine.factory":"\nrandom.streams.cosine.factory( [μ:number, s:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a raised cosine distribution.\n","random.streams.cosine.objectMode":"\nrandom.streams.cosine.objectMode( μ:number, s:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a raised cosine distribution.\n","random.streams.discreteUniform":"\nrandom.streams.discreteUniform( a:integer, b:integer[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n discrete uniform distribution.\n","random.streams.discreteUniform.factory":"\nrandom.streams.discreteUniform.factory( [a:integer, b:integer, ]\n [options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a discrete uniform distribution.\n","random.streams.discreteUniform.objectMode":"\nrandom.streams.discreteUniform.objectMode( a:integer, b:integer[, \n options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a discrete uniform distribution.\n","random.streams.erlang":"\nrandom.streams.erlang( k:integer, λ:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from an\n Erlang distribution.\n","random.streams.erlang.factory":"\nrandom.streams.erlang.factory( [k:number, λ:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from an Erlang distribution.\n","random.streams.erlang.objectMode":"\nrandom.streams.erlang.objectMode( k:number, λ:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from an Erlang distribution.\n","random.streams.exponential":"\nrandom.streams.exponential( λ:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from an\n exponential distribution.\n","random.streams.exponential.factory":"\nrandom.streams.exponential.factory( [λ:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from an exponential distribution.\n","random.streams.exponential.objectMode":"\nrandom.streams.exponential.objectMode( λ:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from an exponential distribution.\n","random.streams.f":"\nrandom.streams.f( d1:number, d2:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from an\n F distribution.\n","random.streams.f.factory":"\nrandom.streams.f.factory( [d1:number, d2:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from an F distribution.\n","random.streams.f.objectMode":"\nrandom.streams.f.objectMode( d1:number, d2:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from an F distribution.\n","random.streams.frechet":"\nrandom.streams.frechet( α:number, s:number, m:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Fréchet distribution.\n","random.streams.frechet.factory":"\nrandom.streams.frechet.factory( [α:number, s:number, m:number,]\n [options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Fréchet distribution.\n","random.streams.frechet.objectMode":"\nrandom.streams.frechet.objectMode( α:number, s:number, m:number[, \n options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Fréchet distribution.\n","random.streams.gamma":"\nrandom.streams.gamma( α:number, β:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n gamma distribution.\n","random.streams.gamma.factory":"\nrandom.streams.gamma.factory( [α:number, β:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a gamma distribution.\n","random.streams.gamma.objectMode":"\nrandom.streams.gamma.objectMode( α:number, β:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a gamma distribution.\n","random.streams.geometric":"\nrandom.streams.geometric( p:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n geometric distribution.\n","random.streams.geometric.factory":"\nrandom.streams.geometric.factory( [p:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a geometric distribution.\n","random.streams.geometric.objectMode":"\nrandom.streams.geometric.objectMode( p:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a geometric distribution.\n","random.streams.gumbel":"\nrandom.streams.gumbel( μ:number, β:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Gumbel distribution.\n","random.streams.gumbel.factory":"\nrandom.streams.gumbel.factory( [μ:number, β:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Gumbel distribution.\n","random.streams.gumbel.objectMode":"\nrandom.streams.gumbel.objectMode( μ:number, β:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Gumbel distribution.\n","random.streams.hypergeometric":"\nrandom.streams.hypergeometric( N:integer, K:integer, n:integer[, \n options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n hypergeometric distribution.\n","random.streams.hypergeometric.factory":"\nrandom.streams.hypergeometric.factory( [N:integer, K:integer, n:integer,]\n [options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a hypergeometric distribution.\n","random.streams.hypergeometric.objectMode":"\nrandom.streams.hypergeometric.objectMode( N:integer, K:integer, n:integer[, \n options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a hypergeometric distribution.\n","random.streams.improvedZiggurat":"\nrandom.streams.improvedZiggurat( [options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n standard normal distribution using the Improved Ziggurat algorithm.\n","random.streams.improvedZiggurat.factory":"\nrandom.streams.improvedZiggurat.factory( [options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a standard normal distribution using the Improved\n Ziggurat algorithm.\n","random.streams.improvedZiggurat.objectMode":"\nrandom.streams.improvedZiggurat.objectMode( [options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a standard normal distribution using the Improved Ziggurat\n algorithm.\n","random.streams.invgamma":"\nrandom.streams.invgamma( α:number, β:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from an\n inverse gamma distribution.\n","random.streams.invgamma.factory":"\nrandom.streams.invgamma.factory( [α:number, β:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from an inverse gamma distribution.\n","random.streams.invgamma.objectMode":"\nrandom.streams.invgamma.objectMode( α:number, β:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from an inverse gamma distribution.\n","random.streams.kumaraswamy":"\nrandom.streams.kumaraswamy( a:number, b:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Kumaraswamy's double bounded distribution.\n","random.streams.kumaraswamy.factory":"\nrandom.streams.kumaraswamy.factory( [a:number, b:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Kumaraswamy's double bounded distribution.\n","random.streams.kumaraswamy.objectMode":"\nrandom.streams.kumaraswamy.objectMode( a:number, b:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Kumaraswamy's double bounded distribution.\n","random.streams.laplace":"\nrandom.streams.laplace( μ:number, b:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Laplace (double exponential) distribution.\n","random.streams.laplace.factory":"\nrandom.streams.laplace.factory( [μ:number, b:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Laplace (double exponential) distribution.\n","random.streams.laplace.objectMode":"\nrandom.streams.laplace.objectMode( μ:number, b:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Laplace (double exponential) distribution.\n","random.streams.levy":"\nrandom.streams.levy( μ:number, c:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Lévy distribution.\n","random.streams.levy.factory":"\nrandom.streams.levy.factory( [μ:number, c:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Lévy distribution.\n","random.streams.levy.objectMode":"\nrandom.streams.levy.objectMode( μ:number, c:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Lévy distribution.\n","random.streams.logistic":"\nrandom.streams.logistic( μ:number, s:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n logistic distribution.\n","random.streams.logistic.factory":"\nrandom.streams.logistic.factory( [μ:number, s:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a logistic distribution.\n","random.streams.logistic.objectMode":"\nrandom.streams.logistic.objectMode( μ:number, s:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a logistic distribution.\n","random.streams.lognormal":"\nrandom.streams.lognormal( μ:number, σ:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n lognormal distribution.\n","random.streams.lognormal.factory":"\nrandom.streams.lognormal.factory( [μ:number, σ:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a lognormal distribution.\n","random.streams.lognormal.objectMode":"\nrandom.streams.lognormal.objectMode( μ:number, σ:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a lognormal distribution.\n","random.streams.minstd":"\nrandom.streams.minstd( [options:Object] )\n Returns a readable stream for generating pseudorandom numbers on the\n interval `[1, 2147483646]`.\n","random.streams.minstd.factory":"\nrandom.streams.minstd.factory( [options] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers on the interval `[1, 2147483646]`.\n","random.streams.minstd.objectMode":"\nrandom.streams.minstd.objectMode( [options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n on the interval `[1, 2147483646]`.\n","random.streams.minstdShuffle":"\nrandom.streams.minstdShuffle( [options:Object] )\n Returns a readable stream for generating pseudorandom numbers on the\n interval `[1, 2147483646]`.\n","random.streams.minstdShuffle.factory":"\nrandom.streams.minstdShuffle.factory( [options] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers on the interval `[1, 2147483646]`.\n","random.streams.minstdShuffle.objectMode":"\nrandom.streams.minstdShuffle.objectMode( [options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n on the interval `[1, 2147483646]`.\n","random.streams.mt19937":"\nrandom.streams.mt19937( [options:Object] )\n Returns a readable stream for generating pseudorandom numbers on the\n interval `[1, 4294967295]`.\n","random.streams.mt19937.factory":"\nrandom.streams.mt19937.factory( [options] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers on the interval `[1, 4294967295]`.\n","random.streams.mt19937.objectMode":"\nrandom.streams.mt19937.objectMode( [options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n on the interval `[1, 4294967295]`.\n","random.streams.negativeBinomial":"\nrandom.streams.negativeBinomial( r:number, p:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n negative binomial distribution.\n","random.streams.negativeBinomial.factory":"\nrandom.streams.negativeBinomial.factory( [r:number, p:number, ]\n [options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a negative binomial distribution.\n","random.streams.negativeBinomial.objectMode":"\nrandom.streams.negativeBinomial.objectMode( r:integer, p:number[, \n options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a negative binomial distribution.\n","random.streams.normal":"\nrandom.streams.normal( μ:number, σ:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n normal distribution.\n","random.streams.normal.factory":"\nrandom.streams.normal.factory( [μ:number, σ:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a normal distribution.\n","random.streams.normal.objectMode":"\nrandom.streams.normal.objectMode( μ:number, σ:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a normal distribution.\n","random.streams.pareto1":"\nrandom.streams.pareto1( α:number, β:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Pareto (Type I) distribution.\n","random.streams.pareto1.factory":"\nrandom.streams.pareto1.factory( [α:number, β:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Pareto (Type I) distribution.\n","random.streams.pareto1.objectMode":"\nrandom.streams.pareto1.objectMode( α:number, β:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Pareto (Type I) distribution.\n","random.streams.poisson":"\nrandom.streams.poisson( λ:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Poisson distribution.\n","random.streams.poisson.factory":"\nrandom.streams.poisson.factory( [λ:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Poisson distribution.\n","random.streams.poisson.objectMode":"\nrandom.streams.poisson.objectMode( λ:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Poisson distribution.\n","random.streams.randi":"\nrandom.streams.randi( [options:Object] )\n Returns a readable stream for generating pseudorandom numbers having integer\n values.\n","random.streams.randi.factory":"\nrandom.streams.randi.factory( [options] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers having integer values.\n","random.streams.randi.objectMode":"\nrandom.streams.randi.objectMode( [options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n having integer values.\n","random.streams.randn":"\nrandom.streams.randn( [options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n standard normal distribution.\n","random.streams.randn.factory":"\nrandom.streams.randn.factory( [options] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a standard normal distribution.\n","random.streams.randn.objectMode":"\nrandom.streams.randn.objectMode( [options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a standard normal distribution.\n","random.streams.randu":"\nrandom.streams.randu( [options:Object] )\n Returns a readable stream for generating uniformly distributed pseudorandom\n numbers between 0 and 1.\n","random.streams.randu.factory":"\nrandom.streams.randu.factory( [options] )\n Returns a function for creating readable streams which generate uniformly\n distributed pseudorandom numbers between 0 and 1.\n","random.streams.randu.objectMode":"\nrandom.streams.randu.objectMode( [options:Object] )\n Returns an \"objectMode\" readable stream for generating uniformly distributed\n pseudorandom numbers between 0 and 1.\n","random.streams.rayleigh":"\nrandom.streams.rayleigh( σ:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Rayleigh distribution.\n","random.streams.rayleigh.factory":"\nrandom.streams.rayleigh.factory( [σ:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Rayleigh distribution.\n","random.streams.rayleigh.objectMode":"\nrandom.streams.rayleigh.objectMode( σ:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Rayleigh distribution.\n","random.streams.t":"\nrandom.streams.t( v:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Student's t distribution.\n","random.streams.t.factory":"\nrandom.streams.t.factory( [v:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Student's t distribution.\n","random.streams.t.objectMode":"\nrandom.streams.t.objectMode( v:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Student's t distribution.\n","random.streams.triangular":"\nrandom.streams.triangular( a:number, b:number, c:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n triangular distribution.\n","random.streams.triangular.factory":"\nrandom.streams.triangular.factory( [a:number, b:number, c:number, ]\n [options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a triangular distribution.\n","random.streams.triangular.objectMode":"\nrandom.streams.triangular.objectMode( a:number, b:number, c:number[, \n options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a triangular distribution.\n","random.streams.uniform":"\nrandom.streams.uniform( a:number, b:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n uniform distribution.\n","random.streams.uniform.factory":"\nrandom.streams.uniform.factory( [a:number, b:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a uniform distribution.\n","random.streams.uniform.objectMode":"\nrandom.streams.uniform.objectMode( a:number, b:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a uniform distribution.\n","random.streams.weibull":"\nrandom.streams.weibull( k:number, λ:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Weibull distribution.\n","random.streams.weibull.factory":"\nrandom.streams.weibull.factory( [k:number, λ:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Weibull distribution.\n","random.streams.weibull.objectMode":"\nrandom.streams.weibull.objectMode( k:number, λ:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Weibull distribution.\n","ranks":"\nranks( arr:Array[, options:Object] )\n Computes the sample ranks for the values of an array-like object.\n","readDir":"\nreadDir( path:string|Buffer, clbk:Function )\n Asynchronously reads the contents of a directory.\n","readDir.sync":"\nreadDir.sync( path:string|Buffer )\n Synchronously reads the contents of a directory.\n","readFile":"\nreadFile( file:string|Buffer|integer[, options:Object|string], clbk:Function )\n Asynchronously reads the entire contents of a file.\n","readFile.sync":"\nreadFile.sync( file:string|Buffer|integer[, options:Object|string] )\n Synchronously reads the entire contents of a file.\n","readFileList":"\nreadFileList( filepaths:Array[, options:Object|string], clbk:Function )\n Asynchronously reads the entire contents of each file in a file list.\n","readFileList.sync":"\nreadFileList.sync( filepaths:Array[, options:Object|string] )\n Synchronously reads the entire contents of each file in a file list.\n","readJSON":"\nreadJSON( file:string|Buffer|integer[, options:Object|string], clbk:Function )\n Asynchronously reads a file as JSON.\n","readJSON.sync":"\nreadJSON.sync( file:string|Buffer|integer[, options:Object|string] )\n Synchronously reads a file as JSON.\n","readWASM":"\nreadWASM( file:string|Buffer|integer[, options:Object], clbk:Function )\n Asynchronously reads a file as WebAssembly.\n","readWASM.sync":"\nreadWASM.sync( file:string|Buffer|integer[, options:Object] )\n Synchronously reads a file as WebAssembly.\n","real":"\nreal( z:Complex128 )\n Returns the real component of a double-precision complex floating-point\n number.\n","realarray":"\nrealarray( [dtype:string] )\n Creates a typed array.\n\nrealarray( length:integer[, dtype:string] )\n Returns a typed array having a specified length.\n\nrealarray( typedarray:TypedArray[, dtype:string] )\n Creates a typed array from another typed array.\n\nrealarray( obj:Object[, dtype:string] )\n Creates a typed array from an array-like object or iterable.\n\nrealarray( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]][, \n dtype:string] )\n Returns a typed array view of an ArrayBuffer.\n","realarrayCtors":"\nrealarrayCtors( dtype:string )\n Returns a typed array constructor.\n","realarrayDataTypes":"\nrealarrayDataTypes()\n Returns a list of typed array data types.\n","realf":"\nrealf( z:Complex64 )\n Returns the real component of a single-precision complex floating-point\n number.\n","realmax":"\nrealmax( dtype:string )\n Returns the maximum finite value capable of being represented by a numeric\n real type.\n","realmin":"\nrealmin( dtype:string )\n Returns the smallest positive normal value capable of being represented by a\n numeric real type.\n","reBasename":"\nreBasename( [platform:string] )\n Returns a regular expression to capture the last part of a path.\n","reBasename.REGEXP":"\nreBasename.REGEXP\n Regular expression to capture the last part of a POSIX path.\n","reBasename.REGEXP_POSIX":"\nreBasename.REGEXP_POSIX\n Regular expression to capture the last part of a POSIX path.\n","reBasename.REGEXP_WIN32":"\nreBasename.REGEXP_WIN32\n Regular expression to capture the last part of a Windows path.\n","reBasenamePosix":"\nreBasenamePosix()\n Returns a regular expression to capture the last part of a POSIX path.\n","reBasenamePosix.REGEXP":"\nreBasenamePosix.REGEXP\n Regular expression to capture the last part of a POSIX path.\n","reBasenameWindows":"\nreBasenameWindows()\n Returns a regular expression to capture the last part of a Windows path.\n","reBasenameWindows.REGEXP":"\nreBasenameWindows.REGEXP\n Regular expression to capture the last part of a Windows path.\n","reColorHexadecimal":"\nreColorHexadecimal( [mode:string] )\n Returns a regular expression to match a hexadecimal color.\n","reColorHexadecimal.REGEXP":"\nreColorHexadecimal.REGEXP\n Regular expression to match a full hexadecimal color.\n","reColorHexadecimal.REGEXP_SHORTHAND":"\nreColorHexadecimal.REGEXP_SHORTHAND\n Regular expression to match a shorthand hexadecimal color.\n","reColorHexadecimal.REGEXP_EITHER":"\nreColorHexadecimal.REGEXP_EITHER\n Regular expression to match either a shorthand or full length hexadecimal\n color.\n","reDecimalNumber":"\nreDecimalNumber( [options:Object] )\n Returns a regular expression to match a decimal number.\n","reDecimalNumber.REGEXP":"\nreDecimalNumber.REGEXP\n Regular expression to match a decimal number.\n","reDecimalNumber.REGEXP_CAPTURE":"\nreDecimalNumber.REGEXP_CAPTURE\n Regular expression to capture a decimal number.\n","reDirname":"\nreDirname( [platform:string] )\n Returns a regular expression to capture a path dirname.\n","reDirname.REGEXP":"\nreDirname.REGEXP\n Regular expression to capture a path dirname.\n","reDirname.REGEXP_POSIX":"\nreDirname.REGEXP_POSIX\n Regular expression to capture a POSIX path dirname.\n","reDirname.REGEXP_WIN32":"\nreDirname.REGEXP_WIN32\n Regular expression to capture a Windows path dirname.\n","reDirnamePosix":"\nreDirnamePosix()\n Returns a regular expression to capture a POSIX path dirname.\n","reDirnamePosix.REGEXP":"\nreDirnamePosix.REGEXP\n Regular expression to capture a POSIX path dirname.\n","reDirnameWindows":"\nreDirnameWindows()\n Returns a regular expression to capture a Windows path dirname.\n","reDirnameWindows.REGEXP":"\nreDirnameWindows.REGEXP\n Regular expression to capture a Windows path dirname.\n","reduce":"\nreduce( arr:ArrayLikeObject|ndarray, initial:any, reducer:Function[, \n thisArg:any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","reduce2d":"\nreduce2d( arr:ArrayLikeObject, initial:ArrayLikeObject, \n reducer:Function[, thisArg:any] )\n Reduces the number of dimensions by one of a two-dimensional nested array by\n applying a function against an accumulator and each element along the\n innermost dimension and returning the accumulation results as a one-\n dimensional array.\n","reduceAsync":"\nreduceAsync( collection:Array|TypedArray|Object, initial:any, [options:Object,] \n reducer:Function, done:Function )\n Applies a function against an accumulator and each element in a collection\n and returns the accumulated result.\n","reduceAsync.factory":"\nreduceAsync.factory( [options:Object,] fcn:Function )\n Returns a function which applies a function against an accumulator and each\n element in a collection and returns the accumulated result.\n","reduceRight":"\nreduceRight( arr:ArrayLikeObject|ndarray, initial:any, reducer:Function[, \n thisArg:any] )\n Applies a function against an accumulator and each element in an array while\n iterating from right to left and returns the accumulated result.\n","reduceRightAsync":"\nreduceRightAsync( collection:Array|TypedArray|Object, initial:any, \n [options:Object,] reducer:Function, done:Function )\n Applies a function against an accumulator and each element in a collection\n and returns the accumulated result, iterating from right to left.\n","reduceRightAsync.factory":"\nreduceRightAsync.factory( [options:Object,] fcn:Function )\n Returns a function which applies a function against an accumulator and each\n element in a collection and returns the accumulated result, iterating from\n right to left.\n","reEOL":"\nreEOL( [options:Object] )\n Regular expression to match a newline character sequence: /\\r?\\n/.\n","reEOL.REGEXP":"\nreEOL.REGEXP\n Regular expression to match a newline character sequence: /\\r?\\n/.\n","reEOL.REGEXP_CAPTURE":"\nreEOL.REGEXP_CAPTURE\n Regular expression to capture a newline character sequence: /\\r?\\n/.\n","reExtendedLengthPath":"\nreExtendedLengthPath()\n Returns a regular expression to test if a string is an extended-length path.\n","reExtendedLengthPath.REGEXP":"\nreExtendedLengthPath.REGEXP\n Regular expression to test if a string is an extended-length path.\n","reExtname":"\nreExtname( [platform:string] )\n Returns a regular expression to capture a filename extension.\n","reExtname.REGEXP":"\nreExtname.REGEXP\n Regular expression to capture a filename extension.\n","reExtname.REGEXP_POSIX":"\nreExtname.REGEXP_POSIX\n Regular expression to capture a POSIX filename extension.\n","reExtname.REGEXP_WIN32":"\nreExtname.REGEXP_WIN32\n Regular expression to capture a Windows filename extension.\n","reExtnamePosix":"\nreExtnamePosix\n Returns a regular expression to capture a POSIX filename extension.\n","reExtnamePosix.REGEXP":"\nreExtnamePosix.REGEXP\n Regular expression to capture a POSIX filename extension.\n","reExtnameWindows":"\nreExtnameWindows\n Returns a regular expression to capture a Windows filename extension.\n","reExtnameWindows.REGEXP":"\nreExtnameWindows.REGEXP\n Regular expression to capture a Windows filename extension.\n","reFilename":"\nreFilename( [platform:string] )\n Regular expression to split a filename.\n","reFilename.REGEXP":"\nreFilename.REGEXP\n Regular expression to split a filename.\n","reFilename.REGEXP_POSIX":"\nreFilename.REGEXP_POSIX\n Regular expression to split a POSIX filename.\n","reFilename.REGEXP_WIN32":"\nreFilename.REGEXP_WIN32\n Regular expression to split a Windows filename.\n","reFilenamePosix":"\nreFilenamePosix()\n Returns a regular expression to split a POSIX filename.\n","reFilenamePosix.REGEXP":"\nreFilenamePosix.REGEXP\n Regular expression to split a POSIX filename.\n","reFilenameWindows":"\nreFilenameWindows()\n Returns a regular expression to split a Windows filename.\n","reFilenameWindows.REGEXP":"\nreFilenameWindows.REGEXP\n Regular expression to split a Windows filename.\n","reFromString":"\nreFromString( str:string )\n Parses a regular expression string and returns a new regular expression.\n","reFunctionName":"\nreFunctionName()\n Return a regular expression to capture a function name.\n","reFunctionName.REGEXP":"\nreFunctionName.REGEXP\n Regular expression to capture a function name.\n","regexp2json":"\nregexp2json( re:RegExp )\n Returns a JSON representation of a regular expression.\n","reim":"\nreim( z:Complex128 )\n Returns the real and imaginary components of a double-precision complex\n floating-point number.\n","reimf":"\nreimf( z:Complex64 )\n Returns the real and imaginary components of a single-precision complex\n floating-point number.\n","rejectArguments":"\nrejectArguments( fcn:Function, predicate:Function[, thisArg:any] )\n Returns a function that applies arguments to a provided function according\n to a predicate function.\n","removeFirst":"\nremoveFirst( str:string[, n:integer] )\n Removes the first character(s) of a `string`.\n","removeLast":"\nremoveLast( str:string[, n:integer] )\n Removes the last character(s) of a `string`.\n","removePunctuation":"\nremovePunctuation( str:string )\n Removes punctuation characters from a `string`.\n","removeUTF8BOM":"\nremoveUTF8BOM( str:string )\n Removes a UTF-8 byte order mark (BOM) from the beginning of a `string`.\n","removeWords":"\nremoveWords( str:string, words:Array[, ignoreCase:boolean] )\n Removes all occurrences of the given words from a `string`.\n","rename":"\nrename( oldPath:string|Buffer, newPath:string|Buffer, clbk:Function )\n Asynchronously renames a file.\n","rename.sync":"\nrename.sync( oldPath:string|Buffer, newPath:string|Buffer )\n Synchronously renames a file.\n","reNativeFunction":"\nreNativeFunction()\n Returns a regular expression to match a native function.\n","reNativeFunction.REGEXP":"\nreNativeFunction.REGEXP\n Regular expression to match a native function.\n","reorderArguments":"\nreorderArguments( fcn:Function, indices:Array[, thisArg:any] )\n Returns a function that invokes a provided function with reordered\n arguments.\n","repeat":"\nrepeat( str:string, n:integer )\n Repeats a string `n` times and returns the concatenated result.\n","replace":"\nreplace( str:string, search:string|RegExp, newval:string|Function )\n Replaces search occurrences with a replacement string.\n","reRegExp":"\nreRegExp()\n Returns a regular expression to parse a regular expression string.\n","reRegExp.REGEXP":"\nreRegExp.REGEXP\n Regular expression to parse a regular expression string.\n","rescape":"\nrescape( str:string )\n Escapes a regular expression string.\n","reSemVer":"\nreSemVer()\n Returns a regular expression to match a semantic version string.\n","reSemVer.REGEXP":"\nreSemVer.REGEXP\n Regular expression to match a semantic version string.\n","resolveParentPath":"\nresolveParentPath( path:string[, options:Object], clbk:Function )\n Asynchronously resolves a path by walking parent directories.\n","resolveParentPath.sync":"\nresolveParentPath.sync( path:string[, options:Object] )\n Synchronously resolves a path by walking parent directories.\n","resolveParentPathBy":"\nresolveParentPathBy( path:string[, options:Object], predicate:Function, \n clbk:Function )\n Asynchronously resolves a path according to a predicate function by walking\n parent directories.\n","resolveParentPathBy.sync":"\nresolveParentPathBy.sync( path:string[, options:Object], predicate:Function )\n Synchronously resolves a path according to a predicate function by walking\n parent directories.\n","reUncPath":"\nreUncPath()\n Return a regular expression to parse a UNC path.\n","reUncPath.REGEXP":"\nreUncPath.REGEXP\n Regular expression to parse a UNC path.\n","reUtf16SurrogatePair":"\nreUtf16SurrogatePair()\n Returns a regular expression to match a UTF-16 surrogate pair.\n","reUtf16SurrogatePair.REGEXP":"\nreUtf16SurrogatePair.REGEXP\n Regular expression to match a UTF-16 surrogate pair.\n","reUtf16UnpairedSurrogate":"\nreUtf16UnpairedSurrogate()\n Returns a regular expression to match an unpaired UTF-16 surrogate.\n","reUtf16UnpairedSurrogate.REGEXP":"\nreUtf16UnpairedSurrogate.REGEXP\n Regular expression to match an unpaired UTF-16 surrogate.\n","reverseArguments":"\nreverseArguments( fcn:Function[, thisArg:any] )\n Returns a function that invokes a provided function with arguments in\n reverse order.\n","reverseString":"\nreverseString( str:string )\n Reverses a `string`.\n","reviveBasePRNG":"\nreviveBasePRNG( key:string, value:any )\n Revives a JSON-serialized pseudorandom number generator (PRNG).\n","reviveBuffer":"\nreviveBuffer( key:string, value:any )\n Revives a JSON-serialized Buffer.\n","reviveComplex":"\nreviveComplex( key:string, value:any )\n Revives a JSON-serialized complex number.\n","reviveComplex64":"\nreviveComplex64( key:string, value:any )\n Revives a JSON-serialized 64-bit complex number.\n","reviveComplex128":"\nreviveComplex128( key:string, value:any )\n Revives a JSON-serialized 128-bit complex number.\n","reviveError":"\nreviveError( key:string, value:any )\n Revives a JSON-serialized error object.\n","reviveRegExp":"\nreviveRegExp( key:string, value:any )\n Revives a JSON-serialized regular expression.\n","reviveTypedArray":"\nreviveTypedArray( key:string, value:any )\n Revives a JSON-serialized typed array.\n","reWhitespace":"\nreWhitespace( [options:Object] )\n Returns a regular expression to match a white space character.\n","reWhitespace.REGEXP":"\nreWhitespace.REGEXP\n Regular expression to match a white space character.\n","reWhitespace.REGEXP_CAPTURE":"\nreWhitespace.REGEXP_CAPTURE\n Regular expression to capture white space characters.\n","rpad":"\nrpad( str:string, len:integer[, pad:string] )\n Right pads a `string` such that the padded `string` has a length of at least\n `len`.\n","rtrim":"\nrtrim( str:string )\n Trims whitespace from the end of a string.\n","safeintmax":"\nsafeintmax( dtype:string )\n Returns the maximum safe integer capable of being represented by a numeric\n real type.\n","safeintmin":"\nsafeintmin( dtype:string )\n Returns the minimum safe integer capable of being represented by a numeric\n real type.\n","sample":"\nsample( x:ArrayLike[, options:Object] )\n Samples elements from an array-like object.\n","sample.factory":"\nsample.factory( [pool:ArrayLike, ][options:Object] )\n Returns a function to sample elements from an array-like object.\n","SAVOY_STOPWORDS_FIN":"\nSAVOY_STOPWORDS_FIN()\n Returns a list of Finnish stop words.\n","SAVOY_STOPWORDS_FR":"\nSAVOY_STOPWORDS_FR()\n Returns a list of French stop words.\n","SAVOY_STOPWORDS_GER":"\nSAVOY_STOPWORDS_GER()\n Returns a list of German stop words.\n","SAVOY_STOPWORDS_IT":"\nSAVOY_STOPWORDS_IT()\n Returns a list of Italian stop words.\n","SAVOY_STOPWORDS_POR":"\nSAVOY_STOPWORDS_POR()\n Returns a list of Portuguese stop words.\n","SAVOY_STOPWORDS_SP":"\nSAVOY_STOPWORDS_SP()\n Returns a list of Spanish stop words.\n","SAVOY_STOPWORDS_SWE":"\nSAVOY_STOPWORDS_SWE()\n Returns a list of Swedish stop words.\n","scalar2ndarray":"\nscalar2ndarray( value:any[, dtype:string] )\n Returns a zero-dimensional ndarray containing a provided scalar value.\n","sdot":"\nsdot( x:ndarray, y:ndarray )\n Computes the dot product of two single-precision floating-point vectors.\n","SECONDS_IN_DAY":"\nSECONDS_IN_DAY\n Number of seconds in a day.\n","SECONDS_IN_HOUR":"\nSECONDS_IN_HOUR\n Number of seconds in an hour.\n","SECONDS_IN_MINUTE":"\nSECONDS_IN_MINUTE\n Number of seconds in a minute.\n","SECONDS_IN_WEEK":"\nSECONDS_IN_WEEK\n Number of seconds in a week.\n","secondsInMonth":"\nsecondsInMonth( [month:string|Date|integer[, year:integer]] )\n Returns the number of seconds in a month.\n","secondsInYear":"\nsecondsInYear( [value:integer|Date] )\n Returns the number of seconds in a year according to the Gregorian calendar.\n","setConfigurableReadOnly":"\nsetConfigurableReadOnly( obj:Object, prop:string|symbol, value:any )\n Defines a configurable read-only property.\n","setConfigurableReadOnlyAccessor":"\nsetConfigurableReadOnlyAccessor( obj:Object, prop:string|symbol, \n getter:Function )\n Defines a configurable read-only accessor.\n","setConfigurableReadWriteAccessor":"\nsetConfigurableReadWriteAccessor( obj:Object, prop:string|symbol, \n getter:Function, setter:Function )\n Defines a configurable property having read-write accessors.\n","setConfigurableWriteOnlyAccessor":"\nsetConfigurableWriteOnlyAccessor( obj:Object, prop:string|symbol, \n setter:Function )\n Defines a configurable write-only accessor.\n","setMemoizedConfigurableReadOnly":"\nsetMemoizedConfigurableReadOnly( obj:Object, prop:string|symbol, fcn:Function )\n Defines a configurable memoized read-only object property.\n","setMemoizedReadOnly":"\nsetMemoizedReadOnly( obj:Object, prop:string|symbol, fcn:Function )\n Defines a memoized read-only object property.\n","setNonEnumerableProperty":"\nsetNonEnumerableProperty( obj:Object, prop:string|symbol, value:any )\n Defines a non-enumerable property.\n","setNonEnumerableReadOnly":"\nsetNonEnumerableReadOnly( obj:Object, prop:string|symbol, value:any )\n Defines a non-enumerable read-only property.\n","setNonEnumerableReadOnlyAccessor":"\nsetNonEnumerableReadOnlyAccessor( obj:Object, prop:string|symbol, \n getter:Function )\n Defines a non-enumerable read-only accessor.\n","setNonEnumerableReadWriteAccessor":"\nsetNonEnumerableReadWriteAccessor( obj:Object, prop:string|symbol, \n getter:Function, setter:Function )\n Defines a non-enumerable property having read-write accessors.\n","setNonEnumerableWriteOnlyAccessor":"\nsetNonEnumerableWriteOnlyAccessor( obj:Object, prop:string|symbol, \n setter:Function )\n Defines a non-enumerable write-only accessor.\n","setReadOnly":"\nsetReadOnly( obj:Object, prop:string|symbol, value:any )\n Defines a read-only property.\n","setReadOnlyAccessor":"\nsetReadOnlyAccessor( obj:Object, prop:string|symbol, getter:Function )\n Defines a read-only accessor.\n","setReadWriteAccessor":"\nsetReadWriteAccessor( obj:Object, prop:string|symbol, getter:Function, \n setter:Function )\n Defines a property having read-write accessors.\n","setWriteOnlyAccessor":"\nsetWriteOnlyAccessor( obj:Object, prop:string|symbol, setter:Function )\n Defines a write-only accessor.\n","SharedArrayBuffer":"\nSharedArrayBuffer( size:integer )\n Returns a shared array buffer having a specified number of bytes.\n","SharedArrayBuffer.length":"\nSharedArrayBuffer.length\n Number of input arguments the constructor accepts.\n","SharedArrayBuffer.prototype.byteLength":"\nSharedArrayBuffer.prototype.byteLength\n Read-only property which returns the length (in bytes) of the array buffer.\n","SharedArrayBuffer.prototype.slice":"\nSharedArrayBuffer.prototype.slice( [start:integer[, end:integer]] )\n Copies the bytes of a shared array buffer to a new shared array buffer.\n","shift":"\nshift( collection:Array|TypedArray|Object )\n Removes and returns the first element of a collection.\n","shuffle":"\nshuffle( arr:ArrayLike[, options:Object] )\n Shuffles elements of an array-like object.\n","shuffle.factory":"\nshuffle.factory( [options:Object] )\n Returns a function to shuffle elements of array-like objects.\n","sizeOf":"\nsizeOf( dtype:string )\n Returns the size (in bytes) of the canonical binary representation of a\n specified numeric type.\n","snakecase":"\nsnakecase( str:string )\n Converts a string to snake case.\n","some":"\nsome( collection:Array|TypedArray|Object, n:number )\n Tests whether at least `n` elements in a collection are truthy.\n","someBy":"\nsomeBy( collection:Array|TypedArray|Object, n:number, predicate:Function[, \n thisArg:any ] )\n Tests whether a collection contains at least `n` elements which pass a test\n implemented by a predicate function.\n","someByAsync":"\nsomeByAsync( collection:Array|TypedArray|Object, n:number, [options:Object,] \n predicate:Function, done:Function )\n Tests whether a collection contains at least `n` elements which pass a test\n implemented by a predicate function.\n","someByAsync.factory":"\nsomeByAsync.factory( [options:Object,] predicate:Function )\n Returns a function which tests whether a collection contains at least `n`\n elements which pass a test implemented by a predicate function.\n","someByRight":"\nsomeByRight( collection:Array|TypedArray|Object, n:number, predicate:Function[, \n thisArg:any ] )\n Tests whether a collection contains at least `n` elements which pass a test\n implemented by a predicate function, iterating from right to left.\n","someByRightAsync":"\nsomeByRightAsync( collection:Array|TypedArray|Object, n:number, \n [options:Object,] predicate:Function, done:Function )\n Tests whether a collection contains at least `n` elements which pass a test\n implemented by a predicate function, iterating from right to left.\n","someByRightAsync.factory":"\nsomeByRightAsync.factory( [options:Object,] predicate:Function )\n Returns a function which tests whether a collection contains at least `n`\n elements which pass a test implemented by a predicate function, iterating\n from right to left.\n","SOTU":"\nSOTU( [options:Object] )\n Returns State of the Union (SOTU) addresses.\n","SPACHE_REVISED":"\nSPACHE_REVISED()\n Returns a list of simple American-English words (revised Spache).\n","SPAM_ASSASSIN":"\nSPAM_ASSASSIN()\n Returns the Spam Assassin public mail corpus.\n","SparklineBase":"\nSparklineBase( [data:ArrayLike|ndarray,] [options:Object] )\n Returns a Sparkline instance.\n","sparsearray2iterator":"\nsparsearray2iterator( src:ArrayLikeObject[, mapFcn:Function[, thisArg:any]] )\n Returns an iterator which iterates over the elements of a sparse array-like\n object.\n","sparsearray2iteratorRight":"\nsparsearray2iteratorRight( src:ArrayLikeObject[, mapFcn:Function[, \n thisArg:any]] )\n Returns an iterator which iterates from right to left over the elements of a\n sparse array-like object.\n","splitStream":"\nsplitStream( [options:Object] )\n Returns a transform stream which splits streamed data.\n","splitStream.factory":"\nsplitStream.factory( [options:Object] )\n Returns a function for creating transform streams for splitting streamed\n data.\n","splitStream.objectMode":"\nsplitStream.objectMode( [options:Object] )\n Returns an \"objectMode\" transform stream for splitting streamed data.\n","SQRT_EPS":"\nSQRT_EPS\n Square root of double-precision floating-point epsilon.\n","SQRT_HALF":"\nSQRT_HALF\n Square root of `1/2`.\n","SQRT_HALF_PI":"\nSQRT_HALF_PI\n Square root of the mathematical constant `π` divided by `2`.\n","SQRT_PHI":"\nSQRT_PHI\n Square root of the golden ratio.\n","SQRT_PI":"\nSQRT_PI\n Square root of the mathematical constant `π`.\n","SQRT_THREE":"\nSQRT_THREE\n Square root of `3`.\n","SQRT_TWO":"\nSQRT_TWO\n Square root of `2`.\n","SQRT_TWO_PI":"\nSQRT_TWO_PI\n Square root of the mathematical constant `π` times `2`.\n","SSA_US_BIRTHS_2000_2014":"\nSSA_US_BIRTHS_2000_2014()\n Returns US birth data from 2000 to 2014, as provided by the Social Security\n Administration.\n","sswap":"\nsswap( x:ndarray, y:ndarray )\n Interchanges two single-precision floating-point vectors.\n","Stack":"\nStack()\n Stack constructor.\n","standalone2pkg":"\nstandalone2pkg( pkg:string )\n Returns the internal package name associated with a provided standalone\n package name.\n","STANDARD_CARD_DECK":"\nSTANDARD_CARD_DECK()\n Returns a string array containing two or three letter abbreviations for each\n card in a standard 52-card deck.\n","startcase":"\nstartcase( str:string )\n Capitalizes the first letter of each word in an input string.\n","startsWith":"\nstartsWith( str:string, search:string[, position:integer] )\n Tests if a string starts with the characters of another string.\n","STOPWORDS_EN":"\nSTOPWORDS_EN()\n Returns a list of English stop words.\n","strided.abs":"\nstrided.abs( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Computes the absolute value for each element in a strided array `x` and\n assigns the results to elements in a strided array `y`.\n","strided.abs.ndarray":"\nstrided.abs.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n offsetX:integer, dtypeY:any, y:ArrayLikeObject, strideY:integer, \n offsetY:integer )\n Computes the absolute value for each element in a strided array `x` and\n assigns the results to elements in a strided array `y` using alternative\n indexing semantics.\n","strided.abs2":"\nstrided.abs2( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Computes the squared absolute value for each element in a strided array `x`\n and assigns the results to elements in a strided array `y`.\n","strided.abs2.ndarray":"\nstrided.abs2.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, \n strideX:integer, offsetX:integer, dtypeY:any, y:ArrayLikeObject, \n strideY:integer, offsetY:integer )\n Computes the squared absolute value for each element in a strided array `x`\n and assigns the results to elements in a strided array `y` using alternative\n indexing semantics.\n","strided.abs2By":"\nstrided.abs2By( N:integer, x:Array|TypedArray|Object, sx:integer, \n y:Array|TypedArray|Object, sy:integer, clbk:Function[, thisArg:any] )\n Computes the squared absolute value of each element retrieved from an input\n strided array `x` via a callback function and assigns each result to an\n element in an output strided array `y`.\n","strided.abs2By.ndarray":"\nstrided.abs2By.ndarray( N:integer, x:Array|TypedArray|Object, sx:integer, \n ox:integer, y:Array|TypedArray|Object, sy:integer, oy:integer, \n clbk:Function[, thisArg:any] )\n Computes the squared absolute value of each element retrieved from an input\n strided array `x` via a callback function and assigns each result to an\n element in an output strided array `y` using alternative indexing semantics.\n","strided.absBy":"\nstrided.absBy( N:integer, x:Array|TypedArray|Object, sx:integer, \n y:Array|TypedArray|Object, sy:integer, clbk:Function[, thisArg:any] )\n Computes the absolute value of each element retrieved from a strided input\n array `x` via a callback function and assigns each result to an element in a\n strided output array `y`.\n","strided.absBy.ndarray":"\nstrided.absBy.ndarray( N:integer, x:Array|TypedArray|Object, sx:integer, \n ox:integer, y:Array|TypedArray|Object, sy:integer, oy:integer, \n clbk:Function[, thisArg:any] )\n Computes the absolute value of each element retrieved from a strided input\n array `x` via a callback function and assigns each result to an element in a\n strided output array `y` using alternative indexing semantics.\n","strided.add":"\nstrided.add( N:integer, dx:any, x:ArrayLikeObject, sx:integer, dy:any, \n y:ArrayLikeObject, sy:integer, dz:any, z:ArrayLikeObject, sz:integer )\n Adds each element in a strided array `x` to a corresponding element in a\n strided array `y` and assigns the results to elements in a strided array\n `z`.\n","strided.add.ndarray":"\nstrided.add.ndarray( N:integer, dx:any, x:ArrayLikeObject, sx:integer, \n ox:integer, dy:any, y:ArrayLikeObject, sy:integer, oy:integer, dz:any, \n z:ArrayLikeObject, sz:integer, oz:integer )\n Adds each element in a strided array `x` to a corresponding element in a\n strided array `y` and assigns the results to elements in a strided array\n `z` using alternative indexing semantics.\n","strided.cbrt":"\nstrided.cbrt( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Computes the cube root of each element in a strided array `x` and assigns\n the results to elements in a strided array `y`.\n","strided.cbrt.ndarray":"\nstrided.cbrt.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, \n strideX:integer, offsetX:integer, dtypeY:any, y:ArrayLikeObject, \n strideY:integer, offsetY:integer )\n Computes the cube root of each element in a strided array `x` and assigns\n the results to elements in a strided array `y` using alternative indexing\n semantics.\n","strided.ceil":"\nstrided.ceil( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Rounds each element in a strided array `x` toward positive infinity and\n assigns the results to elements in a strided array `y`.\n","strided.ceil.ndarray":"\nstrided.ceil.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, \n strideX:integer, offsetX:integer, dtypeY:any, y:ArrayLikeObject, \n strideY:integer, offsetY:integer )\n Rounds each element in a strided array `x` toward positive infinity and\n assigns the results to elements in a strided array `y` using alternative\n indexing semantics.\n","strided.deg2rad":"\nstrided.deg2rad( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Converts each element in a strided array `x` from degrees to radians and\n assigns the results to elements in a strided array `y`.\n","strided.deg2rad.ndarray":"\nstrided.deg2rad.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, \n strideX:integer, offsetX:integer, dtypeY:any, y:ArrayLikeObject, \n strideY:integer, offsetY:integer )\n Converts each element in a strided array `x` from degrees to radians and\n assigns the results to elements in a strided array `y` using alternative\n indexing semantics.\n","strided.dispatch":"\nstrided.dispatch( fcns:Function|ArrayLikeObject, \n types:ArrayLikeObject, data:ArrayLikeObject|null, nargs:integer, nin:integer, \n nout:integer )\n Returns a strided array function interface which performs multiple dispatch.\n","strided.floor":"\nstrided.floor( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Rounds each element in a strided array `x` toward negative infinity and\n assigns the results to elements in a strided array `y`.\n","strided.floor.ndarray":"\nstrided.floor.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, \n strideX:integer, offsetX:integer, dtypeY:any, y:ArrayLikeObject, \n strideY:integer, offsetY:integer )\n Rounds each element in a strided array `x` toward negative infinity and\n assigns the results to elements in a strided array `y` using alternative\n indexing semantics.\n","strided.inv":"\nstrided.inv( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Computes the multiplicative inverse for each element in a strided array `x`\n and assigns the results to elements in a strided array `y`.\n","strided.inv.ndarray":"\nstrided.inv.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n offsetX:integer, dtypeY:any, y:ArrayLikeObject, strideY:integer, \n offsetY:integer )\n Computes the multiplicative inverse for each element in a strided array `x`\n and assigns the results to elements in a strided array `y` using alternative\n indexing semantics.\n","strided.mul":"\nstrided.mul( N:integer, dx:any, x:ArrayLikeObject, sx:integer, dy:any, \n y:ArrayLikeObject, sy:integer, dz:any, z:ArrayLikeObject, sz:integer )\n Multiplies each element in a strided array `x` to a corresponding element in\n a strided array `y` and assigns the results to elements in a strided array\n `z`.\n","strided.mul.ndarray":"\nstrided.mul.ndarray( N:integer, dx:any, x:ArrayLikeObject, sx:integer, \n ox:integer, dy:any, y:ArrayLikeObject, sy:integer, oy:integer, dz:any, \n z:ArrayLikeObject, sz:integer, oz:integer )\n Multiplies each element in a strided array `x` to a corresponding element in\n a strided array `y` and assigns the results to elements in a strided array\n `z` using alternative indexing semantics.\n","strided.ramp":"\nstrided.ramp( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Evaluates the ramp function for each element in a strided array `x` and\n assigns the results to elements in a strided array `y`.\n","strided.ramp.ndarray":"\nstrided.ramp.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, \n strideX:integer, offsetX:integer, dtypeY:any, y:ArrayLikeObject, \n strideY:integer, offsetY:integer )\n Evaluates the ramp function for each element in a strided array `x` and\n assigns the results to elements in a strided array `y` using alternative\n indexing semantics.\n","strided.rsqrt":"\nstrided.rsqrt( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Computes the reciprocal square root for each element in a strided array `x`\n and assigns the results to elements in a strided array `y`.\n","strided.rsqrt.ndarray":"\nstrided.rsqrt.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, \n strideX:integer, offsetX:integer, dtypeY:any, y:ArrayLikeObject, \n strideY:integer, offsetY:integer )\n Computes the reciprocal square root for each element in a strided array `x`\n and assigns the results to elements in a strided array `y` using alternative\n indexing semantics.\n","strided.sqrt":"\nstrided.sqrt( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Computes the principal square root for each element in a strided array `x`\n and assigns the results to elements in a strided array `y`.\n","strided.sqrt.ndarray":"\nstrided.sqrt.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, \n strideX:integer, offsetX:integer, dtypeY:any, y:ArrayLikeObject, \n strideY:integer, offsetY:integer )\n Computes the principal square root for each element in a strided array `x`\n and assigns the results to elements in a strided array `y` using alternative\n indexing semantics.\n","strided.sub":"\nstrided.sub( N:integer, dx:any, x:ArrayLikeObject, sx:integer, dy:any, \n y:ArrayLikeObject, sy:integer, dz:any, z:ArrayLikeObject, sz:integer )\n Subtracts each element in a strided array `x` to a corresponding element in\n a strided array `y` and assigns the results to elements in a strided array\n `z`.\n","strided.sub.ndarray":"\nstrided.sub.ndarray( N:integer, dx:any, x:ArrayLikeObject, sx:integer, \n ox:integer, dy:any, y:ArrayLikeObject, sy:integer, oy:integer, dz:any, \n z:ArrayLikeObject, sz:integer, oz:integer )\n Subtracts each element in a strided array `x` to a corresponding element in\n a strided array `y` and assigns the results to elements in a strided array\n `z` using alternative indexing semantics.\n","strided.trunc":"\nstrided.trunc( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Rounds each element in a strided array `x` toward zero and assigns the\n results to elements in a strided array `y`.\n","strided.trunc.ndarray":"\nstrided.trunc.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, \n strideX:integer, offsetX:integer, dtypeY:any, y:ArrayLikeObject, \n strideY:integer, offsetY:integer )\n Rounds each element in a strided array `x` toward zero and assigns the\n results to elements in a strided array `y` using alternative indexing\n semantics.\n","stridedarray2iterator":"\nstridedarray2iterator( N:integer, src:ArrayLikeObject, stride:integer, \n offset:integer[, mapFcn:Function[, thisArg:any]] )\n Returns an iterator which iterates over elements of an array-like object\n according to specified stride parameters.\n","stridedArrayStream":"\nstridedArrayStream( N:integer, buffer:ArrayLikeObject, stride:integer, \n offset:integer[, options:Object] )\n Creates a readable stream from a strided array-like object.\n","stridedArrayStream.factory":"\nstridedArrayStream.factory( [options:Object] )\n Returns a function for creating readable streams from array-like objects.\n","stridedArrayStream.objectMode":"\nstridedArrayStream.objectMode( N:integer, buffer:ArrayLikeObject, \n stride:integer, offset:integer[, options:Object] )\n Returns an \"objectMode\" readable stream from a strided array-like object.\n","string2buffer":"\nstring2buffer( str:string[, encoding:string] )\n Allocates a buffer containing a provided string.\n","sub2ind":"\nsub2ind( shape:ArrayLike, ...subscript:integer[, options:Object] )\n Converts subscripts to a linear index.\n","substringAfter":"\nsubstringAfter( str:string, search:string[, fromIndex:integer] )\n Returns the part of a string after a specified substring.\n","substringAfterLast":"\nsubstringAfterLast( str:string, search:string[, fromIndex:integer] )\n Returns the part of a string after the last occurrence of a specified\n substring.\n","substringBefore":"\nsubstringBefore( str:string, search:string )\n Returns the part of a string before a specified substring.\n","substringBeforeLast":"\nsubstringBeforeLast( str:string, search:string )\n Returns the part of a string before the last occurrence of a specified\n substring.\n","SUTHAHARAN_MULTI_HOP_SENSOR_NETWORK":"\nSUTHAHARAN_MULTI_HOP_SENSOR_NETWORK()\n Returns a dataset consisting of labeled wireless sensor network data set\n collected from a multi-hop wireless sensor network deployment using TelosB\n motes.\n","SUTHAHARAN_SINGLE_HOP_SENSOR_NETWORK":"\nSUTHAHARAN_SINGLE_HOP_SENSOR_NETWORK()\n Returns a dataset consisting of labeled wireless sensor network data set\n collected from a simple single-hop wireless sensor network deployment using\n TelosB motes.\n","Symbol":"\nSymbol( [description:string] )\n Returns a symbol.\n","tabulate":"\ntabulate( collection:Array|TypedArray|Object )\n Generates a frequency table.\n","tabulateBy":"\ntabulateBy( collection:Array|TypedArray|Object, [options:Object,] \n indicator:Function )\n Generates a frequency table according to an indicator function.\n","tabulateByAsync":"\ntabulateByAsync( collection:Array|TypedArray|Object, [options:Object,] \n indicator:Function, done:Function )\n Generates a frequency table according to an indicator function.\n","tabulateByAsync.factory":"\ntabulateByAsync.factory( [options:Object,] indicator:Function )\n Returns a function which generates a frequency table according to an\n indicator function.\n","thunk":"\nthunk( fcn:Function[, ...args:any] )\n Returns a thunk.\n","tic":"\ntic()\n Returns a high-resolution time.\n","timeit":"\ntimeit( code:string, [options:Object,] clbk:Function )\n Times a snippet.\n","tmpdir":"\ntmpdir()\n Returns the directory for storing temporary files.\n","toc":"\ntoc( time:Array )\n Returns a high-resolution time difference, where `time` is a two-element\n array with format `[seconds, nanoseconds]`.\n","tokenize":"\ntokenize( str:string[, keepWhitespace:boolean] )\n Tokenizes a string.\n","transformStream":"\ntransformStream( [options:Object] )\n Returns a transform stream.\n","transformStream.factory":"\ntransformStream.factory( [options:Object] )\n Returns a function for creating transform streams.\n","transformStream.objectMode":"\ntransformStream.objectMode( [options:Object] )\n Returns an \"objectMode\" transform stream.\n","transformStream.ctor":"\ntransformStream.ctor( [options:Object] )\n Returns a custom transform stream constructor.\n","trim":"\ntrim( str:string )\n Trims whitespace from the beginning and end of a `string`.\n","truncate":"\ntruncate( str:string, len:integer[, ending:string] )\n Truncates a string to a specified length.\n","truncateMiddle":"\ntruncateMiddle( str:string, len:integer[, seq:string] )\n Truncates a string in the middle to a specified length.\n","trycatch":"\ntrycatch( x:Function, y:any )\n If a function does not throw, returns the function return value; otherwise,\n returns `y`.\n","trycatchAsync":"\ntrycatchAsync( x:Function, y:any, done:Function )\n If a function does not return an error, invokes a callback with the function\n result; otherwise, invokes a callback with a value `y`.\n","tryFunction":"\ntryFunction( fcn:Function[, thisArg:any] )\n Wraps a function in a try/catch block.\n","tryRequire":"\ntryRequire( id:string )\n Wraps `require` in a `try/catch` block.\n","trythen":"\ntrythen( x:Function, y:Function )\n If a function does not throw, returns the function return value; otherwise,\n returns the value returned by a second function `y`.\n","trythenAsync":"\ntrythenAsync( x:Function, y:Function, done:Function )\n If a function does not return an error, invokes a callback with the function\n result; otherwise, invokes a second function `y`.\n","ttest":"\nttest( x:Array[, y:Array][, options:Object] )\n Computes a one-sample or paired Student's t test.\n","ttest2":"\nttest2( x:Array, y:Array[, options:Object] )\n Computes a two-sample Student's t test.\n","TWO_PI":"\nTWO_PI\n The mathematical constant `π` times `2`.\n","typedarray":"\ntypedarray( [dtype:string] )\n Creates a typed array.\n\ntypedarray( length:integer[, dtype:string] )\n Returns a typed array having a specified length.\n\ntypedarray( typedarray:TypedArray[, dtype:string] )\n Creates a typed array from another typed array.\n\ntypedarray( obj:Object[, dtype:string] )\n Creates a typed array from an array-like object or iterable.\n\ntypedarray( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]][, \n dtype:string] )\n Returns a typed array view of an ArrayBuffer.\n","typedarray2json":"\ntypedarray2json( arr:TypedArray )\n Returns a JSON representation of a typed array.\n","typedarrayCtors":"\ntypedarrayCtors( dtype:string )\n Returns a typed array constructor.\n","typedarrayDataTypes":"\ntypedarrayDataTypes()\n Returns a list of typed array data types.\n","typedarraypool":"\ntypedarraypool( [dtype:string] )\n Returns an uninitialized typed array from a typed array memory pool.\n\ntypedarraypool( length:integer[, dtype:string] )\n Returns an uninitialized typed array having a specified length from a typed\n array memory pool.\n\ntypedarraypool( typedarray:TypedArray[, dtype:string] )\n Creates a pooled typed array from another typed array.\n\ntypedarraypool( obj:Object[, dtype:string] )\n Creates a pooled typed array from an array-like object.\n","typedarraypool.malloc":"\ntypedarraypool.malloc( [dtype:string] )\n Returns an uninitialized typed array from a typed array memory pool.\n\ntypedarraypool.malloc( length:integer[, dtype:string] )\n Returns a typed array having a specified length from a typed array memory\n pool.\n\ntypedarraypool.malloc( typedarray:TypedArray[, dtype:string] )\n Creates a pooled typed array from another typed array.\n\ntypedarraypool.malloc( obj:Object[, dtype:string] )\n Creates a pooled typed array from an array-like object.\n","typedarraypool.calloc":"\ntypedarraypool.calloc( [dtype:string] )\n Returns a zero-initialized typed array from a typed array memory pool.\n\ntypedarraypool.calloc( length:integer[, dtype:string] )\n Returns a zero-initialized typed array having a specified length from a\n typed array memory pool.\n","typedarraypool.free":"\ntypedarraypool.free( buf:TypedArray|ArrayBuffer )\n Frees a typed array or typed array buffer for use in a future allocation.\n","typedarraypool.clear":"\ntypedarraypool.clear()\n Clears the typed array pool allowing garbage collection of previously\n allocated (and currently free) array buffers.\n","typedarraypool.highWaterMark":"\ntypedarraypool.highWaterMark\n Read-only property returning the pool's high water mark.\n","typedarraypool.nbytes":"\ntypedarraypool.nbytes\n Read-only property returning the total number of allocated bytes.\n","typedarraypool.factory":"\ntypedarraypool.factory( [options:Object] )\n Creates a typed array pool.\n","typemax":"\ntypemax( dtype:string )\n Returns the maximum value of a specified numeric type.\n","typemin":"\ntypemin( dtype:string )\n Returns the minimum value of a specified numeric type.\n","typeOf":"\ntypeOf( value:any )\n Determines a value's type.\n","UINT8_MAX":"\nUINT8_MAX\n Maximum unsigned 8-bit integer.\n","UINT8_NUM_BYTES":"\nUINT8_NUM_BYTES\n Size (in bytes) of an 8-bit unsigned integer.\n","Uint8Array":"\nUint8Array()\n A typed array constructor which returns a typed array representing an array\n of 8-bit unsigned integers in the platform byte order.\n\nUint8Array( length:integer )\n Returns a typed array having a specified length.\n\nUint8Array( typedarray:TypedArray )\n Creates a typed array from another typed array.\n\nUint8Array( obj:Object )\n Creates a typed array from an array-like object or iterable.\n\nUint8Array( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Returns a typed array view of an ArrayBuffer.\n","Uint8Array.from":"\nUint8Array.from( src:ArrayLike|Iterable[, map:Function[, thisArg:Any]] )\n Creates a new typed array from an array-like object or an iterable.\n","Uint8Array.of":"\nUint8Array.of( element0:number[, element1:number[, ...elementN:number]] )\n Creates a new typed array from a variable number of arguments.\n","Uint8Array.BYTES_PER_ELEMENT":"\nUint8Array.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Uint8Array.name":"\nUint8Array.name\n Typed array constructor name.\n","Uint8Array.prototype.buffer":"\nUint8Array.prototype.buffer\n Read-only property which returns the ArrayBuffer referenced by the typed\n array.\n","Uint8Array.prototype.byteLength":"\nUint8Array.prototype.byteLength\n Read-only property which returns the length (in bytes) of the typed array.\n","Uint8Array.prototype.byteOffset":"\nUint8Array.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the typed array\n from the start of its ArrayBuffer.\n","Uint8Array.prototype.BYTES_PER_ELEMENT":"\nUint8Array.prototype.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Uint8Array.prototype.length":"\nUint8Array.prototype.length\n Read-only property which returns the number of view elements.\n","Uint8Array.prototype.copyWithin":"\nUint8Array.prototype.copyWithin( target:integer, start:integer[, end:integer] )\n Copies a sequence of elements within the array starting at `start` and\n ending at `end` (non-inclusive) to the position starting at `target`.\n","Uint8Array.prototype.entries":"\nUint8Array.prototype.entries()\n Returns an iterator for iterating over array key-value pairs.\n","Uint8Array.prototype.every":"\nUint8Array.prototype.every( predicate:Function[, thisArg:Any] )\n Tests whether all array elements pass a test implemented by a predicate\n function.\n","Uint8Array.prototype.fill":"\nUint8Array.prototype.fill( value:number[, start:integer[, end:integer]] )\n Fills an array from a start index to an end index (non-inclusive) with a\n provided value.\n","Uint8Array.prototype.filter":"\nUint8Array.prototype.filter( predicate:Function[, thisArg:Any] )\n Creates a new array which includes those elements for which a predicate\n function returns a truthy value.\n","Uint8Array.prototype.find":"\nUint8Array.prototype.find( predicate:Function[, thisArg:Any] )\n Returns the first array element for which a provided predicate function\n returns a truthy value.\n","Uint8Array.prototype.findIndex":"\nUint8Array.prototype.findIndex( predicate:Function[, thisArg:Any] )\n Returns the index of the first array element for which a provided predicate\n function returns a truthy value.\n","Uint8Array.prototype.forEach":"\nUint8Array.prototype.forEach( fcn:Function[, thisArg:Any] )\n Invokes a callback for each array element.\n","Uint8Array.prototype.includes":"\nUint8Array.prototype.includes( searchElement:number[, fromIndex:integer] )\n Returns a boolean indicating whether an array includes a search element.\n","Uint8Array.prototype.indexOf":"\nUint8Array.prototype.indexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the first array element strictly equal to a search\n element.\n","Uint8Array.prototype.join":"\nUint8Array.prototype.join( [separator:string] )\n Serializes an array by joining all array elements as a string.\n","Uint8Array.prototype.keys":"\nUint8Array.prototype.keys()\n Returns an iterator for iterating over array keys.\n","Uint8Array.prototype.lastIndexOf":"\nUint8Array.prototype.lastIndexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the last array element strictly equal to a search\n element.\n","Uint8Array.prototype.map":"\nUint8Array.prototype.map( fcn:Function[, thisArg:Any] )\n Maps each array element to an element in a new typed array.\n","Uint8Array.prototype.reduce":"\nUint8Array.prototype.reduce( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","Uint8Array.prototype.reduceRight":"\nUint8Array.prototype.reduceRight( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result, iterating from right to left.\n","Uint8Array.prototype.reverse":"\nUint8Array.prototype.reverse()\n Reverses an array *in-place*.\n","Uint8Array.prototype.set":"\nUint8Array.prototype.set( arr:ArrayLike[, offset:integer] )\n Sets array elements.\n","Uint8Array.prototype.slice":"\nUint8Array.prototype.slice( [begin:integer[, end:integer]] )\n Copies array elements to a new array with the same underlying data type as\n the host array.\n","Uint8Array.prototype.some":"\nUint8Array.prototype.some( predicate:Function[, thisArg:Any] )\n Tests whether at least one array element passes a test implemented by a\n predicate function.\n","Uint8Array.prototype.sort":"\nUint8Array.prototype.sort( [compareFunction:Function] )\n Sorts an array *in-place*.\n","Uint8Array.prototype.subarray":"\nUint8Array.prototype.subarray( [begin:integer[, end:integer]] )\n Creates a new typed array over the same underlying ArrayBuffer and with the\n same underlying data type as the host array.\n","Uint8Array.prototype.toLocaleString":"\nUint8Array.prototype.toLocaleString( [locales:string|Array[, options:Object]] )\n Serializes an array as a locale-specific string.\n","Uint8Array.prototype.toString":"\nUint8Array.prototype.toString()\n Serializes an array as a string.\n","Uint8Array.prototype.values":"\nUint8Array.prototype.values()\n Returns an iterator for iterating over array elements.\n","Uint8ClampedArray":"\nUint8ClampedArray()\n A typed array constructor which returns a typed array representing an array\n of 8-bit unsigned integers in the platform byte order clamped to 0-255.\n\nUint8ClampedArray( length:integer )\n Returns a typed array having a specified length.\n\nUint8ClampedArray( typedarray:TypedArray )\n Creates a typed array from another typed array.\n\nUint8ClampedArray( obj:Object )\n Creates a typed array from an array-like object or iterable.\n\nUint8ClampedArray( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Returns a typed array view of an ArrayBuffer.\n","Uint8ClampedArray.from":"\nUint8ClampedArray.from( src:ArrayLike|Iterable[, map:Function[, thisArg:Any]] )\n Creates a new typed array from an array-like object or an iterable.\n","Uint8ClampedArray.of":"\nUint8ClampedArray.of( element0:number[, element1:number[, ...elementN:number]] )\n Creates a new typed array from a variable number of arguments.\n","Uint8ClampedArray.BYTES_PER_ELEMENT":"\nUint8ClampedArray.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Uint8ClampedArray.name":"\nUint8ClampedArray.name\n Typed array constructor name.\n","Uint8ClampedArray.prototype.buffer":"\nUint8ClampedArray.prototype.buffer\n Read-only property which returns the ArrayBuffer referenced by the typed\n array.\n","Uint8ClampedArray.prototype.byteLength":"\nUint8ClampedArray.prototype.byteLength\n Read-only property which returns the length (in bytes) of the typed array.\n","Uint8ClampedArray.prototype.byteOffset":"\nUint8ClampedArray.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the typed array\n from the start of its ArrayBuffer.\n","Uint8ClampedArray.prototype.BYTES_PER_ELEMENT":"\nUint8ClampedArray.prototype.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Uint8ClampedArray.prototype.length":"\nUint8ClampedArray.prototype.length\n Read-only property which returns the number of view elements.\n","Uint8ClampedArray.prototype.copyWithin":"\nUint8ClampedArray.prototype.copyWithin( target:integer, start:integer[, \n end:integer] )\n Copies a sequence of elements within the array starting at `start` and\n ending at `end` (non-inclusive) to the position starting at `target`.\n","Uint8ClampedArray.prototype.entries":"\nUint8ClampedArray.prototype.entries()\n Returns an iterator for iterating over array key-value pairs.\n","Uint8ClampedArray.prototype.every":"\nUint8ClampedArray.prototype.every( predicate:Function[, thisArg:Any] )\n Tests whether all array elements pass a test implemented by a predicate\n function.\n","Uint8ClampedArray.prototype.fill":"\nUint8ClampedArray.prototype.fill( value:number[, start:integer[, end:integer]] )\n Fills an array from a start index to an end index (non-inclusive) with a\n provided value.\n","Uint8ClampedArray.prototype.filter":"\nUint8ClampedArray.prototype.filter( predicate:Function[, thisArg:Any] )\n Creates a new array which includes those elements for which a predicate\n function returns a truthy value.\n","Uint8ClampedArray.prototype.find":"\nUint8ClampedArray.prototype.find( predicate:Function[, thisArg:Any] )\n Returns the first array element for which a provided predicate function\n returns a truthy value.\n","Uint8ClampedArray.prototype.findIndex":"\nUint8ClampedArray.prototype.findIndex( predicate:Function[, thisArg:Any] )\n Returns the index of the first array element for which a provided predicate\n function returns a truthy value.\n","Uint8ClampedArray.prototype.forEach":"\nUint8ClampedArray.prototype.forEach( fcn:Function[, thisArg:Any] )\n Invokes a callback for each array element.\n","Uint8ClampedArray.prototype.includes":"\nUint8ClampedArray.prototype.includes( searchElement:number[, \n fromIndex:integer] )\n Returns a boolean indicating whether an array includes a search element.\n","Uint8ClampedArray.prototype.indexOf":"\nUint8ClampedArray.prototype.indexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the first array element strictly equal to a search\n element.\n","Uint8ClampedArray.prototype.join":"\nUint8ClampedArray.prototype.join( [separator:string] )\n Serializes an array by joining all array elements as a string.\n","Uint8ClampedArray.prototype.keys":"\nUint8ClampedArray.prototype.keys()\n Returns an iterator for iterating over array keys.\n","Uint8ClampedArray.prototype.lastIndexOf":"\nUint8ClampedArray.prototype.lastIndexOf( searchElement:number[, \n fromIndex:integer] )\n Returns the index of the last array element strictly equal to a search\n element.\n","Uint8ClampedArray.prototype.map":"\nUint8ClampedArray.prototype.map( fcn:Function[, thisArg:Any] )\n Maps each array element to an element in a new typed array.\n","Uint8ClampedArray.prototype.reduce":"\nUint8ClampedArray.prototype.reduce( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","Uint8ClampedArray.prototype.reduceRight":"\nUint8ClampedArray.prototype.reduceRight( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result, iterating from right to left.\n","Uint8ClampedArray.prototype.reverse":"\nUint8ClampedArray.prototype.reverse()\n Reverses an array *in-place*.\n","Uint8ClampedArray.prototype.set":"\nUint8ClampedArray.prototype.set( arr:ArrayLike[, offset:integer] )\n Sets array elements.\n","Uint8ClampedArray.prototype.slice":"\nUint8ClampedArray.prototype.slice( [begin:integer[, end:integer]] )\n Copies array elements to a new array with the same underlying data type as\n the host array.\n","Uint8ClampedArray.prototype.some":"\nUint8ClampedArray.prototype.some( predicate:Function[, thisArg:Any] )\n Tests whether at least one array element passes a test implemented by a\n predicate function.\n","Uint8ClampedArray.prototype.sort":"\nUint8ClampedArray.prototype.sort( [compareFunction:Function] )\n Sorts an array *in-place*.\n","Uint8ClampedArray.prototype.subarray":"\nUint8ClampedArray.prototype.subarray( [begin:integer[, end:integer]] )\n Creates a new typed array over the same underlying ArrayBuffer and with the\n same underlying data type as the host array.\n","Uint8ClampedArray.prototype.toLocaleString":"\nUint8ClampedArray.prototype.toLocaleString( [locales:string|Array[, \n options:Object]] )\n Serializes an array as a locale-specific string.\n","Uint8ClampedArray.prototype.toString":"\nUint8ClampedArray.prototype.toString()\n Serializes an array as a string.\n","Uint8ClampedArray.prototype.values":"\nUint8ClampedArray.prototype.values()\n Returns an iterator for iterating over array elements.\n","UINT16_MAX":"\nUINT16_MAX\n Maximum unsigned 16-bit integer.\n","UINT16_NUM_BYTES":"\nUINT16_NUM_BYTES\n Size (in bytes) of a 16-bit unsigned integer.\n","Uint16Array":"\nUint16Array()\n A typed array constructor which returns a typed array representing an array\n of 16-bit unsigned integers in the platform byte order.\n\nUint16Array( length:integer )\n Returns a typed array having a specified length.\n\nUint16Array( typedarray:TypedArray )\n Creates a typed array from another typed array.\n\nUint16Array( obj:Object )\n Creates a typed array from an array-like object or iterable.\n\nUint16Array( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Returns a typed array view of an ArrayBuffer.\n","Uint16Array.from":"\nUint16Array.from( src:ArrayLike|Iterable[, map:Function[, thisArg:Any]] )\n Creates a new typed array from an array-like object or an iterable.\n","Uint16Array.of":"\nUint16Array.of( element0:number[, element1:number[, ...elementN:number]] )\n Creates a new typed array from a variable number of arguments.\n","Uint16Array.BYTES_PER_ELEMENT":"\nUint16Array.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Uint16Array.name":"\nUint16Array.name\n Typed array constructor name.\n","Uint16Array.prototype.buffer":"\nUint16Array.prototype.buffer\n Read-only property which returns the ArrayBuffer referenced by the typed\n array.\n","Uint16Array.prototype.byteLength":"\nUint16Array.prototype.byteLength\n Read-only property which returns the length (in bytes) of the typed array.\n","Uint16Array.prototype.byteOffset":"\nUint16Array.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the typed array\n from the start of its ArrayBuffer.\n","Uint16Array.prototype.BYTES_PER_ELEMENT":"\nUint16Array.prototype.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Uint16Array.prototype.length":"\nUint16Array.prototype.length\n Read-only property which returns the number of view elements.\n","Uint16Array.prototype.copyWithin":"\nUint16Array.prototype.copyWithin( target:integer, start:integer[, end:integer] )\n Copies a sequence of elements within the array starting at `start` and\n ending at `end` (non-inclusive) to the position starting at `target`.\n","Uint16Array.prototype.entries":"\nUint16Array.prototype.entries()\n Returns an iterator for iterating over array key-value pairs.\n","Uint16Array.prototype.every":"\nUint16Array.prototype.every( predicate:Function[, thisArg:Any] )\n Tests whether all array elements pass a test implemented by a predicate\n function.\n","Uint16Array.prototype.fill":"\nUint16Array.prototype.fill( value:number[, start:integer[, end:integer]] )\n Fills an array from a start index to an end index (non-inclusive) with a\n provided value.\n","Uint16Array.prototype.filter":"\nUint16Array.prototype.filter( predicate:Function[, thisArg:Any] )\n Creates a new array which includes those elements for which a predicate\n function returns a truthy value.\n","Uint16Array.prototype.find":"\nUint16Array.prototype.find( predicate:Function[, thisArg:Any] )\n Returns the first array element for which a provided predicate function\n returns a truthy value.\n","Uint16Array.prototype.findIndex":"\nUint16Array.prototype.findIndex( predicate:Function[, thisArg:Any] )\n Returns the index of the first array element for which a provided predicate\n function returns a truthy value.\n","Uint16Array.prototype.forEach":"\nUint16Array.prototype.forEach( fcn:Function[, thisArg:Any] )\n Invokes a callback for each array element.\n","Uint16Array.prototype.includes":"\nUint16Array.prototype.includes( searchElement:number[, fromIndex:integer] )\n Returns a boolean indicating whether an array includes a search element.\n","Uint16Array.prototype.indexOf":"\nUint16Array.prototype.indexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the first array element strictly equal to a search\n element.\n","Uint16Array.prototype.join":"\nUint16Array.prototype.join( [separator:string] )\n Serializes an array by joining all array elements as a string.\n","Uint16Array.prototype.keys":"\nUint16Array.prototype.keys()\n Returns an iterator for iterating over array keys.\n","Uint16Array.prototype.lastIndexOf":"\nUint16Array.prototype.lastIndexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the last array element strictly equal to a search\n element.\n","Uint16Array.prototype.map":"\nUint16Array.prototype.map( fcn:Function[, thisArg:Any] )\n Maps each array element to an element in a new typed array.\n","Uint16Array.prototype.reduce":"\nUint16Array.prototype.reduce( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","Uint16Array.prototype.reduceRight":"\nUint16Array.prototype.reduceRight( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result, iterating from right to left.\n","Uint16Array.prototype.reverse":"\nUint16Array.prototype.reverse()\n Reverses an array *in-place*.\n","Uint16Array.prototype.set":"\nUint16Array.prototype.set( arr:ArrayLike[, offset:integer] )\n Sets array elements.\n","Uint16Array.prototype.slice":"\nUint16Array.prototype.slice( [begin:integer[, end:integer]] )\n Copies array elements to a new array with the same underlying data type as\n the host array.\n","Uint16Array.prototype.some":"\nUint16Array.prototype.some( predicate:Function[, thisArg:Any] )\n Tests whether at least one array element passes a test implemented by a\n predicate function.\n","Uint16Array.prototype.sort":"\nUint16Array.prototype.sort( [compareFunction:Function] )\n Sorts an array *in-place*.\n","Uint16Array.prototype.subarray":"\nUint16Array.prototype.subarray( [begin:integer[, end:integer]] )\n Creates a new typed array over the same underlying ArrayBuffer and with the\n same underlying data type as the host array.\n","Uint16Array.prototype.toLocaleString":"\nUint16Array.prototype.toLocaleString( [locales:string|Array[, options:Object]] )\n Serializes an array as a locale-specific string.\n","Uint16Array.prototype.toString":"\nUint16Array.prototype.toString()\n Serializes an array as a string.\n","Uint16Array.prototype.values":"\nUint16Array.prototype.values()\n Returns an iterator for iterating over array elements.\n","UINT32_MAX":"\nUINT32_MAX\n Maximum unsigned 32-bit integer.\n","UINT32_NUM_BYTES":"\nUINT32_NUM_BYTES\n Size (in bytes) of a 32-bit unsigned integer.\n","Uint32Array":"\nUint32Array()\n A typed array constructor which returns a typed array representing an array\n of 32-bit unsigned integers in the platform byte order.\n\nUint32Array( length:integer )\n Returns a typed array having a specified length.\n\nUint32Array( typedarray:TypedArray )\n Creates a typed array from another typed array.\n\nUint32Array( obj:Object )\n Creates a typed array from an array-like object or iterable.\n\nUint32Array( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Returns a typed array view of an ArrayBuffer.\n","Uint32Array.from":"\nUint32Array.from( src:ArrayLike|Iterable[, map:Function[, thisArg:Any]] )\n Creates a new typed array from an array-like object or an iterable.\n","Uint32Array.of":"\nUint32Array.of( element0:number[, element1:number[, ...elementN:number]] )\n Creates a new typed array from a variable number of arguments.\n","Uint32Array.BYTES_PER_ELEMENT":"\nUint32Array.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Uint32Array.name":"\nUint32Array.name\n Typed array constructor name.\n","Uint32Array.prototype.buffer":"\nUint32Array.prototype.buffer\n Read-only property which returns the ArrayBuffer referenced by the typed\n array.\n","Uint32Array.prototype.byteLength":"\nUint32Array.prototype.byteLength\n Read-only property which returns the length (in bytes) of the typed array.\n","Uint32Array.prototype.byteOffset":"\nUint32Array.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the typed array\n from the start of its ArrayBuffer.\n","Uint32Array.prototype.BYTES_PER_ELEMENT":"\nUint32Array.prototype.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Uint32Array.prototype.length":"\nUint32Array.prototype.length\n Read-only property which returns the number of view elements.\n","Uint32Array.prototype.copyWithin":"\nUint32Array.prototype.copyWithin( target:integer, start:integer[, end:integer] )\n Copies a sequence of elements within the array starting at `start` and\n ending at `end` (non-inclusive) to the position starting at `target`.\n","Uint32Array.prototype.entries":"\nUint32Array.prototype.entries()\n Returns an iterator for iterating over array key-value pairs.\n","Uint32Array.prototype.every":"\nUint32Array.prototype.every( predicate:Function[, thisArg:Any] )\n Tests whether all array elements pass a test implemented by a predicate\n function.\n","Uint32Array.prototype.fill":"\nUint32Array.prototype.fill( value:number[, start:integer[, end:integer]] )\n Fills an array from a start index to an end index (non-inclusive) with a\n provided value.\n","Uint32Array.prototype.filter":"\nUint32Array.prototype.filter( predicate:Function[, thisArg:Any] )\n Creates a new array which includes those elements for which a predicate\n function returns a truthy value.\n","Uint32Array.prototype.find":"\nUint32Array.prototype.find( predicate:Function[, thisArg:Any] )\n Returns the first array element for which a provided predicate function\n returns a truthy value.\n","Uint32Array.prototype.findIndex":"\nUint32Array.prototype.findIndex( predicate:Function[, thisArg:Any] )\n Returns the index of the first array element for which a provided predicate\n function returns a truthy value.\n","Uint32Array.prototype.forEach":"\nUint32Array.prototype.forEach( fcn:Function[, thisArg:Any] )\n Invokes a callback for each array element.\n","Uint32Array.prototype.includes":"\nUint32Array.prototype.includes( searchElement:number[, fromIndex:integer] )\n Returns a boolean indicating whether an array includes a search element.\n","Uint32Array.prototype.indexOf":"\nUint32Array.prototype.indexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the first array element strictly equal to a search\n element.\n","Uint32Array.prototype.join":"\nUint32Array.prototype.join( [separator:string] )\n Serializes an array by joining all array elements as a string.\n","Uint32Array.prototype.keys":"\nUint32Array.prototype.keys()\n Returns an iterator for iterating over array keys.\n","Uint32Array.prototype.lastIndexOf":"\nUint32Array.prototype.lastIndexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the last array element strictly equal to a search\n element.\n","Uint32Array.prototype.map":"\nUint32Array.prototype.map( fcn:Function[, thisArg:Any] )\n Maps each array element to an element in a new typed array.\n","Uint32Array.prototype.reduce":"\nUint32Array.prototype.reduce( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","Uint32Array.prototype.reduceRight":"\nUint32Array.prototype.reduceRight( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result, iterating from right to left.\n","Uint32Array.prototype.reverse":"\nUint32Array.prototype.reverse()\n Reverses an array *in-place*.\n","Uint32Array.prototype.set":"\nUint32Array.prototype.set( arr:ArrayLike[, offset:integer] )\n Sets array elements.\n","Uint32Array.prototype.slice":"\nUint32Array.prototype.slice( [begin:integer[, end:integer]] )\n Copies array elements to a new array with the same underlying data type as\n the host array.\n","Uint32Array.prototype.some":"\nUint32Array.prototype.some( predicate:Function[, thisArg:Any] )\n Tests whether at least one array element passes a test implemented by a\n predicate function.\n","Uint32Array.prototype.sort":"\nUint32Array.prototype.sort( [compareFunction:Function] )\n Sorts an array *in-place*.\n","Uint32Array.prototype.subarray":"\nUint32Array.prototype.subarray( [begin:integer[, end:integer]] )\n Creates a new typed array over the same underlying ArrayBuffer and with the\n same underlying data type as the host array.\n","Uint32Array.prototype.toLocaleString":"\nUint32Array.prototype.toLocaleString( [locales:string|Array[, options:Object]] )\n Serializes an array as a locale-specific string.\n","Uint32Array.prototype.toString":"\nUint32Array.prototype.toString()\n Serializes an array as a string.\n","Uint32Array.prototype.values":"\nUint32Array.prototype.values()\n Returns an iterator for iterating over array elements.\n","umask":"\numask( [mask:integer|string,] [options:Object] )\n Returns the current process mask, if not provided a mask; otherwise, sets\n the process mask and returns the previous mask.\n","uncapitalize":"\nuncapitalize( str:string )\n Lowercases the first character of a string.\n","uncapitalizeKeys":"\nuncapitalizeKeys( obj:Object )\n Converts the first letter of each object key to lowercase.\n","uncurry":"\nuncurry( fcn:Function[, arity:integer, ][thisArg:any] )\n Transforms a curried function into a function invoked with multiple\n arguments.\n","uncurryRight":"\nuncurryRight( fcn:Function[, arity:integer, ][thisArg:any] )\n Transforms a curried function into a function invoked with multiple\n arguments.\n","UNICODE_MAX":"\nUNICODE_MAX\n Maximum Unicode code point.\n","UNICODE_MAX_BMP":"\nUNICODE_MAX_BMP\n Maximum Unicode code point in the Basic Multilingual Plane (BMP).\n","UnicodeColumnChartSparkline":"\nUnicodeColumnChartSparkline( [data:ArrayLike|ndarray,] [options:Object] )\n Returns a sparkline column chart instance.\n","UnicodeLineChartSparkline":"\nUnicodeLineChartSparkline( [data:ArrayLike|ndarray,] [options:Object] )\n Returns a sparkline line chart instance.\n","UnicodeSparkline":"\nUnicodeSparkline( [data:ArrayLike|ndarray,] [options:Object] )\n Returns a Unicode sparkline instance.\n","UnicodeTristateChartSparkline":"\nUnicodeTristateChartSparkline( [data:ArrayLike|ndarray,] [options:Object] )\n Returns a sparkline tristate chart instance.\n","UnicodeUpDownChartSparkline":"\nUnicodeUpDownChartSparkline( [data:ArrayLike|ndarray,] [options:Object] )\n Returns a sparkline up/down chart instance.\n","UnicodeWinLossChartSparkline":"\nUnicodeWinLossChartSparkline( [data:ArrayLike|ndarray,] [options:Object] )\n Returns a sparkline win/loss chart instance.\n","unlink":"\nunlink( path:string|Buffer|integer, clbk:Function )\n Asynchronously removes a directory entry.\n","unlink.sync":"\nunlink.sync( path:string|Buffer|integer )\n Synchronously removes a directory entry.\n","unshift":"\nunshift( collection:Array|TypedArray|Object, ...items:any )\n Adds one or more elements to the beginning of a collection.\n","until":"\nuntil( predicate:Function, fcn:Function[, thisArg:any] )\n Invokes a function until a test condition is true.\n","untilAsync":"\nuntilAsync( predicate:Function, fcn:Function, done:Function[, thisArg:any] )\n Invokes a function until a test condition is true.\n","untilEach":"\nuntilEach( collection:Array|TypedArray|Object, predicate:Function, \n fcn:Function[, thisArg:any] )\n Until a test condition is true, invokes a function for each element in a\n collection.\n","untilEachRight":"\nuntilEachRight( collection:Array|TypedArray|Object, predicate:Function, \n fcn:Function[, thisArg:any] )\n Until a test condition is true, invokes a function for each element in a\n collection, iterating from right to left.\n","unzip":"\nunzip( arr:Array[, idx:Array] )\n Unzips a zipped array (i.e., a nested array of tuples).\n","uppercase":"\nuppercase( str:string )\n Converts a string to uppercase.\n","uppercaseKeys":"\nuppercaseKeys( obj:Object )\n Converts each object key to uppercase.\n","US_STATES_ABBR":"\nUS_STATES_ABBR()\n Returns a list of US state two-letter abbreviations in alphabetical order\n according to state name.\n","US_STATES_CAPITALS":"\nUS_STATES_CAPITALS()\n Returns a list of US state capitals in alphabetical order according to state\n name.\n","US_STATES_CAPITALS_NAMES":"\nUS_STATES_CAPITALS_NAMES()\n Returns an object mapping US state capitals to state names.\n","US_STATES_NAMES":"\nUS_STATES_NAMES()\n Returns a list of US state names in alphabetical order.\n","US_STATES_NAMES_CAPITALS":"\nUS_STATES_NAMES_CAPITALS()\n Returns an object mapping US state names to state capitals.\n","utf16ToUTF8Array":"\nutf16ToUTF8Array( str:string )\n Converts a UTF-16 encoded string to an array of integers using UTF-8\n encoding.\n","vartest":"\nvartest( x:Array, y:Array[, options:Object] )\n Computes a two-sample F-test for equal variances.\n","waterfall":"\nwaterfall( fcns:Array, clbk:Function[, thisArg:any] )\n Executes functions in series, passing the results of one function as\n arguments to the next function.\n","waterfall.factory":"\nwaterfall.factory( fcns:Array, clbk:Function[, thisArg:any] )\n Returns a reusable waterfall function.\n","whileAsync":"\nwhileAsync( predicate:Function, fcn:Function, done:Function[, thisArg:any] )\n Invokes a function while a test condition is true.\n","whileEach":"\nwhileEach( collection:Array|TypedArray|Object, predicate:Function, \n fcn:Function[, thisArg:any] )\n While a test condition is true, invokes a function for each element in a\n collection.\n","whileEachRight":"\nwhileEachRight( collection:Array|TypedArray|Object, predicate:Function, \n fcn:Function[, thisArg:any] )\n While a test condition is true, invokes a function for each element in a\n collection, iterating from right to left.\n","whilst":"\nwhilst( predicate:Function, fcn:Function[, thisArg:any] )\n Invokes a function while a test condition is true.\n","wilcoxon":"\nwilcoxon( x:Array|TypedArray[, y:Array|TypedArray][, options:Object] )\n Computes a one-sample or paired Wilcoxon signed rank test.\n","writableProperties":"\nwritableProperties( value:any )\n Returns an array of an object's own writable property names and symbols.\n","writablePropertiesIn":"\nwritablePropertiesIn( value:any )\n Returns an array of an object's own and inherited writable property names\n and symbols.\n","writablePropertyNames":"\nwritablePropertyNames( value:any )\n Returns an array of an object's own writable property names.\n","writablePropertyNamesIn":"\nwritablePropertyNamesIn( value:any )\n Returns an array of an object's own and inherited writable property names.\n","writablePropertySymbols":"\nwritablePropertySymbols( value:any )\n Returns an array of an object's own writable symbol properties.\n","writablePropertySymbolsIn":"\nwritablePropertySymbolsIn( value:any )\n Returns an array of an object's own and inherited writable symbol\n properties.\n","writeFile":"\nwriteFile( file:string|Buffer|integer, data:string|Buffer[, \n options:Object|string], clbk:Function )\n Asynchronously writes data to a file.\n","writeFile.sync":"\nwriteFile.sync( file:string|Buffer|integer, data:string|Buffer[, \n options:Object|string] )\n Synchronously writes data to a file.\n","zip":"\nzip( ...arr:Array[, options:Object] )\n Generates array tuples from input arrays.\n","ztest":"\nztest( x:Array, sigma:number[, options:Object] )\n Computes a one-sample z-test.\n","ztest2":"\nztest2( x:Array, y:Array, sigmax:number, sigmay:number[, \n options:Object] )\n Computes a two-sample z-test.\n"} \ No newline at end of file +{"abs":"\nabs( x:ndarray|ArrayLikeObject|number[, options:Object] )\n Computes the absolute value.\n","abs.assign":"\nabs.assign( x:ndarray|ArrayLikeObject, y:ndarray|ArrayLikeObject )\n Computes the absolute value and assigns results to a provided output array.\n","acronym":"\nacronym( str:string[, options:Object] )\n Generates an acronym for a given string.\n","AFINN_96":"\nAFINN_96()\n Returns a list of English words rated for valence.\n","AFINN_111":"\nAFINN_111()\n Returns a list of English words rated for valence.\n","afull":"\nafull( length:integer, value:any[, dtype:string] )\n Returns a filled array having a specified length.\n","afullLike":"\nafullLike( x:TypedArray|Array[, dtype:string] )\n Returns a filled array having the same length and data type as a provided\n input array.\n","alias2pkg":"\nalias2pkg( alias:string )\n Returns the package name associated with a provided alias.\n","alias2related":"\nalias2related( alias:string )\n Returns aliases related to a specified alias.\n","alias2standalone":"\nalias2standalone( alias:string )\n Returns the standalone package name associated with a provided alias.\n","aliases":"\naliases( [namespace:string] )\n Returns a list of standard library aliases.\n","allocUnsafe":"\nallocUnsafe( size:integer )\n Allocates a buffer having a specified number of bytes.\n","anova1":"\nanova1( x:Array, factor:Array[, options:Object] )\n Performs a one-way analysis of variance.\n","ANSCOMBES_QUARTET":"\nANSCOMBES_QUARTET()\n Returns Anscombe's quartet.\n","any":"\nany( collection:Array|TypedArray|Object )\n Tests whether at least one element in a collection is truthy.\n","anyBy":"\nanyBy( collection:Array|TypedArray|Object, predicate:Function[, thisArg:any ] )\n Tests whether at least one element in a collection passes a test implemented\n by a predicate function.\n","anyByAsync":"\nanyByAsync( collection:Array|TypedArray|Object, [options:Object,] \n predicate:Function, done:Function )\n Tests whether at least one element in a collection passes a test implemented\n by a predicate function.\n","anyByAsync.factory":"\nanyByAsync.factory( [options:Object,] predicate:Function )\n Returns a function which tests whether at least one element in a collection\n passes a test implemented by a predicate function.\n","anyByRight":"\nanyByRight( collection:Array|TypedArray|Object, predicate:Function[, \n thisArg:any ] )\n Tests whether at least one element in a collection passes a test implemented\n by a predicate function, iterating from right to left.\n","anyByRightAsync":"\nanyByRightAsync( collection:Array|TypedArray|Object, [options:Object,] \n predicate:Function, done:Function )\n Tests whether at least one element in a collection passes a test implemented\n by a predicate function, iterating from right to left.\n","anyByRightAsync.factory":"\nanyByRightAsync.factory( [options:Object,] predicate:Function )\n Returns a function which tests whether at least one element in a collection\n passes a test implemented by a predicate function, iterating from right to\n left.\n","aones":"\naones( length:integer[, dtype:string] )\n Returns an array filled with ones and having a specified length.\n","aonesLike":"\naonesLike( x:TypedArray|Array[, dtype:string] )\n Returns an array filled with ones and having the same length and data type\n as a provided input array.\n","APERY":"\nAPERY\n Apéry's constant.\n","append":"\nappend( collection1:Array|TypedArray|Object, \n collection2:Array|TypedArray|Object )\n Adds the elements of one collection to the end of another collection.\n","ARCH":"\nARCH\n Operating system CPU architecture.\n","argumentFunction":"\nargumentFunction( idx:integer )\n Returns a function which always returns a specified argument.\n","ARGV":"\nARGV\n An array containing command-line arguments passed when launching the calling\n process.\n","array":"\narray( [buffer:Array|TypedArray|Buffer|ndarray,] [options:Object] )\n Returns a multidimensional array.\n","array2buffer":"\narray2buffer( arr:Array )\n Allocates a buffer using an octet array.\n","array2iterator":"\narray2iterator( src:ArrayLikeObject[, mapFcn:Function[, thisArg:any]] )\n Returns an iterator which iterates over the elements of an array-like\n object.\n","array2iteratorRight":"\narray2iteratorRight( src:ArrayLikeObject[, mapFcn:Function[, thisArg:any]] )\n Returns an iterator which iterates from right to left over the elements of\n an array-like object.\n","ArrayBuffer":"\nArrayBuffer( size:integer )\n Returns an array buffer having a specified number of bytes.\n","ArrayBuffer.length":"\nArrayBuffer.length\n Number of input arguments the constructor accepts.\n","ArrayBuffer.isView":"\nArrayBuffer.isView( arr:any )\n Returns a boolean indicating if provided an array buffer view.\n","ArrayBuffer.prototype.byteLength":"\nArrayBuffer.prototype.byteLength\n Read-only property which returns the length (in bytes) of the array buffer.\n","ArrayBuffer.prototype.slice":"\nArrayBuffer.prototype.slice( [start:integer[, end:integer]] )\n Copies the bytes of an array buffer to a new array buffer.\n","arraybuffer2buffer":"\narraybuffer2buffer( buf:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Allocates a buffer from an ArrayBuffer.\n","arrayCtors":"\narrayCtors( dtype:string )\n Returns an array constructor.\n","arrayDataType":"\narrayDataType( array:any )\n Returns the data type of an array.\n","arrayDataTypes":"\narrayDataTypes()\n Returns a list of array data types.\n","arrayMinDataType":"\narrayMinDataType( value:any )\n Returns the minimum array data type of the closest \"kind\" necessary for\n storing a provided scalar value.\n","arrayNextDataType":"\narrayNextDataType( [dtype:string] )\n Returns the next larger array data type of the same kind.\n","arrayPromotionRules":"\narrayPromotionRules( [dtype1:string, dtype2:string] )\n Returns the array data type with the smallest size and closest \"kind\" to\n which array data types can be safely cast.\n","arraySafeCasts":"\narraySafeCasts( [dtype:string] )\n Returns a list of array data types to which a provided array data type can\n be safely cast.\n","arraySameKindCasts":"\narraySameKindCasts( [dtype:string] )\n Returns a list of array data types to which a provided array data type can\n be safely cast or cast within the same \"kind\".\n","arrayShape":"\narrayShape( arr:ArrayLikeObject )\n Determines array dimensions.\n","arrayStream":"\narrayStream( src:ArrayLikeObject[, options:Object] )\n Creates a readable stream from an array-like object.\n","arrayStream.factory":"\narrayStream.factory( [options:Object] )\n Returns a function for creating readable streams from array-like objects.\n","arrayStream.objectMode":"\narrayStream.objectMode( src:ArrayLikeObject[, options:Object] )\n Returns an \"objectMode\" readable stream from an array-like object.\n","arrayview2iterator":"\narrayview2iterator( src:ArrayLikeObject[, begin:integer[, end:integer]][, \n mapFcn:Function[, thisArg:any]] )\n Returns an iterator which iterates over the elements of an array-like object\n view.\n","arrayview2iteratorRight":"\narrayview2iteratorRight( src:ArrayLikeObject[, begin:integer[, end:integer]][, \n mapFcn:Function[, thisArg:any]] )\n Returns an iterator which iterates from right to left over the elements of\n an array-like object view.\n","AsyncIteratorSymbol":"\nAsyncIteratorSymbol\n Async iterator symbol.\n","azeros":"\nazeros( length:integer[, dtype:string] )\n Returns a zero-filled array having a specified length.\n","azerosLike":"\nazerosLike( x:TypedArray|Array[, dtype:string] )\n Returns a zero-filled array having the same length and data type as a\n provided input array.\n","bartlettTest":"\nbartlettTest( ...x:Array[, options:Object] )\n Computes Bartlett’s test for equal variances.\n","base.abs":"\nbase.abs( x:number )\n Computes the absolute value of a double-precision floating-point number `x`.\n","base.abs2":"\nbase.abs2( x:number )\n Computes the squared absolute value of a double-precision floating-point\n `x`.\n","base.abs2f":"\nbase.abs2f( x:number )\n Computes the squared absolute value of a single-precision floating-point\n `x`.\n","base.absdiff":"\nbase.absdiff( x:number, y:number )\n Computes the absolute difference.\n","base.absf":"\nbase.absf( x:number )\n Computes the absolute value of a single-precision floating-point number `x`.\n","base.acos":"\nbase.acos( x:number )\n Compute the arccosine of a number.\n","base.acosh":"\nbase.acosh( x:number )\n Computes the hyperbolic arccosine of a number.\n","base.acot":"\nbase.acot( x:number )\n Computes the inverse cotangent of a number.\n","base.acoth":"\nbase.acoth( x:number )\n Computes the inverse hyperbolic cotangent of a number.\n","base.acovercos":"\nbase.acovercos( x:number )\n Computes the inverse coversed cosine.\n","base.acoversin":"\nbase.acoversin( x:number )\n Computes the inverse coversed sine.\n","base.acsc":"\nbase.acsc( x:number )\n Computes the arccosecant of a number.\n","base.acsch":"\nbase.acsch( x:number )\n Computes the hyperbolic arccosecant of a number.\n","base.add":"\nbase.add( x:number, y:number )\n Computes the sum of two double-precision floating-point numbers `x` and `y`.\n","base.addf":"\nbase.addf( x:number, y:number )\n Computes the sum of two single-precision floating-point numbers `x` and `y`.\n","base.ahavercos":"\nbase.ahavercos( x:number )\n Computes the inverse half-value versed cosine.\n","base.ahaversin":"\nbase.ahaversin( x:number )\n Computes the inverse half-value versed sine.\n","base.asec":"\nbase.asec( x:number )\n Computes the inverse (arc) secant of a number.\n","base.asech":"\nbase.asech( x:number )\n Computes the hyperbolic arcsecant of a number.\n","base.asin":"\nbase.asin( x:number )\n Computes the arcsine of a number.\n","base.asinh":"\nbase.asinh( x:number )\n Computes the hyperbolic arcsine of a number.\n","base.atan":"\nbase.atan( x:number )\n Computes the arctangent of a number.\n","base.atan2":"\nbase.atan2( y:number, x:number )\n Computes the angle in the plane (in radians) between the positive x-axis and\n the ray from (0,0) to the point (x,y).\n","base.atanh":"\nbase.atanh( x:number )\n Computes the hyperbolic arctangent of a number.\n","base.avercos":"\nbase.avercos( x:number )\n Computes the inverse versed cosine.\n","base.aversin":"\nbase.aversin( x:number )\n Computes the inverse versed sine.\n","base.bernoulli":"\nbase.bernoulli( n:integer )\n Computes the nth Bernoulli number.\n","base.besselj0":"\nbase.besselj0( x:number )\n Computes the Bessel function of the first kind of order zero.\n","base.besselj1":"\nbase.besselj1( x:number )\n Computes the Bessel function of the first kind of order one.\n","base.bessely0":"\nbase.bessely0( x:number )\n Computes the Bessel function of the second kind of order zero.\n","base.bessely1":"\nbase.bessely1( x:number )\n Computes the Bessel function of the second kind of order one.\n","base.beta":"\nbase.beta( x:number, y:number )\n Evaluates the beta function.\n","base.betainc":"\nbase.betainc( x:number, a:number, b:number[, regularized:boolean[, \n upper:boolean]] )\n Computes the regularized incomplete beta function.\n","base.betaincinv":"\nbase.betaincinv( p:number, a:number, b:number[, upper:boolean] )\n Computes the inverse of the lower incomplete beta function.\n","base.betaln":"\nbase.betaln( a:number, b:number )\n Evaluates the natural logarithm of the beta function.\n","base.binet":"\nbase.binet( x:number )\n Evaluates Binet's formula extended to real numbers.\n","base.binomcoef":"\nbase.binomcoef( n:integer, k:integer )\n Computes the binomial coefficient of two integers.\n","base.binomcoefln":"\nbase.binomcoefln( n:integer, k:integer )\n Computes the natural logarithm of the binomial coefficient of two integers.\n","base.boxcox":"\nbase.boxcox( x:number, lambda:number )\n Computes a one-parameter Box-Cox transformation.\n","base.boxcox1p":"\nbase.boxcox1p( x:number, lambda:number )\n Computes a one-parameter Box-Cox transformation of 1+x.\n","base.boxcox1pinv":"\nbase.boxcox1pinv( y:number, lambda:number )\n Computes the inverse of a one-parameter Box-Cox transformation for 1+x.\n","base.boxcoxinv":"\nbase.boxcoxinv( y:number, lambda:number )\n Computes the inverse of a one-parameter Box-Cox transformation.\n","base.cabs":"\nbase.cabs( z:Complex128 )\n Computes the absolute value of a double-precision complex floating-point\n number.\n","base.cabs2":"\nbase.cabs2( z:Complex128 )\n Computes the squared absolute value of a double-precision complex floating-\n point number.\n","base.cabs2f":"\nbase.cabs2f( z:Complex64 )\n Computes the squared absolute value of a single-precision complex floating-\n point number.\n","base.cabsf":"\nbase.cabsf( z:Complex64 )\n Computes the absolute value of a single-precision complex floating-point\n number.\n","base.cadd":"\nbase.cadd( z1:Complex128, z2:Complex128 )\n Adds two double-precision complex floating-point numbers.\n","base.caddf":"\nbase.caddf( z1:Complex64, z2:Complex64 )\n Adds two single-precision complex floating-point numbers.\n","base.cbrt":"\nbase.cbrt( x:number )\n Computes the cube root of a double-precision floating-point number.\n","base.cbrtf":"\nbase.cbrtf( x:number )\n Computes the cube root of a single-precision floating-point number.\n","base.cceil":"\nbase.cceil( z:Complex128 )\n Rounds a double-precision complex floating-point number toward positive\n infinity.\n","base.cceilf":"\nbase.cceilf( z:Complex64 )\n Rounds a single-precision complex floating-point number toward positive\n infinity.\n","base.cceiln":"\nbase.cceiln( [out:Array|TypedArray|Object,] re:number, im:number, n:integer )\n Rounds a complex number to the nearest multiple of `10^n` toward positive\n infinity.\n","base.ccis":"\nbase.ccis( [out:Array|TypedArray|Object,] re:number, im:number )\n Computes the cis function of a complex number.\n","base.cdiv":"\nbase.cdiv( [out:Array|TypedArray|Object,] re1:number, im1:number, re2:number, \n im2:number )\n Divides two complex numbers.\n","base.ceil":"\nbase.ceil( x:number )\n Rounds a double-precision floating-point number toward positive infinity.\n","base.ceil2":"\nbase.ceil2( x:number )\n Rounds a numeric value to the nearest power of two toward positive infinity.\n","base.ceil10":"\nbase.ceil10( x:number )\n Rounds a numeric value to the nearest power of ten toward positive infinity.\n","base.ceilb":"\nbase.ceilb( x:number, n:integer, b:integer )\n Rounds a numeric value to the nearest multiple of `b^n` toward positive\n infinity.\n","base.ceilf":"\nbase.ceilf( x:number )\n Rounds a single-precision floating-point number toward positive infinity.\n","base.ceiln":"\nbase.ceiln( x:number, n:integer )\n Rounds a numeric value to the nearest multiple of `10^n` toward positive\n infinity.\n","base.ceilsd":"\nbase.ceilsd( x:number, n:integer[, b:integer] )\n Rounds a numeric value to the nearest number toward positive infinity with\n `n` significant figures.\n","base.cexp":"\nbase.cexp( [out:Array|TypedArray|Object,] re:number, im:number )\n Computes the exponential function of a complex number.\n","base.cflipsign":"\nbase.cflipsign( z:Complex128, y:number )\n Returns a double-precision complex floating-point number with the same\n magnitude as `z` and the sign of `y*z`.\n","base.cflipsignf":"\nbase.cflipsignf( z:Complex64, y:number )\n Returns a single-precision complex floating-point number with the same\n magnitude as `z` and the sign of `y*z`.\n","base.cfloor":"\nbase.cfloor( [out:Array|TypedArray|Object,] re:number, im:number )\n Rounds a complex number toward negative infinity.\n","base.cfloorn":"\nbase.cfloorn( [out:Array|TypedArray|Object,] re:number, im:number, n:integer )\n Rounds a complex number to the nearest multiple of `10^n` toward negative\n infinity.\n","base.cidentity":"\nbase.cidentity( z:Complex128 )\n Evaluates the identity function for a double-precision complex floating-\n point number.\n","base.cidentityf":"\nbase.cidentityf( z:Complex64 )\n Evaluates the identity function for a single-precision complex floating-\n point number.\n","base.cinv":"\nbase.cinv( [out:Array|TypedArray|Object,] re:number, im:number )\n Computes the inverse of a complex number.\n","base.clamp":"\nbase.clamp( v:number, min:number, max:number )\n Restricts a double-precision floating-point number to a specified range.\n","base.clampf":"\nbase.clampf( v:number, min:number, max:number )\n Restricts a single-precision floating-point number to a specified range.\n","base.cmul":"\nbase.cmul( z1:Complex128, z2:Complex128 )\n Multiplies two double-precision complex floating-point numbers.\n","base.cmulf":"\nbase.cmulf( z1:Complex64, z2:Complex64 )\n Multiplies two single-precision complex floating-point numbers.\n","base.cneg":"\nbase.cneg( [out:Array|TypedArray|Object,] re:number, im:number )\n Negates a complex number.\n","base.continuedFraction":"\nbase.continuedFraction( generator:Function[, options:Object] )\n Evaluates the continued fraction approximation for the supplied series\n generator using the modified Lentz algorithm.\n","base.copysign":"\nbase.copysign( x:number, y:number )\n Returns a double-precision floating-point number with the magnitude of `x`\n and the sign of `y`.\n","base.copysignf":"\nbase.copysignf( x:number, y:number )\n Returns a single-precision floating-point number with the magnitude of `x`\n and the sign of `y`.\n","base.cos":"\nbase.cos( x:number )\n Computes the cosine of a number.\n","base.cosh":"\nbase.cosh( x:number )\n Computes the hyperbolic cosine of a number.\n","base.cosm1":"\nbase.cosm1( x:number )\n Computes the cosine of a number minus one.\n","base.cospi":"\nbase.cospi( x:number )\n Computes the value of `cos(πx)`.\n","base.cot":"\nbase.cot( x:number )\n Computes the cotangent of a number.\n","base.coth":"\nbase.coth( x:number )\n Computes the hyperbolic cotangent of a number.\n","base.covercos":"\nbase.covercos( x:number )\n Computes the coversed cosine.\n","base.coversin":"\nbase.coversin( x:number )\n Computes the coversed sine.\n","base.cphase":"\nbase.cphase( re:number, im:number )\n Computes the argument of a complex number in radians.\n","base.cpolar":"\nbase.cpolar( [out:Array|TypedArray|Object,] re:number, im:number )\n Returns the absolute value and phase of a complex number.\n","base.cround":"\nbase.cround( [out:Array|TypedArray|Object,] re:number, im:number )\n Rounds a complex number to the nearest integer.\n","base.croundn":"\nbase.croundn( [out:Array|TypedArray|Object,] re:number, im:number, n:integer )\n Rounds a complex number to the nearest multiple of `10^n`.\n","base.csch":"\nbase.csch( x:number )\n Computes the hyperbolic cosecant of a number.\n","base.csignum":"\nbase.csignum( [out:Array|TypedArray|Object,] re:number, im:number )\n Evaluates the signum function of a complex number.\n","base.csub":"\nbase.csub( z1:Complex128, z2:Complex128 )\n Subtracts two double-precision complex floating-point numbers.\n","base.csubf":"\nbase.csubf( z1:Complex64, z2:Complex64 )\n Subtracts two single-precision complex floating-point numbers.\n","base.deg2rad":"\nbase.deg2rad( x:number )\n Converts an angle from degrees to radians.\n","base.deg2radf":"\nbase.deg2radf( x:number )\n Converts an angle from degrees to radians (single-precision).\n","base.digamma":"\nbase.digamma( x:number )\n Evaluates the digamma function.\n","base.diracDelta":"\nbase.diracDelta( x:number )\n Evaluates the Dirac delta function.\n","base.dists.arcsine.Arcsine":"\nbase.dists.arcsine.Arcsine( [a:number, b:number] )\n Returns an arcsine distribution object.\n","base.dists.arcsine.cdf":"\nbase.dists.arcsine.cdf( x:number, a:number, b:number )\n Evaluates the cumulative distribution function (CDF) for an arcsine\n distribution with minimum support `a` and maximum support `b` at a value\n `x`.\n","base.dists.arcsine.cdf.factory":"\nbase.dists.arcsine.cdf.factory( a:number, b:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of an arcsine distribution with minimum support `a` and maximum support `b`.\n","base.dists.arcsine.entropy":"\nbase.dists.arcsine.entropy( a:number, b:number )\n Returns the differential entropy of an arcsine distribution (in nats).\n","base.dists.arcsine.kurtosis":"\nbase.dists.arcsine.kurtosis( a:number, b:number )\n Returns the excess kurtosis of an arcsine distribution.\n","base.dists.arcsine.logcdf":"\nbase.dists.arcsine.logcdf( x:number, a:number, b:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for an\n arcsine distribution with minimum support `a` and maximum support `b` at a\n value `x`.\n","base.dists.arcsine.logcdf.factory":"\nbase.dists.arcsine.logcdf.factory( a:number, b:number )\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of an arcsine distribution with minimum support\n `a` and maximum support `b`.\n","base.dists.arcsine.logpdf":"\nbase.dists.arcsine.logpdf( x:number, a:number, b:number )\n Evaluates the logarithm of the probability density function (PDF) for an\n arcsine distribution with minimum support `a` and maximum support `b` at a\n value `x`.\n","base.dists.arcsine.logpdf.factory":"\nbase.dists.arcsine.logpdf.factory( a:number, b:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of an arcsine distribution with minimum support `a` and\n maximum support `b`.\n","base.dists.arcsine.mean":"\nbase.dists.arcsine.mean( a:number, b:number )\n Returns the expected value of an arcsine distribution.\n","base.dists.arcsine.median":"\nbase.dists.arcsine.median( a:number, b:number )\n Returns the median of an arcsine distribution.\n","base.dists.arcsine.mode":"\nbase.dists.arcsine.mode( a:number, b:number )\n Returns the mode of an arcsine distribution.\n","base.dists.arcsine.pdf":"\nbase.dists.arcsine.pdf( x:number, a:number, b:number )\n Evaluates the probability density function (PDF) for an arcsine distribution\n with minimum support `a` and maximum support `b` at a value `x`.\n","base.dists.arcsine.pdf.factory":"\nbase.dists.arcsine.pdf.factory( a:number, b:number )\n Returns a function for evaluating the probability density function (PDF) of\n an arcsine distribution with minimum support `a` and maximum support `b`.\n","base.dists.arcsine.quantile":"\nbase.dists.arcsine.quantile( p:number, a:number, b:number )\n Evaluates the quantile function for an arcsine distribution with minimum\n support `a` and maximum support `b` at a probability `p`.\n","base.dists.arcsine.quantile.factory":"\nbase.dists.arcsine.quantile.factory( a:number, b:number )\n Returns a function for evaluating the quantile function of an arcsine\n distribution with minimum support `a` and maximum support `b`.\n","base.dists.arcsine.skewness":"\nbase.dists.arcsine.skewness( a:number, b:number )\n Returns the skewness of an arcsine distribution.\n","base.dists.arcsine.stdev":"\nbase.dists.arcsine.stdev( a:number, b:number )\n Returns the standard deviation of an arcsine distribution.\n","base.dists.arcsine.variance":"\nbase.dists.arcsine.variance( a:number, b:number )\n Returns the variance of an arcsine distribution.\n","base.dists.bernoulli.Bernoulli":"\nbase.dists.bernoulli.Bernoulli( [p:number] )\n Returns a Bernoulli distribution object.\n","base.dists.bernoulli.cdf":"\nbase.dists.bernoulli.cdf( x:number, p:number )\n Evaluates the cumulative distribution function (CDF) for a Bernoulli\n distribution with success probability `p` at a value `x`.\n","base.dists.bernoulli.cdf.factory":"\nbase.dists.bernoulli.cdf.factory( p:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Bernoulli distribution with success probability `p`.\n","base.dists.bernoulli.entropy":"\nbase.dists.bernoulli.entropy( p:number )\n Returns the entropy of a Bernoulli distribution with success probability\n `p` (in nats).\n","base.dists.bernoulli.kurtosis":"\nbase.dists.bernoulli.kurtosis( p:number )\n Returns the excess kurtosis of a Bernoulli distribution with success\n probability `p`.\n","base.dists.bernoulli.mean":"\nbase.dists.bernoulli.mean( p:number )\n Returns the expected value of a Bernoulli distribution with success\n probability `p`.\n","base.dists.bernoulli.median":"\nbase.dists.bernoulli.median( p:number )\n Returns the median of a Bernoulli distribution with success probability `p`.\n","base.dists.bernoulli.mgf":"\nbase.dists.bernoulli.mgf( t:number, p:number )\n Evaluates the moment-generating function (MGF) for a Bernoulli\n distribution with success probability `p` at a value `t`.\n","base.dists.bernoulli.mgf.factory":"\nbase.dists.bernoulli.mgf.factory( p:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n Bernoulli distribution with success probability `p`.\n","base.dists.bernoulli.mode":"\nbase.dists.bernoulli.mode( p:number )\n Returns the mode of a Bernoulli distribution with success probability `p`.\n","base.dists.bernoulli.pmf":"\nbase.dists.bernoulli.pmf( x:number, p:number )\n Evaluates the probability mass function (PMF) for a Bernoulli distribution\n with success probability `p` at a value `x`.\n","base.dists.bernoulli.pmf.factory":"\nbase.dists.bernoulli.pmf.factory( p:number )\n Returns a function for evaluating the probability mass function (PMF) of a\n Bernoulli distribution with success probability `p`.\n","base.dists.bernoulli.quantile":"\nbase.dists.bernoulli.quantile( r:number, p:number )\n Evaluates the quantile function for a Bernoulli distribution with success\n probability `p` at a probability `r`.\n","base.dists.bernoulli.quantile.factory":"\nbase.dists.bernoulli.quantile.factory( p:number )\n Returns a function for evaluating the quantile function of a Bernoulli\n distribution with success probability `p`.\n","base.dists.bernoulli.skewness":"\nbase.dists.bernoulli.skewness( p:number )\n Returns the skewness of a Bernoulli distribution with success probability\n `p`.\n","base.dists.bernoulli.stdev":"\nbase.dists.bernoulli.stdev( p:number )\n Returns the standard deviation of a Bernoulli distribution with success\n probability `p`.\n","base.dists.bernoulli.variance":"\nbase.dists.bernoulli.variance( p:number )\n Returns the variance of a Bernoulli distribution with success probability\n `p`.\n","base.dists.beta.Beta":"\nbase.dists.beta.Beta( [α:number, β:number] )\n Returns a beta distribution object.\n","base.dists.beta.cdf":"\nbase.dists.beta.cdf( x:number, α:number, β:number )\n Evaluates the cumulative distribution function (CDF) for a beta distribution\n with first shape parameter `α` and second shape parameter `β` at a value\n `x`.\n","base.dists.beta.cdf.factory":"\nbase.dists.beta.cdf.factory( α:number, β:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a beta distribution with first shape parameter `α` and second shape\n parameter `β`.\n","base.dists.beta.entropy":"\nbase.dists.beta.entropy( α:number, β:number )\n Returns the differential entropy of a beta distribution.\n","base.dists.beta.kurtosis":"\nbase.dists.beta.kurtosis( α:number, β:number )\n Returns the excess kurtosis of a beta distribution.\n","base.dists.beta.logcdf":"\nbase.dists.beta.logcdf( x:number, α:number, β:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for a beta distribution with first shape parameter `α` and second\n shape parameter `β` at a value `x`.\n","base.dists.beta.logcdf.factory":"\nbase.dists.beta.logcdf.factory( α:number, β:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a beta distribution with first shape\n parameter `α` and second shape parameter `β`.\n","base.dists.beta.logpdf":"\nbase.dists.beta.logpdf( x:number, α:number, β:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for a beta distribution with first shape parameter `α` and second shape\n parameter `β` at a value `x`.\n","base.dists.beta.logpdf.factory":"\nbase.dists.beta.logpdf.factory( α:number, β:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of a beta distribution with first shape parameter `α`\n and second shape parameter `β`.\n","base.dists.beta.mean":"\nbase.dists.beta.mean( α:number, β:number )\n Returns the expected value of a beta distribution.\n","base.dists.beta.median":"\nbase.dists.beta.median( α:number, β:number )\n Returns the median of a beta distribution.\n","base.dists.beta.mgf":"\nbase.dists.beta.mgf( t:number, α:number, β:number )\n Evaluates the moment-generating function (MGF) for a beta distribution with\n first shape parameter `α` and second shape parameter `β` at a value `t`.\n","base.dists.beta.mgf.factory":"\nbase.dists.beta.mgf.factory( α:number, β:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n beta distribution with first shape parameter `α` and second shape parameter\n `β`.\n","base.dists.beta.mode":"\nbase.dists.beta.mode( α:number, β:number )\n Returns the mode of a beta distribution.\n","base.dists.beta.pdf":"\nbase.dists.beta.pdf( x:number, α:number, β:number )\n Evaluates the probability density function (PDF) for a beta distribution\n with first shape parameter `α` and second shape parameter `β` at a value\n `x`.\n","base.dists.beta.pdf.factory":"\nbase.dists.beta.pdf.factory( α:number, β:number )\n Returns a function for evaluating the probability density function (PDF) of\n a beta distribution with first shape parameter `α` and second shape\n parameter `β`.\n","base.dists.beta.quantile":"\nbase.dists.beta.quantile( p:number, α:number, β:number )\n Evaluates the quantile function for a beta distribution with first shape\n parameter `α` and second shape parameter `β` at a probability `p`.\n","base.dists.beta.quantile.factory":"\nbase.dists.beta.quantile.factory( α:number, β:number )\n Returns a function for evaluating the quantile function of a beta\n distribution with first shape parameter `α` and second shape parameter `β`.\n","base.dists.beta.skewness":"\nbase.dists.beta.skewness( α:number, β:number )\n Returns the skewness of a beta distribution.\n","base.dists.beta.stdev":"\nbase.dists.beta.stdev( α:number, β:number )\n Returns the standard deviation of a beta distribution.\n","base.dists.beta.variance":"\nbase.dists.beta.variance( α:number, β:number )\n Returns the variance of a beta distribution.\n","base.dists.betaprime.BetaPrime":"\nbase.dists.betaprime.BetaPrime( [α:number, β:number] )\n Returns a beta prime distribution object.\n","base.dists.betaprime.cdf":"\nbase.dists.betaprime.cdf( x:number, α:number, β:number )\n Evaluates the cumulative distribution function (CDF) for a beta prime\n distribution with first shape parameter `α` and second shape parameter `β`\n at a value `x`.\n","base.dists.betaprime.cdf.factory":"\nbase.dists.betaprime.cdf.factory( α:number, β:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a beta prime distribution with first shape parameter `α` and second shape\n parameter `β`.\n","base.dists.betaprime.kurtosis":"\nbase.dists.betaprime.kurtosis( α:number, β:number )\n Returns the excess kurtosis of a beta prime distribution.\n","base.dists.betaprime.logcdf":"\nbase.dists.betaprime.logcdf( x:number, α:number, β:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for a beta prime distribution with first shape parameter `α` and\n second shape parameter `β` at a value `x`.\n","base.dists.betaprime.logcdf.factory":"\nbase.dists.betaprime.logcdf.factory( α:number, β:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a beta prime distribution with first shape\n parameter `α` and second shape parameter `β`.\n","base.dists.betaprime.logpdf":"\nbase.dists.betaprime.logpdf( x:number, α:number, β:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for a beta prime distribution with first shape parameter `α` and second\n shape parameter `β` at a value `x`.\n","base.dists.betaprime.logpdf.factory":"\nbase.dists.betaprime.logpdf.factory( α:number, β:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of a beta prime distribution with first shape\n parameter `α` and second shape parameter `β`.\n","base.dists.betaprime.mean":"\nbase.dists.betaprime.mean( α:number, β:number )\n Returns the expected value of a beta prime distribution.\n","base.dists.betaprime.mode":"\nbase.dists.betaprime.mode( α:number, β:number )\n Returns the mode of a beta prime distribution.\n","base.dists.betaprime.pdf":"\nbase.dists.betaprime.pdf( x:number, α:number, β:number )\n Evaluates the probability density function (PDF) for a beta prime\n distribution with first shape parameter `α` and second shape parameter `β`\n at a value `x`.\n","base.dists.betaprime.pdf.factory":"\nbase.dists.betaprime.pdf.factory( α:number, β:number )\n Returns a function for evaluating the probability density function (PDF) of\n a beta prime distribution with first shape parameter `α` and second shape\n parameter `β`.\n","base.dists.betaprime.quantile":"\nbase.dists.betaprime.quantile( p:number, α:number, β:number )\n Evaluates the quantile function for a beta prime distribution with first\n shape parameter `α` and second shape parameter `β` at a probability `p`.\n","base.dists.betaprime.quantile.factory":"\nbase.dists.betaprime.quantile.factory( α:number, β:number )\n Returns a function for evaluating the quantile function of a beta prime\n distribution with first shape parameter `α` and second shape parameter `β`.\n","base.dists.betaprime.skewness":"\nbase.dists.betaprime.skewness( α:number, β:number )\n Returns the skewness of a beta prime distribution.\n","base.dists.betaprime.stdev":"\nbase.dists.betaprime.stdev( α:number, β:number )\n Returns the standard deviation of a beta prime distribution.\n","base.dists.betaprime.variance":"\nbase.dists.betaprime.variance( α:number, β:number )\n Returns the variance of a beta prime distribution.\n","base.dists.binomial.Binomial":"\nbase.dists.binomial.Binomial( [n:integer, p:number] )\n Returns a binomial distribution object.\n","base.dists.binomial.cdf":"\nbase.dists.binomial.cdf( x:number, n:integer, p:number )\n Evaluates the cumulative distribution function (CDF) for a binomial\n distribution with number of trials `n` and success probability `p` at a\n value `x`.\n","base.dists.binomial.cdf.factory":"\nbase.dists.binomial.cdf.factory( n:integer, p:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a binomial distribution with number of trials `n` and success probability\n `p`.\n","base.dists.binomial.entropy":"\nbase.dists.binomial.entropy( n:integer, p:number )\n Returns the entropy of a binomial distribution.\n","base.dists.binomial.kurtosis":"\nbase.dists.binomial.kurtosis( n:integer, p:number )\n Returns the excess kurtosis of a binomial distribution.\n","base.dists.binomial.logpmf":"\nbase.dists.binomial.logpmf( x:number, n:integer, p:number )\n Evaluates the natural logarithm of the probability mass function (PMF) for a\n binomial distribution with number of trials `n` and success probability `p`\n at a value `x`.\n","base.dists.binomial.logpmf.factory":"\nbase.dists.binomial.logpmf.factory( n:integer, p:number )\n Returns a function for evaluating the natural logarithm of the probability\n mass function (PMF) of a binomial distribution with number of trials `n` and\n success probability `p`.\n","base.dists.binomial.mean":"\nbase.dists.binomial.mean( n:integer, p:number )\n Returns the expected value of a binomial distribution.\n","base.dists.binomial.median":"\nbase.dists.binomial.median( n:integer, p:number )\n Returns the median of a binomial distribution.\n","base.dists.binomial.mgf":"\nbase.dists.binomial.mgf( t:number, n:integer, p:number )\n Evaluates the moment-generating function (MGF) for a binomial distribution\n with number of trials `n` and success probability `p` at a value `t`.\n","base.dists.binomial.mgf.factory":"\nbase.dists.binomial.mgf.factory( n:integer, p:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n binomial distribution with number of trials `n` and success probability `p`.\n","base.dists.binomial.mode":"\nbase.dists.binomial.mode( n:integer, p:number )\n Returns the mode of a binomial distribution.\n","base.dists.binomial.pmf":"\nbase.dists.binomial.pmf( x:number, n:integer, p:number )\n Evaluates the probability mass function (PMF) for a binomial distribution\n with number of trials `n` and success probability `p` at a value `x`.\n","base.dists.binomial.pmf.factory":"\nbase.dists.binomial.pmf.factory( n:integer, p:number )\n Returns a function for evaluating the probability mass function (PMF) of a\n binomial distribution with number of trials `n` and success probability `p`.\n","base.dists.binomial.quantile":"\nbase.dists.binomial.quantile( r:number, n:integer, p:number )\n Evaluates the quantile function for a binomial distribution with number of\n trials `n` and success probability `p` at a probability `r`.\n","base.dists.binomial.quantile.factory":"\nbase.dists.binomial.quantile.factory( n:integer, p:number )\n Returns a function for evaluating the quantile function of a binomial\n distribution with number of trials `n` and success probability `p`.\n","base.dists.binomial.skewness":"\nbase.dists.binomial.skewness( n:integer, p:number )\n Returns the skewness of a binomial distribution.\n","base.dists.binomial.stdev":"\nbase.dists.binomial.stdev( n:integer, p:number )\n Returns the standard deviation of a binomial distribution.\n","base.dists.binomial.variance":"\nbase.dists.binomial.variance( n:integer, p:number )\n Returns the variance of a binomial distribution.\n","base.dists.cauchy.Cauchy":"\nbase.dists.cauchy.Cauchy( [x0:number, Ɣ:number] )\n Returns a Cauchy distribution object.\n","base.dists.cauchy.cdf":"\nbase.dists.cauchy.cdf( x:number, x0:number, Ɣ:number )\n Evaluates the cumulative distribution function (CDF) for a Cauchy\n distribution with location parameter `x0` and scale parameter `Ɣ` at a value\n `x`.\n","base.dists.cauchy.cdf.factory":"\nbase.dists.cauchy.cdf.factory( x0:number, Ɣ:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Cauchy distribution with location parameter `x0` and scale parameter\n `Ɣ`.\n","base.dists.cauchy.entropy":"\nbase.dists.cauchy.entropy( x0:number, Ɣ:number )\n Returns the differential entropy of a Cauchy distribution (in nats).\n","base.dists.cauchy.logcdf":"\nbase.dists.cauchy.logcdf( x:number, x0:number, Ɣ:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (logCDF) for a Cauchy distribution with location parameter `x0` and scale\n parameter `Ɣ` at a value `x`.\n","base.dists.cauchy.logcdf.factory":"\nbase.dists.cauchy.logcdf.factory( x0:number, Ɣ:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (logCDF) of a Cauchy distribution with location\n parameter `x0` and scale parameter `Ɣ`.\n","base.dists.cauchy.logpdf":"\nbase.dists.cauchy.logpdf( x:number, x0:number, Ɣ:number )\n Evaluates the natural logarithm of the probability density function (logPDF)\n for a Cauchy distribution with location parameter `x0` and scale parameter\n `Ɣ` at a value `x`.\n","base.dists.cauchy.logpdf.factory":"\nbase.dists.cauchy.logpdf.factory( x0:number, Ɣ:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (logPDF) of a Cauchy distribution with location parameter\n `x0` and scale parameter `Ɣ`.\n","base.dists.cauchy.median":"\nbase.dists.cauchy.median( x0:number, Ɣ:number )\n Returns the median of a Cauchy distribution.\n","base.dists.cauchy.mode":"\nbase.dists.cauchy.mode( x0:number, Ɣ:number )\n Returns the mode of a Cauchy distribution.\n","base.dists.cauchy.pdf":"\nbase.dists.cauchy.pdf( x:number, x0:number, Ɣ:number )\n Evaluates the probability density function (PDF) for a Cauchy distribution\n with location parameter `x0` and scale parameter `Ɣ` at a value `x`.\n","base.dists.cauchy.pdf.factory":"\nbase.dists.cauchy.pdf.factory( x0:number, Ɣ:number )\n Returns a function for evaluating the probability density function (PDF) of\n a Cauchy distribution with location parameter `x0` and scale parameter `Ɣ`.\n","base.dists.cauchy.quantile":"\nbase.dists.cauchy.quantile( p:number, x0:number, Ɣ:number )\n Evaluates the quantile function for a Cauchy distribution with location\n parameter `x0` and scale parameter `Ɣ` at a probability `p`.\n","base.dists.cauchy.quantile.factory":"\nbase.dists.cauchy.quantile.factory( x0:number, Ɣ:number )\n Returns a function for evaluating the quantile function of a Cauchy\n distribution with location parameter `x0` and scale parameter `Ɣ`.\n","base.dists.chi.cdf":"\nbase.dists.chi.cdf( x:number, k:number )\n Evaluates the cumulative distribution function (CDF) for a chi distribution\n with degrees of freedom `k` at a value `x`.\n","base.dists.chi.cdf.factory":"\nbase.dists.chi.cdf.factory( k:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a chi distribution with degrees of freedom `k`.\n","base.dists.chi.Chi":"\nbase.dists.chi.Chi( [k:number] )\n Returns a chi distribution object.\n","base.dists.chi.entropy":"\nbase.dists.chi.entropy( k:number )\n Returns the differential entropy of a chi distribution (in nats).\n","base.dists.chi.kurtosis":"\nbase.dists.chi.kurtosis( k:number )\n Returns the excess kurtosis of a chi distribution.\n","base.dists.chi.logpdf":"\nbase.dists.chi.logpdf( x:number, k:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for a chi distribution with degrees of freedom `k` at a value `x`.\n","base.dists.chi.logpdf.factory":"\nbase.dists.chi.logpdf.factory( k:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of a chi distribution with degrees of freedom `k`.\n","base.dists.chi.mean":"\nbase.dists.chi.mean( k:number )\n Returns the expected value of a chi distribution.\n","base.dists.chi.mode":"\nbase.dists.chi.mode( k:number )\n Returns the mode of a chi distribution.\n","base.dists.chi.pdf":"\nbase.dists.chi.pdf( x:number, k:number )\n Evaluates the probability density function (PDF) for a chi distribution with\n degrees of freedom `k` at a value `x`.\n","base.dists.chi.pdf.factory":"\nbase.dists.chi.pdf.factory( k:number )\n Returns a function for evaluating the probability density function (PDF) of\n a chi distribution with degrees of freedom `k`.\n","base.dists.chi.quantile":"\nbase.dists.chi.quantile( p:number, k:number )\n Evaluates the quantile function for a chi distribution with degrees of\n freedom `k` at a probability `p`.\n","base.dists.chi.quantile.factory":"\nbase.dists.chi.quantile.factory( k:number )\n Returns a function for evaluating the quantile function of a chi\n distribution with degrees of freedom `k`.\n","base.dists.chi.skewness":"\nbase.dists.chi.skewness( k:number )\n Returns the skewness of a chi distribution.\n","base.dists.chi.stdev":"\nbase.dists.chi.stdev( k:number )\n Returns the standard deviation of a chi distribution.\n","base.dists.chi.variance":"\nbase.dists.chi.variance( k:number )\n Returns the variance of a chi distribution.\n","base.dists.chisquare.cdf":"\nbase.dists.chisquare.cdf( x:number, k:number )\n Evaluates the cumulative distribution function (CDF) for a chi-squared\n distribution with degrees of freedom `k` at a value `x`.\n","base.dists.chisquare.cdf.factory":"\nbase.dists.chisquare.cdf.factory( k:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a chi-squared distribution with degrees of freedom `k`.\n","base.dists.chisquare.ChiSquare":"\nbase.dists.chisquare.ChiSquare( [k:number] )\n Returns a chi-squared distribution object.\n","base.dists.chisquare.entropy":"\nbase.dists.chisquare.entropy( k:number )\n Returns the differential entropy of a chi-squared distribution (in nats).\n","base.dists.chisquare.kurtosis":"\nbase.dists.chisquare.kurtosis( k:number )\n Returns the excess kurtosis of a chi-squared distribution.\n","base.dists.chisquare.logpdf":"\nbase.dists.chisquare.logpdf( x:number, k:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for a chi-squared distribution with degrees of freedom `k` at a value `x`.\n","base.dists.chisquare.logpdf.factory":"\nbase.dists.chisquare.logpdf.factory( k:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of a chi-squared distribution with degrees of freedom\n `k`.\n","base.dists.chisquare.mean":"\nbase.dists.chisquare.mean( k:number )\n Returns the expected value of a chi-squared distribution.\n","base.dists.chisquare.median":"\nbase.dists.chisquare.median( k:number )\n Returns the median of a chi-squared distribution.\n","base.dists.chisquare.mgf":"\nbase.dists.chisquare.mgf( t:number, k:number )\n Evaluates the moment-generating function (MGF) for a chi-squared\n distribution with degrees of freedom `k` at a value `t`.\n","base.dists.chisquare.mgf.factory":"\nbase.dists.chisquare.mgf.factory( k:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n chi-squared distribution with degrees of freedom `k`.\n","base.dists.chisquare.mode":"\nbase.dists.chisquare.mode( k:number )\n Returns the mode of a chi-squared distribution.\n","base.dists.chisquare.pdf":"\nbase.dists.chisquare.pdf( x:number, k:number )\n Evaluates the probability density function (PDF) for a chi-squared\n distribution with degrees of freedom `k` at a value `x`.\n","base.dists.chisquare.pdf.factory":"\nbase.dists.chisquare.pdf.factory( k:number )\n Returns a function for evaluating the probability density function (PDF) of\n a chi-squared distribution with degrees of freedom `k`.\n","base.dists.chisquare.quantile":"\nbase.dists.chisquare.quantile( p:number, k:number )\n Evaluates the quantile function for a chi-squared distribution with degrees\n of freedom `k` at a probability `p`.\n","base.dists.chisquare.quantile.factory":"\nbase.dists.chisquare.quantile.factory( k:number )\n Returns a function for evaluating the quantile function of a chi-squared\n distribution with degrees of freedom `k`.\n","base.dists.chisquare.skewness":"\nbase.dists.chisquare.skewness( k:number )\n Returns the skewness of a chi-squared distribution.\n","base.dists.chisquare.stdev":"\nbase.dists.chisquare.stdev( k:number )\n Returns the standard deviation of a chi-squared distribution.\n","base.dists.chisquare.variance":"\nbase.dists.chisquare.variance( k:number )\n Returns the variance of a chi-squared distribution.\n","base.dists.cosine.cdf":"\nbase.dists.cosine.cdf( x:number, μ:number, s:number )\n Evaluates the cumulative distribution function (CDF) for a raised cosine\n distribution with location parameter `μ` and scale parameter `s` at a value\n `x`.\n","base.dists.cosine.cdf.factory":"\nbase.dists.cosine.cdf.factory( μ:number, s:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a raised cosine distribution with location parameter `μ` and scale\n parameter `s`.\n","base.dists.cosine.Cosine":"\nbase.dists.cosine.Cosine( [μ:number, s:number] )\n Returns a raised cosine distribution object.\n","base.dists.cosine.kurtosis":"\nbase.dists.cosine.kurtosis( μ:number, s:number )\n Returns the excess kurtosis of a raised cosine distribution with location\n parameter `μ` and scale parameter `s`.\n","base.dists.cosine.logcdf":"\nbase.dists.cosine.logcdf( x:number, μ:number, s:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for a raised cosine distribution with location parameter `μ` and scale\n parameter `s` at a value `x`.\n","base.dists.cosine.logcdf.factory":"\nbase.dists.cosine.logcdf.factory( μ:number, s:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a raised cosine distribution with location\n parameter `μ` and scale parameter `s`.\n","base.dists.cosine.logpdf":"\nbase.dists.cosine.logpdf( x:number, μ:number, s:number )\n Evaluates the logarithm of the probability density function (PDF) for a\n raised cosine distribution with location parameter `μ` and scale parameter\n `s` at a value `x`.\n","base.dists.cosine.logpdf.factory":"\nbase.dists.cosine.logpdf.factory( μ:number, s:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a raised cosine distribution with location parameter `μ`\n and scale parameter `s`.\n","base.dists.cosine.mean":"\nbase.dists.cosine.mean( μ:number, s:number )\n Returns the expected value of a raised cosine distribution with location\n parameter `μ` and scale parameter `s`.\n","base.dists.cosine.median":"\nbase.dists.cosine.median( μ:number, s:number )\n Returns the median of a raised cosine distribution with location parameter\n `μ` and scale parameter `s`.\n","base.dists.cosine.mgf":"\nbase.dists.cosine.mgf( t:number, μ:number, s:number )\n Evaluates the moment-generating function (MGF) for a raised cosine\n distribution with location parameter `μ` and scale parameter `s` at a value\n `t`.\n","base.dists.cosine.mgf.factory":"\nbase.dists.cosine.mgf.factory( μ:number, s:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n raised cosine distribution with location parameter `μ` and scale parameter\n `s`.\n","base.dists.cosine.mode":"\nbase.dists.cosine.mode( μ:number, s:number )\n Returns the mode of a raised cosine distribution with location parameter `μ`\n and scale parameter `s`.\n","base.dists.cosine.pdf":"\nbase.dists.cosine.pdf( x:number, μ:number, s:number )\n Evaluates the probability density function (PDF) for a raised cosine\n distribution with location parameter `μ` and scale parameter `s` at a value\n `x`.\n","base.dists.cosine.pdf.factory":"\nbase.dists.cosine.pdf.factory( μ:number, s:number )\n Returns a function for evaluating the probability density function (PDF) of\n a raised cosine distribution with location parameter `μ` and scale parameter\n `s`.\n","base.dists.cosine.quantile":"\nbase.dists.cosine.quantile( p:number, μ:number, s:number )\n Evaluates the quantile function for a raised cosine distribution with\n location parameter `μ` and scale parameter `s` at a probability `p`.\n","base.dists.cosine.quantile.factory":"\nbase.dists.cosine.quantile.factory( μ:number, s:number )\n Returns a function for evaluating the quantile function of a raised cosine\n distribution with location parameter `μ` and scale parameter `s`.\n","base.dists.cosine.skewness":"\nbase.dists.cosine.skewness( μ:number, s:number )\n Returns the skewness of a raised cosine distribution with location parameter\n `μ` and scale parameter `s`.\n","base.dists.cosine.stdev":"\nbase.dists.cosine.stdev( μ:number, s:number )\n Returns the standard deviation of a raised cosine distribution with location\n parameter `μ` and scale parameter `s`.\n","base.dists.cosine.variance":"\nbase.dists.cosine.variance( μ:number, s:number )\n Returns the variance of a raised cosine distribution with location parameter\n `μ` and scale parameter `s`.\n","base.dists.degenerate.cdf":"\nbase.dists.degenerate.cdf( x:number, μ:number )\n Evaluates the cumulative distribution function (CDF) for a degenerate\n distribution with mean value `μ`.\n","base.dists.degenerate.cdf.factory":"\nbase.dists.degenerate.cdf.factory( μ:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a degenerate distribution centered at a provided mean value.\n","base.dists.degenerate.Degenerate":"\nbase.dists.degenerate.Degenerate( [μ:number] )\n Returns a degenerate distribution object.\n","base.dists.degenerate.entropy":"\nbase.dists.degenerate.entropy( μ:number )\n Returns the entropy of a degenerate distribution with constant value `μ`.\n","base.dists.degenerate.logcdf":"\nbase.dists.degenerate.logcdf( x:number, μ:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (logCDF) for a degenerate distribution with mean `μ`.\n","base.dists.degenerate.logcdf.factory":"\nbase.dists.degenerate.logcdf.factory( μ:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (logCDF) of a degenerate distribution with mean `μ`.\n","base.dists.degenerate.logpdf":"\nbase.dists.degenerate.logpdf( x:number, μ:number )\n Evaluates the natural logarithm of the probability density function (logPDF)\n for a degenerate distribution with mean `μ`.\n","base.dists.degenerate.logpdf.factory":"\nbase.dists.degenerate.logpdf.factory( μ:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (logPDF) of a degenerate distribution with mean `μ`.\n","base.dists.degenerate.logpmf":"\nbase.dists.degenerate.logpmf( x:number, μ:number )\n Evaluates the natural logarithm of the probability mass function (PMF) for a\n degenerate distribution with mean `μ`.\n","base.dists.degenerate.logpmf.factory":"\nbase.dists.degenerate.logpmf.factory( μ:number )\n Returns a function for evaluating the natural logarithm of the probability\n mass function (PMF) of a degenerate distribution with mean `μ`.\n","base.dists.degenerate.mean":"\nbase.dists.degenerate.mean( μ:number )\n Returns the expected value of a degenerate distribution with constant value\n `μ`.\n","base.dists.degenerate.median":"\nbase.dists.degenerate.median( μ:number )\n Returns the median of a degenerate distribution with constant value `μ`.\n","base.dists.degenerate.mgf":"\nbase.dists.degenerate.mgf( x:number, μ:number )\n Evaluates the moment-generating function (MGF) for a degenerate distribution\n with mean `μ`.\n","base.dists.degenerate.mgf.factory":"\nbase.dists.degenerate.mgf.factory( μ:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n degenerate distribution with mean `μ`.\n","base.dists.degenerate.mode":"\nbase.dists.degenerate.mode( μ:number )\n Returns the mode of a degenerate distribution with constant value `μ`.\n","base.dists.degenerate.pdf":"\nbase.dists.degenerate.pdf( x:number, μ:number )\n Evaluates the probability density function (PDF) for a degenerate\n distribution with mean `μ`.\n","base.dists.degenerate.pdf.factory":"\nbase.dists.degenerate.pdf.factory( μ:number )\n Returns a function for evaluating the probability density function (PDF) of\n a degenerate distribution with mean `μ`.\n","base.dists.degenerate.pmf":"\nbase.dists.degenerate.pmf( x:number, μ:number )\n Evaluates the probability mass function (PMF) for a degenerate distribution\n with mean `μ`.\n","base.dists.degenerate.pmf.factory":"\nbase.dists.degenerate.pmf.factory( μ:number )\n Returns a function for evaluating the probability mass function (PMF) of a\n degenerate distribution with mean `μ`.\n","base.dists.degenerate.quantile":"\nbase.dists.degenerate.quantile( p:number, μ:number )\n Evaluates the quantile function for a degenerate distribution with mean `μ`.\n","base.dists.degenerate.quantile.factory":"\nbase.dists.degenerate.quantile.factory( μ:number )\n Returns a function for evaluating the quantile function of a degenerate\n distribution with mean `μ`.\n","base.dists.degenerate.stdev":"\nbase.dists.degenerate.stdev( μ:number )\n Returns the standard deviation of a degenerate distribution with constant\n value `μ`.\n","base.dists.degenerate.variance":"\nbase.dists.degenerate.variance( μ:number )\n Returns the variance of a degenerate distribution with constant value `μ`.\n","base.dists.discreteUniform.cdf":"\nbase.dists.discreteUniform.cdf( x:number, a:integer, b:integer )\n Evaluates the cumulative distribution function (CDF) for a discrete uniform\n distribution with minimum support `a` and maximum support `b` at a value\n `x`.\n","base.dists.discreteUniform.cdf.factory":"\nbase.dists.discreteUniform.cdf.factory( a:integer, b:integer )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a discrete uniform distribution with minimum support `a` and maximum\n support `b`.\n","base.dists.discreteUniform.DiscreteUniform":"\nbase.dists.discreteUniform.DiscreteUniform( [a:integer, b:integer] )\n Returns a discrete uniform distribution object.\n","base.dists.discreteUniform.kurtosis":"\nbase.dists.discreteUniform.kurtosis( a:integer, b:integer )\n Returns the excess kurtosis of a discrete uniform distribution.\n","base.dists.discreteUniform.logcdf":"\nbase.dists.discreteUniform.logcdf( x:number, a:integer, b:integer )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for a discrete uniform distribution with minimum support `a` and\n maximum support `b` at a value `x`.\n","base.dists.discreteUniform.logcdf.factory":"\nbase.dists.discreteUniform.logcdf.factory( a:integer, b:integer )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a discrete uniform distribution with minimum\n support `a` and maximum support `b`.\n","base.dists.discreteUniform.logpmf":"\nbase.dists.discreteUniform.logpmf( x:number, a:integer, b:integer )\n Evaluates the natural logarithm of the probability mass function (PMF) for a\n discrete uniform distribution with minimum support `a` and maximum support\n `b` at a value `x`.\n","base.dists.discreteUniform.logpmf.factory":"\nbase.dists.discreteUniform.logpmf.factory( a:integer, b:integer )\n Returns a function for evaluating the natural logarithm of the probability\n mass function (PMF) of a discrete uniform distribution with minimum support\n `a` and maximum support `b`.\n","base.dists.discreteUniform.mean":"\nbase.dists.discreteUniform.mean( a:integer, b:integer )\n Returns the expected value of a discrete uniform distribution.\n","base.dists.discreteUniform.median":"\nbase.dists.discreteUniform.median( a:integer, b:integer )\n Returns the median of a discrete uniform distribution.\n","base.dists.discreteUniform.mgf":"\nbase.dists.discreteUniform.mgf( t:number, a:integer, b:integer )\n Evaluates the moment-generating function (MGF) for a discrete uniform\n distribution with minimum support `a` and maximum support `b` at a value\n `t`.\n","base.dists.discreteUniform.mgf.factory":"\nbase.dists.discreteUniform.mgf.factory( a:integer, b:integer )\n Returns a function for evaluating the moment-generating function (MGF)\n of a discrete uniform distribution with minimum support `a` and maximum\n support `b`.\n","base.dists.discreteUniform.pmf":"\nbase.dists.discreteUniform.pmf( x:number, a:integer, b:integer )\n Evaluates the probability mass function (PMF) for a discrete uniform\n distribution with minimum support `a` and maximum support `b` at a value\n `x`.\n","base.dists.discreteUniform.pmf.factory":"\nbase.dists.discreteUniform.pmf.factory( a:integer, b:integer )\n Returns a function for evaluating the probability mass function (PMF) of\n a discrete uniform distribution with minimum support `a` and maximum support\n `b`.\n","base.dists.discreteUniform.quantile":"\nbase.dists.discreteUniform.quantile( p:number, a:integer, b:integer )\n Evaluates the quantile function for a discrete uniform distribution with\n minimum support `a` and maximum support `b` at a probability `p`.\n","base.dists.discreteUniform.quantile.factory":"\nbase.dists.discreteUniform.quantile.factory( a:integer, b:integer )\n Returns a function for evaluating the quantile function of a discrete\n uniform distribution with minimum support `a` and maximum support `b`.\n","base.dists.discreteUniform.skewness":"\nbase.dists.discreteUniform.skewness( a:integer, b:integer )\n Returns the skewness of a discrete uniform distribution.\n","base.dists.discreteUniform.stdev":"\nbase.dists.discreteUniform.stdev( a:integer, b:integer )\n Returns the standard deviation of a discrete uniform distribution.\n","base.dists.discreteUniform.variance":"\nbase.dists.discreteUniform.variance( a:integer, b:integer )\n Returns the variance of a discrete uniform distribution.\n","base.dists.erlang.cdf":"\nbase.dists.erlang.cdf( x:number, k:number, λ:number )\n Evaluates the cumulative distribution function (CDF) for an Erlang\n distribution with shape parameter `k` and rate parameter `λ` at a value\n `x`.\n","base.dists.erlang.cdf.factory":"\nbase.dists.erlang.cdf.factory( k:number, λ:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of an Erlang distribution with shape parameter `k` and rate parameter `λ`.\n","base.dists.erlang.entropy":"\nbase.dists.erlang.entropy( k:integer, λ:number )\n Returns the differential entropy of an Erlang distribution (in nats).\n","base.dists.erlang.Erlang":"\nbase.dists.erlang.Erlang( [k:number, λ:number] )\n Returns an Erlang distribution object.\n","base.dists.erlang.kurtosis":"\nbase.dists.erlang.kurtosis( k:integer, λ:number )\n Returns the excess kurtosis of an Erlang distribution.\n","base.dists.erlang.logpdf":"\nbase.dists.erlang.logpdf( x:number, k:number, λ:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for an Erlang distribution with shape parameter `k` and rate parameter `λ`\n at a value `x`.\n","base.dists.erlang.logpdf.factory":"\nbase.dists.erlang.logpdf.factory( k:number, λ:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of an Erlang distribution with shape parameter `k`\n and rate parameter `λ`.\n","base.dists.erlang.mean":"\nbase.dists.erlang.mean( k:integer, λ:number )\n Returns the expected value of an Erlang distribution.\n","base.dists.erlang.mgf":"\nbase.dists.erlang.mgf( t:number, k:number, λ:number )\n Evaluates the moment-generating function (MGF) for an Erlang distribution\n with shape parameter `k` and rate parameter `λ` at a value `t`.\n","base.dists.erlang.mgf.factory":"\nbase.dists.erlang.mgf.factory( k:number, λ:number )\n Returns a function for evaluating the moment-generating function (MGF) of an\n Erlang distribution with shape parameter `k` and rate parameter `λ`.\n","base.dists.erlang.mode":"\nbase.dists.erlang.mode( k:integer, λ:number )\n Returns the mode of an Erlang distribution.\n","base.dists.erlang.pdf":"\nbase.dists.erlang.pdf( x:number, k:number, λ:number )\n Evaluates the probability density function (PDF) for an Erlang distribution\n with shape parameter `k` and rate parameter `λ` at a value `x`.\n","base.dists.erlang.pdf.factory":"\nbase.dists.erlang.pdf.factory( k:number, λ:number )\n Returns a function for evaluating the probability density function (PDF)\n of an Erlang distribution with shape parameter `k` and rate parameter `λ`.\n","base.dists.erlang.quantile":"\nbase.dists.erlang.quantile( p:number, k:number, λ:number )\n Evaluates the quantile function for an Erlang distribution with shape\n parameter `k` and rate parameter `λ` at a probability `p`.\n","base.dists.erlang.quantile.factory":"\nbase.dists.erlang.quantile.factory( k:number, λ:number )\n Returns a function for evaluating the quantile function of an Erlang\n distribution with shape parameter `k` and rate parameter `λ`.\n","base.dists.erlang.skewness":"\nbase.dists.erlang.skewness( k:integer, λ:number )\n Returns the skewness of an Erlang distribution.\n","base.dists.erlang.stdev":"\nbase.dists.erlang.stdev( k:integer, λ:number )\n Returns the standard deviation of an Erlang distribution.\n","base.dists.erlang.variance":"\nbase.dists.erlang.variance( k:integer, λ:number )\n Returns the variance of an Erlang distribution.\n","base.dists.exponential.cdf":"\nbase.dists.exponential.cdf( x:number, λ:number )\n Evaluates the cumulative distribution function (CDF) for an exponential\n distribution with rate parameter `λ` at a value `x`.\n","base.dists.exponential.cdf.factory":"\nbase.dists.exponential.cdf.factory( λ:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n for an exponential distribution with rate parameter `λ`.\n","base.dists.exponential.entropy":"\nbase.dists.exponential.entropy( λ:number )\n Returns the differential entropy of an exponential distribution.\n","base.dists.exponential.Exponential":"\nbase.dists.exponential.Exponential( [λ:number] )\n Returns an exponential distribution object.\n","base.dists.exponential.kurtosis":"\nbase.dists.exponential.kurtosis( λ:number )\n Returns the excess kurtosis of an exponential distribution.\n","base.dists.exponential.logcdf":"\nbase.dists.exponential.logcdf( x:number, λ:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for an exponential distribution with rate parameter `λ` at a value\n `x`.\n","base.dists.exponential.logcdf.factory":"\nbase.dists.exponential.logcdf.factory( λ:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) for an exponential distribution with rate\n parameter `λ`.\n","base.dists.exponential.logpdf":"\nbase.dists.exponential.logpdf( x:number, λ:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for an exponential distribution with rate parameter `λ` at a value `x`.\n","base.dists.exponential.logpdf.factory":"\nbase.dists.exponential.logpdf.factory( λ:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) for an exponential distribution with rate parameter\n `λ`.\n","base.dists.exponential.mean":"\nbase.dists.exponential.mean( λ:number )\n Returns the expected value of an exponential distribution.\n","base.dists.exponential.median":"\nbase.dists.exponential.median( λ:number )\n Returns the median of an exponential distribution.\n","base.dists.exponential.mgf":"\nbase.dists.exponential.mgf( t:number, λ:number )\n Evaluates the moment-generating function (MGF) for an exponential\n distribution with rate parameter `λ` at a value `t`.\n","base.dists.exponential.mgf.factory":"\nbase.dists.exponential.mgf.factory( λ:number )\n Returns a function for evaluating the moment-generating function (MGF) for\n an exponential distribution with rate parameter `λ`.\n","base.dists.exponential.mode":"\nbase.dists.exponential.mode( λ:number )\n Returns the mode of an exponential distribution.\n","base.dists.exponential.pdf":"\nbase.dists.exponential.pdf( x:number, λ:number )\n Evaluates the probability density function (PDF) for an exponential\n distribution with rate parameter `λ` at a value `x`.\n","base.dists.exponential.pdf.factory":"\nbase.dists.exponential.pdf.factory( λ:number )\n Returns a function for evaluating the probability density function (PDF)\n for an exponential distribution with rate parameter `λ`.\n","base.dists.exponential.quantile":"\nbase.dists.exponential.quantile( p:number, λ:number )\n Evaluates the quantile function for an exponential distribution with rate\n parameter `λ` at a probability `p`.\n","base.dists.exponential.quantile.factory":"\nbase.dists.exponential.quantile.factory( λ:number )\n Returns a function for evaluating the quantile function for an exponential\n distribution with rate parameter `λ`.\n","base.dists.exponential.skewness":"\nbase.dists.exponential.skewness( λ:number )\n Returns the skewness of an exponential distribution.\n","base.dists.exponential.stdev":"\nbase.dists.exponential.stdev( λ:number )\n Returns the standard deviation of an exponential distribution.\n","base.dists.exponential.variance":"\nbase.dists.exponential.variance( λ:number )\n Returns the variance of an exponential distribution.\n","base.dists.f.cdf":"\nbase.dists.f.cdf( x:number, d1:number, d2:number )\n Evaluates the cumulative distribution function (CDF) for an F distribution\n with numerator degrees of freedom `d1` and denominator degrees of freedom\n `d2` at a value `x`.\n","base.dists.f.cdf.factory":"\nbase.dists.f.cdf.factory( d1:number, d2:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of an F distribution with numerator degrees of freedom `d1` and denominator\n degrees of freedom `d2`.\n","base.dists.f.entropy":"\nbase.dists.f.entropy( d1:number, d2:number )\n Returns the differential entropy of an F distribution (in nats).\n","base.dists.f.F":"\nbase.dists.f.F( [d1:number, d2:number] )\n Returns an F distribution object.\n","base.dists.f.kurtosis":"\nbase.dists.f.kurtosis( d1:number, d2:number )\n Returns the excess kurtosis of an F distribution.\n","base.dists.f.mean":"\nbase.dists.f.mean( d1:number, d2:number )\n Returns the expected value of an F distribution.\n","base.dists.f.mode":"\nbase.dists.f.mode( d1:number, d2:number )\n Returns the mode of an F distribution.\n","base.dists.f.pdf":"\nbase.dists.f.pdf( x:number, d1:number, d2:number )\n Evaluates the probability density function (PDF) for an F distribution with\n numerator degrees of freedom `d1` and denominator degrees of freedom `d2` at\n a value `x`.\n","base.dists.f.pdf.factory":"\nbase.dists.f.pdf.factory( d1:number, d2:number )\n Returns a function for evaluating the probability density function (PDF) of\n an F distribution with numerator degrees of freedom `d1` and denominator\n degrees of freedom `d2`.\n","base.dists.f.quantile":"\nbase.dists.f.quantile( p:number, d1:number, d2:number )\n Evaluates the quantile function for an F distribution with numerator degrees\n of freedom `d1` and denominator degrees of freedom `d2` at a probability\n `p`.\n","base.dists.f.quantile.factory":"\nbase.dists.f.quantile.factory( d1:number, d2:number )\n Returns a function for evaluating the quantile function of an F distribution\n with numerator degrees of freedom `d1` and denominator degrees of freedom\n `d2`.\n","base.dists.f.skewness":"\nbase.dists.f.skewness( d1:number, d2:number )\n Returns the skewness of an F distribution.\n","base.dists.f.stdev":"\nbase.dists.f.stdev( d1:number, d2:number )\n Returns the standard deviation of an F distribution.\n","base.dists.f.variance":"\nbase.dists.f.variance( d1:number, d2:number )\n Returns the variance of an F distribution.\n","base.dists.frechet.cdf":"\nbase.dists.frechet.cdf( x:number, α:number, s:number, m:number )\n Evaluates the cumulative distribution function (CDF) for a Fréchet\n distribution with shape parameter `α`, scale parameter `s`, and location\n `m`.\n","base.dists.frechet.cdf.factory":"\nbase.dists.frechet.cdf.factory( α:number, s:number, m:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Fréchet distribution with shape parameter `α`, scale parameter `s`, and\n location `m`.\n","base.dists.frechet.entropy":"\nbase.dists.frechet.entropy( α:number, s:number, m:number )\n Returns the differential entropy of a Fréchet distribution with shape\n parameter `α`, scale parameter `s`, and location `m` (in nats).\n","base.dists.frechet.Frechet":"\nbase.dists.frechet.Frechet( [α:number, s:number, m:number] )\n Returns a Fréchet distribution object.\n","base.dists.frechet.kurtosis":"\nbase.dists.frechet.kurtosis( α:number, s:number, m:number )\n Returns the excess kurtosis of a Fréchet distribution with shape parameter\n `α`, scale parameter `s`, and location `m`.\n","base.dists.frechet.logcdf":"\nbase.dists.frechet.logcdf( x:number, α:number, s:number, m:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for a Fréchet distribution with shape parameter `α`, scale parameter\n `s`, and location `m`.\n","base.dists.frechet.logcdf.factory":"\nbase.dists.frechet.logcdf.factory( α:number, s:number, m:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a Fréchet distribution with shape parameter\n `α`, scale parameter `s`, and location `m`.\n","base.dists.frechet.logpdf":"\nbase.dists.frechet.logpdf( x:number, α:number, s:number, m:number )\n Evaluates the logarithm of the probability density function (PDF) for a\n Fréchet distribution with shape parameter `α`, scale parameter `s`, and\n location `m`.\n","base.dists.frechet.logpdf.factory":"\nbase.dists.frechet.logpdf.factory( α:number, s:number, m:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a Fréchet distribution with shape parameter `α`, scale\n parameter `s`, and location `m`.\n","base.dists.frechet.mean":"\nbase.dists.frechet.mean( α:number, s:number, m:number )\n Returns the expected value of a Fréchet distribution with shape parameter\n `α`, scale parameter `s`, and location `m`.\n","base.dists.frechet.median":"\nbase.dists.frechet.median( α:number, s:number, m:number )\n Returns the median of a Fréchet distribution with shape parameter\n `α`, scale parameter `s`, and location `m`.\n","base.dists.frechet.mode":"\nbase.dists.frechet.mode( α:number, s:number, m:number )\n Returns the mode of a Fréchet distribution with shape parameter `α`, scale\n parameter `s`, and location `m`.\n","base.dists.frechet.pdf":"\nbase.dists.frechet.pdf( x:number, α:number, s:number, m:number )\n Evaluates the probability density function (PDF) for a Fréchet distribution\n with shape parameter `α`, scale parameter `s`, and location `m`.\n","base.dists.frechet.pdf.factory":"\nbase.dists.frechet.pdf.factory( α:number, s:number, m:number )\n Returns a function for evaluating the probability density function (PDF) of\n a Fréchet distribution with shape parameter `α`, scale parameter `s`, and\n location `m`.\n","base.dists.frechet.quantile":"\nbase.dists.frechet.quantile( p:number, α:number, s:number, m:number )\n Evaluates the quantile function for a Fréchet distribution with shape\n parameter `α`, scale parameter `s`, and location `m`.\n","base.dists.frechet.quantile.factory":"\nbase.dists.frechet.quantile.factory( α:number, s:number, m:number )\n Returns a function for evaluating the quantile function of a Fréchet\n distribution with shape parameter `α`, scale parameter `s`, and location\n `m`.\n","base.dists.frechet.skewness":"\nbase.dists.frechet.skewness( α:number, s:number, m:number )\n Returns the skewness of a Fréchet distribution with shape parameter `α`,\n scale parameter `s`, and location `m`.\n","base.dists.frechet.stdev":"\nbase.dists.frechet.stdev( α:number, s:number, m:number )\n Returns the standard deviation of a Fréchet distribution with shape\n parameter `α`, scale parameter `s`, and location `m`.\n","base.dists.frechet.variance":"\nbase.dists.frechet.variance( α:number, s:number, m:number )\n Returns the variance of a Fréchet distribution with shape parameter `α`,\n scale parameter `s`, and location `m`.\n","base.dists.gamma.cdf":"\nbase.dists.gamma.cdf( x:number, α:number, β:number )\n Evaluates the cumulative distribution function (CDF) for a gamma\n distribution with shape parameter `α` and rate parameter `β` at a value `x`.\n","base.dists.gamma.cdf.factory":"\nbase.dists.gamma.cdf.factory( α:number, β:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a gamma distribution with shape parameter `α` and rate parameter `β`.\n","base.dists.gamma.entropy":"\nbase.dists.gamma.entropy( α:number, β:number )\n Returns the differential entropy of a gamma distribution.\n","base.dists.gamma.Gamma":"\nbase.dists.gamma.Gamma( [α:number, β:number] )\n Returns a gamma distribution object.\n","base.dists.gamma.kurtosis":"\nbase.dists.gamma.kurtosis( α:number, β:number )\n Returns the excess kurtosis of a gamma distribution.\n","base.dists.gamma.logcdf":"\nbase.dists.gamma.logcdf( x:number, α:number, β:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for a\n gamma distribution with shape parameter `α` and rate parameter `β` at a\n value `x`.\n","base.dists.gamma.logcdf.factory":"\nbase.dists.gamma.logcdf.factory( α:number, β:number )\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of a gamma distribution with shape parameter `α`\n and rate parameter `β`.\n","base.dists.gamma.logpdf":"\nbase.dists.gamma.logpdf( x:number, α:number, β:number )\n Evaluates the logarithm of the probability density function (PDF) for a\n gamma distribution with shape parameter `α` and rate parameter `β` at a\n value `x`.\n","base.dists.gamma.logpdf.factory":"\nbase.dists.gamma.logpdf.factory( α:number, β:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a gamma distribution with shape parameter `α` and rate\n parameter `β`.\n","base.dists.gamma.mean":"\nbase.dists.gamma.mean( α:number, β:number )\n Returns the expected value of a gamma distribution.\n","base.dists.gamma.mgf":"\nbase.dists.gamma.mgf( t:number, α:number, β:number )\n Evaluates the moment-generating function (MGF) for a gamma distribution with\n shape parameter `α` and rate parameter `β` at a value `t`.\n","base.dists.gamma.mgf.factory":"\nbase.dists.gamma.mgf.factory( α:number, β:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n gamma distribution with shape parameter `α` and rate parameter `β`.\n","base.dists.gamma.mode":"\nbase.dists.gamma.mode( α:number, β:number )\n Returns the mode of a gamma distribution.\n","base.dists.gamma.pdf":"\nbase.dists.gamma.pdf( x:number, α:number, β:number )\n Evaluates the probability density function (PDF) for a gamma distribution\n with shape parameter `α` and rate parameter `β` at a value `x`.\n","base.dists.gamma.pdf.factory":"\nbase.dists.gamma.pdf.factory( α:number, β:number )\n Returns a function for evaluating the probability density function (PDF) of\n a gamma distribution with shape parameter `α` and rate parameter `β`.\n","base.dists.gamma.quantile":"\nbase.dists.gamma.quantile( p:number, α:number, β:number )\n Evaluates the quantile function for a gamma distribution with shape\n parameter `α` and rate parameter `β` at a probability `p`.\n","base.dists.gamma.quantile.factory":"\nbase.dists.gamma.quantile.factory( α:number, β:number )\n Returns a function for evaluating the quantile function of a gamma\n distribution with shape parameter `α` and rate parameter `β`.\n","base.dists.gamma.skewness":"\nbase.dists.gamma.skewness( α:number, β:number )\n Returns the skewness of a gamma distribution.\n","base.dists.gamma.stdev":"\nbase.dists.gamma.stdev( α:number, β:number )\n Returns the standard deviation of a gamma distribution.\n","base.dists.gamma.variance":"\nbase.dists.gamma.variance( α:number, β:number )\n Returns the variance of a gamma distribution.\n","base.dists.geometric.cdf":"\nbase.dists.geometric.cdf( x:number, p:number )\n Evaluates the cumulative distribution function (CDF) for a geometric\n distribution with success probability `p` at a value `x`.\n","base.dists.geometric.cdf.factory":"\nbase.dists.geometric.cdf.factory( p:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a geometric distribution with success probability `p`.\n","base.dists.geometric.entropy":"\nbase.dists.geometric.entropy( p:number )\n Returns the entropy of a geometric distribution with success probability\n `p` (in nats).\n","base.dists.geometric.Geometric":"\nbase.dists.geometric.Geometric( [p:number] )\n Returns a geometric distribution object.\n","base.dists.geometric.kurtosis":"\nbase.dists.geometric.kurtosis( p:number )\n Returns the excess kurtosis of a geometric distribution with success\n probability `p`.\n","base.dists.geometric.logcdf":"\nbase.dists.geometric.logcdf( x:number, p:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for a\n geometric distribution with success probability `p` at a value `x`.\n","base.dists.geometric.logcdf.factory":"\nbase.dists.geometric.logcdf.factory( p:number )\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of a geometric distribution with success\n probability `p`.\n","base.dists.geometric.logpmf":"\nbase.dists.geometric.logpmf( x:number, p:number )\n Evaluates the logarithm of the probability mass function (PMF) for a\n geometric distribution with success probability `p` at a value `x`.\n","base.dists.geometric.logpmf.factory":"\nbase.dists.geometric.logpmf.factory( p:number )\n Returns a function for evaluating the logarithm of the probability mass\n function (PMF) of a geometric distribution with success probability `p`.\n","base.dists.geometric.mean":"\nbase.dists.geometric.mean( p:number )\n Returns the expected value of a geometric distribution with success\n probability `p`.\n","base.dists.geometric.median":"\nbase.dists.geometric.median( p:number )\n Returns the median of a geometric distribution with success probability `p`.\n","base.dists.geometric.mgf":"\nbase.dists.geometric.mgf( t:number, p:number )\n Evaluates the moment-generating function (MGF) for a geometric\n distribution with success probability `p` at a value `t`.\n","base.dists.geometric.mgf.factory":"\nbase.dists.geometric.mgf.factory( p:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n geometric distribution with success probability `p`.\n","base.dists.geometric.mode":"\nbase.dists.geometric.mode( p:number )\n Returns the mode of a geometric distribution with success probability `p`.\n","base.dists.geometric.pmf":"\nbase.dists.geometric.pmf( x:number, p:number )\n Evaluates the probability mass function (PMF) for a geometric distribution\n with success probability `p` at a value `x`.\n","base.dists.geometric.pmf.factory":"\nbase.dists.geometric.pmf.factory( p:number )\n Returns a function for evaluating the probability mass function (PMF) of a\n geometric distribution with success probability `p`.\n","base.dists.geometric.quantile":"\nbase.dists.geometric.quantile( r:number, p:number )\n Evaluates the quantile function for a geometric distribution with success\n probability `p` at a probability `r`.\n","base.dists.geometric.quantile.factory":"\nbase.dists.geometric.quantile.factory( p:number )\n Returns a function for evaluating the quantile function of a geometric\n distribution with success probability `p`.\n","base.dists.geometric.skewness":"\nbase.dists.geometric.skewness( p:number )\n Returns the skewness of a geometric distribution with success probability\n `p`.\n","base.dists.geometric.stdev":"\nbase.dists.geometric.stdev( p:number )\n Returns the standard deviation of a geometric distribution with success\n probability `p`.\n","base.dists.geometric.variance":"\nbase.dists.geometric.variance( p:number )\n Returns the variance of a geometric distribution with success probability\n `p`.\n","base.dists.gumbel.cdf":"\nbase.dists.gumbel.cdf( x:number, μ:number, β:number )\n Evaluates the cumulative distribution function (CDF) for a Gumbel\n distribution with location parameter `μ` and scale parameter `β` at a value\n `x`.\n","base.dists.gumbel.cdf.factory":"\nbase.dists.gumbel.cdf.factory( μ:number, β:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Gumbel distribution with location parameter `μ` and scale parameter\n `β`.\n","base.dists.gumbel.entropy":"\nbase.dists.gumbel.entropy( μ:number, β:number )\n Returns the differential entropy of a Gumbel distribution with location\n parameter `μ` and scale parameter `β` (in nats).\n","base.dists.gumbel.Gumbel":"\nbase.dists.gumbel.Gumbel( [μ:number, β:number] )\n Returns a Gumbel distribution object.\n","base.dists.gumbel.kurtosis":"\nbase.dists.gumbel.kurtosis( μ:number, β:number )\n Returns the excess kurtosis of a Gumbel distribution with location parameter\n `μ` and scale parameter `β`.\n","base.dists.gumbel.logcdf":"\nbase.dists.gumbel.logcdf( x:number, μ:number, β:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for a\n Gumbel distribution with location parameter `μ` and scale parameter `β` at a\n value `x`.\n","base.dists.gumbel.logcdf.factory":"\nbase.dists.gumbel.logcdf.factory( μ:number, β:number )\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of a Gumbel distribution with location parameter\n `μ` and scale parameter `β`.\n","base.dists.gumbel.logpdf":"\nbase.dists.gumbel.logpdf( x:number, μ:number, β:number )\n Evaluates the logarithm of the probability density function (PDF) for a\n Gumbel distribution with location parameter `μ` and scale parameter `β` at a\n value `x`.\n","base.dists.gumbel.logpdf.factory":"\nbase.dists.gumbel.logpdf.factory( μ:number, β:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a Gumbel distribution with location parameter `μ` and\n scale parameter `β`.\n","base.dists.gumbel.mean":"\nbase.dists.gumbel.mean( μ:number, β:number )\n Returns the expected value of a Gumbel distribution with location parameter\n `μ` and scale parameter `β`.\n","base.dists.gumbel.median":"\nbase.dists.gumbel.median( μ:number, β:number )\n Returns the median of a Gumbel distribution with location parameter `μ` and\n scale parameter `β`.\n","base.dists.gumbel.mgf":"\nbase.dists.gumbel.mgf( t:number, μ:number, β:number )\n Evaluates the moment-generating function (MGF) for a Gumbel distribution\n with location parameter `μ` and scale parameter `β` at a value `t`.\n","base.dists.gumbel.mgf.factory":"\nbase.dists.gumbel.mgf.factory( μ:number, β:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n Gumbel distribution with location parameter `μ` and scale parameter `β`.\n","base.dists.gumbel.mode":"\nbase.dists.gumbel.mode( μ:number, β:number )\n Returns the mode of a Gumbel distribution with location parameter `μ` and\n scale parameter `β`.\n","base.dists.gumbel.pdf":"\nbase.dists.gumbel.pdf( x:number, μ:number, β:number )\n Evaluates the probability density function (PDF) for a Gumbel distribution\n with location parameter `μ` and scale parameter `β` at a value `x`.\n","base.dists.gumbel.pdf.factory":"\nbase.dists.gumbel.pdf.factory( μ:number, β:number )\n Returns a function for evaluating the probability density function (PDF)\n of a Gumbel distribution with location parameter `μ` and scale parameter\n `β`.\n","base.dists.gumbel.quantile":"\nbase.dists.gumbel.quantile( p:number, μ:number, β:number )\n Evaluates the quantile function for a Gumbel distribution with location\n parameter `μ` and scale parameter `β` at a probability `p`.\n","base.dists.gumbel.quantile.factory":"\nbase.dists.gumbel.quantile.factory( μ:number, β:number )\n Returns a function for evaluating the quantile function of a Gumbel\n distribution with location parameter `μ` and scale parameter `β`.\n","base.dists.gumbel.skewness":"\nbase.dists.gumbel.skewness( μ:number, β:number )\n Returns the skewness of a Gumbel distribution with location parameter `μ`\n and scale parameter `β`.\n","base.dists.gumbel.stdev":"\nbase.dists.gumbel.stdev( μ:number, β:number )\n Returns the standard deviation of a Gumbel distribution with location\n parameter `μ` and scale parameter `β`.\n","base.dists.gumbel.variance":"\nbase.dists.gumbel.variance( μ:number, β:number )\n Returns the variance of a Gumbel distribution with location parameter `μ`\n and scale parameter `β`.\n","base.dists.hypergeometric.cdf":"\nbase.dists.hypergeometric.cdf( x:number, N:integer, K:integer, n:integer )\n Evaluates the cumulative distribution function (CDF) for a hypergeometric\n distribution with population size `N`, subpopulation size `K`, and number of\n draws `n` at a value `x`.\n","base.dists.hypergeometric.cdf.factory":"\nbase.dists.hypergeometric.cdf.factory( N:integer, K:integer, n:integer )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a hypergeometric distribution with population size `N`, subpopulation\n size `K`, and number of draws `n`.\n","base.dists.hypergeometric.Hypergeometric":"\nbase.dists.hypergeometric.Hypergeometric( [N:integer, K:integer, n:integer] )\n Returns a hypergeometric distribution object.\n","base.dists.hypergeometric.kurtosis":"\nbase.dists.hypergeometric.kurtosis( N:integer, K:integer, n:integer )\n Returns the excess kurtosis of a hypergeometric distribution.\n","base.dists.hypergeometric.logpmf":"\nbase.dists.hypergeometric.logpmf( x:number, N:integer, K:integer, n:integer )\n Evaluates the natural logarithm of the probability mass function (PMF) for a\n hypergeometric distribution with population size `N`, subpopulation size\n `K`, and number of draws `n` at a value `x`.\n","base.dists.hypergeometric.logpmf.factory":"\nbase.dists.hypergeometric.logpmf.factory( N:integer, K:integer, n:integer )\n Returns a function for evaluating the natural logarithm of the probability\n mass function (PMF) of a hypergeometric distribution with population size\n `N`, subpopulation size `K`, and number of draws `n`.\n","base.dists.hypergeometric.mean":"\nbase.dists.hypergeometric.mean( N:integer, K:integer, n:integer )\n Returns the expected value of a hypergeometric distribution.\n","base.dists.hypergeometric.mode":"\nbase.dists.hypergeometric.mode( N:integer, K:integer, n:integer )\n Returns the mode of a hypergeometric distribution.\n","base.dists.hypergeometric.pmf":"\nbase.dists.hypergeometric.pmf( x:number, N:integer, K:integer, n:integer )\n Evaluates the probability mass function (PMF) for a hypergeometric\n distribution with population size `N`, subpopulation size `K`, and number of\n draws `n` at a value `x`.\n","base.dists.hypergeometric.pmf.factory":"\nbase.dists.hypergeometric.pmf.factory( N:integer, K:integer, n:integer )\n Returns a function for evaluating the probability mass function (PMF) of a\n hypergeometric distribution with population size `N`, subpopulation size\n `K`, and number of draws `n`.\n","base.dists.hypergeometric.quantile":"\nbase.dists.hypergeometric.quantile( p:number, N:integer, K:integer, n:integer )\n Evaluates the quantile function for a hypergeometric distribution with\n population size `N`, subpopulation size `K`, and number of draws `n` at a\n probability `p`.\n","base.dists.hypergeometric.quantile.factory":"\nbase.dists.hypergeometric.quantile.factory( N:integer, K:integer, n:integer )\n Returns a function for evaluating the quantile function of a hypergeometric\n distribution with population size `N`, subpopulation size `K`, and number of\n draws `n`.\n","base.dists.hypergeometric.skewness":"\nbase.dists.hypergeometric.skewness( N:integer, K:integer, n:integer )\n Returns the skewness of a hypergeometric distribution.\n","base.dists.hypergeometric.stdev":"\nbase.dists.hypergeometric.stdev( N:integer, K:integer, n:integer )\n Returns the standard deviation of a hypergeometric distribution.\n","base.dists.hypergeometric.variance":"\nbase.dists.hypergeometric.variance( N:integer, K:integer, n:integer )\n Returns the variance of a hypergeometric distribution.\n","base.dists.invgamma.cdf":"\nbase.dists.invgamma.cdf( x:number, α:number, β:number )\n Evaluates the cumulative distribution function (CDF) for an inverse gamma\n distribution with shape parameter `α` and scale parameter `β` at a value\n `x`.\n","base.dists.invgamma.cdf.factory":"\nbase.dists.invgamma.cdf.factory( α:number, β:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of an inverse gamma distribution with shape parameter `α` and scale\n parameter `β`.\n","base.dists.invgamma.entropy":"\nbase.dists.invgamma.entropy( α:number, β:number )\n Returns the differential entropy of an inverse gamma distribution.\n","base.dists.invgamma.InvGamma":"\nbase.dists.invgamma.InvGamma( [α:number, β:number] )\n Returns an inverse gamma distribution object.\n","base.dists.invgamma.kurtosis":"\nbase.dists.invgamma.kurtosis( α:number, β:number )\n Returns the excess kurtosis of an inverse gamma distribution.\n","base.dists.invgamma.logpdf":"\nbase.dists.invgamma.logpdf( x:number, α:number, β:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for an inverse gamma distribution with shape parameter `α` and scale\n parameter `β` at a value `x`.\n","base.dists.invgamma.logpdf.factory":"\nbase.dists.invgamma.logpdf.factory( α:number, β:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) for an inverse gamma distribution with shape\n parameter `α` and scale parameter `β`.\n","base.dists.invgamma.mean":"\nbase.dists.invgamma.mean( α:number, β:number )\n Returns the expected value of an inverse gamma distribution.\n","base.dists.invgamma.mode":"\nbase.dists.invgamma.mode( α:number, β:number )\n Returns the mode of an inverse gamma distribution.\n","base.dists.invgamma.pdf":"\nbase.dists.invgamma.pdf( x:number, α:number, β:number )\n Evaluates the probability density function (PDF) for an inverse gamma\n distribution with shape parameter `α` and scale parameter `β` at a value\n `x`.\n","base.dists.invgamma.pdf.factory":"\nbase.dists.invgamma.pdf.factory( α:number, β:number )\n Returns a function for evaluating the probability density function (PDF)\n of an inverse gamma distribution with shape parameter `α` and scale\n parameter `β`.\n","base.dists.invgamma.quantile":"\nbase.dists.invgamma.quantile( p:number, α:number, β:number )\n Evaluates the quantile function for an inverse gamma distribution with shape\n parameter `α` and scale parameter `β` at a probability `p`.\n","base.dists.invgamma.quantile.factory":"\nbase.dists.invgamma.quantile.factory( α:number, β:number )\n Returns a function for evaluating the quantile function of an inverse gamma\n distribution with shape parameter `α` and scale parameter `β`.\n","base.dists.invgamma.skewness":"\nbase.dists.invgamma.skewness( α:number, β:number )\n Returns the skewness of an inverse gamma distribution.\n","base.dists.invgamma.stdev":"\nbase.dists.invgamma.stdev( α:number, β:number )\n Returns the standard deviation of an inverse gamma distribution.\n","base.dists.invgamma.variance":"\nbase.dists.invgamma.variance( α:number, β:number )\n Returns the variance of an inverse gamma distribution.\n","base.dists.kumaraswamy.cdf":"\nbase.dists.kumaraswamy.cdf( x:number, a:number, b:number )\n Evaluates the cumulative distribution function (CDF) for Kumaraswamy's\n double bounded distribution with first shape parameter `a` and second shape\n parameter `b` at a value `x`.\n","base.dists.kumaraswamy.cdf.factory":"\nbase.dists.kumaraswamy.cdf.factory( a:number, b:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Kumaraswamy's double bounded distribution with first shape parameter\n `a` and second shape parameter `b`.\n","base.dists.kumaraswamy.Kumaraswamy":"\nbase.dists.kumaraswamy.Kumaraswamy( [a:number, b:number] )\n Returns a Kumaraswamy's double bounded distribution object.\n","base.dists.kumaraswamy.kurtosis":"\nbase.dists.kumaraswamy.kurtosis( a:number, b:number )\n Returns the excess kurtosis of a Kumaraswamy's double bounded distribution.\n","base.dists.kumaraswamy.logcdf":"\nbase.dists.kumaraswamy.logcdf( x:number, a:number, b:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for Kumaraswamy's double bounded distribution with first shape\n parameter `a` and second shape parameter `b` at a value `x`.\n","base.dists.kumaraswamy.logcdf.factory":"\nbase.dists.kumaraswamy.logcdf.factory( a:number, b:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a Kumaraswamy's double bounded distribution\n with first shape parameter `a` and second shape parameter `b`.\n","base.dists.kumaraswamy.logpdf":"\nbase.dists.kumaraswamy.logpdf( x:number, a:number, b:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for Kumaraswamy's double bounded distribution with first shape parameter `a`\n and second shape parameter `b` at a value `x`.\n","base.dists.kumaraswamy.logpdf.factory":"\nbase.dists.kumaraswamy.logpdf.factory( a:number, b:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of a Kumaraswamy's double bounded distribution with\n first shape parameter `a` and second shape parameter `b`.\n","base.dists.kumaraswamy.mean":"\nbase.dists.kumaraswamy.mean( a:number, b:number )\n Returns the mean of a Kumaraswamy's double bounded distribution.\n","base.dists.kumaraswamy.median":"\nbase.dists.kumaraswamy.median( a:number, b:number )\n Returns the median of a Kumaraswamy's double bounded distribution.\n","base.dists.kumaraswamy.mode":"\nbase.dists.kumaraswamy.mode( a:number, b:number )\n Returns the mode of a Kumaraswamy's double bounded distribution.\n","base.dists.kumaraswamy.pdf":"\nbase.dists.kumaraswamy.pdf( x:number, a:number, b:number )\n Evaluates the probability density function (PDF) for Kumaraswamy's double\n bounded distribution with first shape parameter `a` and second shape\n parameter `b` at a value `x`.\n","base.dists.kumaraswamy.pdf.factory":"\nbase.dists.kumaraswamy.pdf.factory( a:number, b:number )\n Returns a function for evaluating the probability density function (PDF)\n of a Kumaraswamy's double bounded distribution with first shape parameter\n `a` and second shape parameter `b`.\n","base.dists.kumaraswamy.quantile":"\nbase.dists.kumaraswamy.quantile( p:number, a:number, b:number )\n Evaluates the quantile function for a Kumaraswamy's double bounded\n distribution with first shape parameter `a` and second shape parameter `b`\n at a probability `p`.\n","base.dists.kumaraswamy.quantile.factory":"\nbase.dists.kumaraswamy.quantile.factory( a:number, b:number )\n Returns a function for evaluating the quantile function of a Kumaraswamy's\n double bounded distribution with first shape parameter `a` and second shape\n parameter `b`.\n","base.dists.kumaraswamy.skewness":"\nbase.dists.kumaraswamy.skewness( a:number, b:number )\n Returns the skewness of a Kumaraswamy's double bounded distribution.\n","base.dists.kumaraswamy.stdev":"\nbase.dists.kumaraswamy.stdev( a:number, b:number )\n Returns the standard deviation of a Kumaraswamy's double bounded\n distribution.\n","base.dists.kumaraswamy.variance":"\nbase.dists.kumaraswamy.variance( a:number, b:number )\n Returns the variance of a Kumaraswamy's double bounded distribution.\n","base.dists.laplace.cdf":"\nbase.dists.laplace.cdf( x:number, μ:number, b:number )\n Evaluates the cumulative distribution function (CDF) for a Laplace\n distribution with scale parameter `b` and location parameter `μ` at a\n value `x`.\n","base.dists.laplace.cdf.factory":"\nbase.dists.laplace.cdf.factory( μ:number, b:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Laplace distribution with scale parameter `b` and location parameter\n `μ`.\n","base.dists.laplace.entropy":"\nbase.dists.laplace.entropy( μ:number, b:number )\n Returns the differential entropy of a Laplace distribution with location\n parameter `μ` and scale parameter `b`.\n","base.dists.laplace.kurtosis":"\nbase.dists.laplace.kurtosis( μ:number, b:number )\n Returns the excess kurtosis of a Laplace distribution with location\n parameter `μ` and scale parameter `b`.\n","base.dists.laplace.Laplace":"\nbase.dists.laplace.Laplace( [μ:number, b:number] )\n Returns a Laplace distribution object.\n","base.dists.laplace.logcdf":"\nbase.dists.laplace.logcdf( x:number, μ:number, b:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for a\n Laplace distribution with scale parameter `b` and location parameter `μ` at\n a value `x`.\n","base.dists.laplace.logcdf.factory":"\nbase.dists.laplace.logcdf.factory( μ:number, b:number )\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of a Laplace distribution with scale parameter\n `b` and location parameter `μ`.\n","base.dists.laplace.logpdf":"\nbase.dists.laplace.logpdf( x:number, μ:number, b:number )\n Evaluates the logarithm of the probability density function (PDF) for a\n Laplace distribution with scale parameter `b` and location parameter `μ` at\n a value `x`.\n","base.dists.laplace.logpdf.factory":"\nbase.dists.laplace.logpdf.factory( μ:number, b:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a Laplace distribution with scale parameter `b` and\n location parameter `μ`.\n","base.dists.laplace.mean":"\nbase.dists.laplace.mean( μ:number, b:number )\n Returns the expected value of a Laplace distribution with location parameter\n `μ` and scale parameter `b`.\n","base.dists.laplace.median":"\nbase.dists.laplace.median( μ:number, b:number )\n Returns the median of a Laplace distribution with location parameter `μ` and\n scale parameter `b`.\n","base.dists.laplace.mgf":"\nbase.dists.laplace.mgf( t:number, μ:number, b:number )\n Evaluates the moment-generating function (MGF) for a Laplace\n distribution with scale parameter `b` and location parameter `μ` at a\n value `t`.\n","base.dists.laplace.mgf.factory":"\nbase.dists.laplace.mgf.factory( μ:number, b:number )\n Returns a function for evaluating the moment-generating function (MGF)\n of a Laplace distribution with scale parameter `b` and location parameter\n `μ`.\n","base.dists.laplace.mode":"\nbase.dists.laplace.mode( μ:number, b:number )\n Returns the mode of a Laplace distribution with location parameter `μ` and\n scale parameter `b`.\n","base.dists.laplace.pdf":"\nbase.dists.laplace.pdf( x:number, μ:number, b:number )\n Evaluates the probability density function (PDF) for a Laplace\n distribution with scale parameter `b` and location parameter `μ` at a\n value `x`.\n","base.dists.laplace.pdf.factory":"\nbase.dists.laplace.pdf.factory( μ:number, b:number )\n Returns a function for evaluating the probability density function (PDF)\n of a Laplace distribution with scale parameter `b` and location parameter\n `μ`.\n","base.dists.laplace.quantile":"\nbase.dists.laplace.quantile( p:number, μ:number, b:number )\n Evaluates the quantile function for a Laplace distribution with scale\n parameter `b` and location parameter `μ` at a probability `p`.\n","base.dists.laplace.quantile.factory":"\nbase.dists.laplace.quantile.factory( μ:number, b:number )\n Returns a function for evaluating the quantile function of a Laplace\n distribution with scale parameter `b` and location parameter `μ`.\n","base.dists.laplace.skewness":"\nbase.dists.laplace.skewness( μ:number, b:number )\n Returns the skewness of a Laplace distribution with location parameter `μ`\n and scale parameter `b`.\n","base.dists.laplace.stdev":"\nbase.dists.laplace.stdev( μ:number, b:number )\n Returns the standard deviation of a Laplace distribution with location\n parameter `μ` and scale parameter `b`.\n","base.dists.laplace.variance":"\nbase.dists.laplace.variance( μ:number, b:number )\n Returns the variance of a Laplace distribution with location parameter `μ`\n and scale parameter `b`.\n","base.dists.levy.cdf":"\nbase.dists.levy.cdf( x:number, μ:number, c:number )\n Evaluates the cumulative distribution function (CDF) for a Lévy distribution\n with location parameter `μ` and scale parameter `c` at a value `x`.\n","base.dists.levy.cdf.factory":"\nbase.dists.levy.cdf.factory( μ:number, c:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Lévy distribution with location parameter `μ` and scale parameter `c`.\n","base.dists.levy.entropy":"\nbase.dists.levy.entropy( μ:number, c:number )\n Returns the entropy of a Lévy distribution with location parameter `μ` and\n scale parameter `c`.\n","base.dists.levy.Levy":"\nbase.dists.levy.Levy( [μ:number, c:number] )\n Returns a Lévy distribution object.\n","base.dists.levy.logcdf":"\nbase.dists.levy.logcdf( x:number, μ:number, c:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for a\n Lévy distribution with location parameter `μ` and scale parameter `c` at a\n value `x`.\n","base.dists.levy.logcdf.factory":"\nbase.dists.levy.logcdf.factory( μ:number, c:number )\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of a Lévy distribution with location parameter\n `μ` and scale parameter `c`.\n","base.dists.levy.logpdf":"\nbase.dists.levy.logpdf( x:number, μ:number, c:number )\n Evaluates the logarithm of the probability density function (PDF) for a Lévy\n distribution with location parameter `μ` and scale parameter `c` at a value\n `x`.\n","base.dists.levy.logpdf.factory":"\nbase.dists.levy.logpdf.factory( μ:number, c:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a Lévy distribution with location parameter `μ` and scale\n parameter `c`.\n","base.dists.levy.mean":"\nbase.dists.levy.mean( μ:number, c:number )\n Returns the expected value of a Lévy distribution with location parameter\n `μ` and scale parameter `c`.\n","base.dists.levy.median":"\nbase.dists.levy.median( μ:number, c:number )\n Returns the median of a Lévy distribution with location parameter `μ` and\n scale parameter `c`.\n","base.dists.levy.mode":"\nbase.dists.levy.mode( μ:number, c:number )\n Returns the mode of a Lévy distribution with location parameter `μ` and\n scale parameter `c`.\n","base.dists.levy.pdf":"\nbase.dists.levy.pdf( x:number, μ:number, c:number )\n Evaluates the probability density function (PDF) for a Lévy distribution\n with location parameter `μ` and scale parameter `c` at a value `x`.\n","base.dists.levy.pdf.factory":"\nbase.dists.levy.pdf.factory( μ:number, c:number )\n Returns a function for evaluating the probability density function (PDF) of\n a Lévy distribution with location parameter `μ` and scale parameter `c`.\n","base.dists.levy.quantile":"\nbase.dists.levy.quantile( p:number, μ:number, c:number )\n Evaluates the quantile function for a Lévy distribution with location\n parameter `μ` and scale parameter `c` at a probability `p`.\n","base.dists.levy.quantile.factory":"\nbase.dists.levy.quantile.factory( μ:number, c:number )\n Returns a function for evaluating the quantile function of a Lévy\n distribution with location parameter `μ` and scale parameter `c`.\n","base.dists.levy.stdev":"\nbase.dists.levy.stdev( μ:number, c:number )\n Returns the standard deviation of a Lévy distribution with location\n parameter `μ` and scale parameter `c`.\n","base.dists.levy.variance":"\nbase.dists.levy.variance( μ:number, c:number )\n Returns the variance of a Lévy distribution with location parameter `μ` and\n scale parameter `c`.\n","base.dists.logistic.cdf":"\nbase.dists.logistic.cdf( x:number, μ:number, s:number )\n Evaluates the cumulative distribution function (CDF) for a logistic\n distribution with location parameter `μ` and scale parameter `s` at a value\n `x`.\n","base.dists.logistic.cdf.factory":"\nbase.dists.logistic.cdf.factory( μ:number, s:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a logistic distribution with location parameter `μ` and scale parameter\n `s`.\n","base.dists.logistic.entropy":"\nbase.dists.logistic.entropy( μ:number, s:number )\n Returns the entropy of a logistic distribution with location parameter `μ`\n and scale parameter `s`.\n","base.dists.logistic.kurtosis":"\nbase.dists.logistic.kurtosis( μ:number, s:number )\n Returns the excess kurtosis of a logistic distribution with location\n parameter `μ` and scale parameter `s`.\n","base.dists.logistic.logcdf":"\nbase.dists.logistic.logcdf( x:number, μ:number, s:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for a\n logistic distribution with location parameter `μ` and scale parameter `s` at\n a value `x`.\n","base.dists.logistic.logcdf.factory":"\nbase.dists.logistic.logcdf.factory( μ:number, s:number )\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of a Logistic distribution with location\n parameter `μ` and scale parameter `s`.\n","base.dists.logistic.Logistic":"\nbase.dists.logistic.Logistic( [μ:number, s:number] )\n Returns a logistic distribution object.\n","base.dists.logistic.logpdf":"\nbase.dists.logistic.logpdf( x:number, μ:number, s:number )\n Evaluates the logarithm of the probability density function (PDF) for a\n logistic distribution with location parameter `μ` and scale parameter `s` at\n a value `x`.\n","base.dists.logistic.logpdf.factory":"\nbase.dists.logistic.logpdf.factory( μ:number, s:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a Logistic distribution with location parameter `μ` and\n scale parameter `s`.\n","base.dists.logistic.mean":"\nbase.dists.logistic.mean( μ:number, s:number )\n Returns the expected value of a logistic distribution with location\n parameter `μ` and scale parameter `s`.\n","base.dists.logistic.median":"\nbase.dists.logistic.median( μ:number, s:number )\n Returns the median of a logistic distribution with location parameter `μ`\n and scale parameter `s`.\n","base.dists.logistic.mgf":"\nbase.dists.logistic.mgf( t:number, μ:number, s:number )\n Evaluates the moment-generating function (MGF) for a logistic distribution\n with location parameter `μ` and scale parameter `s` at a value `t`.\n","base.dists.logistic.mgf.factory":"\nbase.dists.logistic.mgf.factory( μ:number, s:number )\n Returns a function for evaluating the moment-generating function (MGF)\n of a Logistic distribution with location parameter `μ` and scale parameter\n `s`.\n","base.dists.logistic.mode":"\nbase.dists.logistic.mode( μ:number, s:number )\n Returns the mode of a logistic distribution with location parameter `μ` and\n scale parameter `s`.\n","base.dists.logistic.pdf":"\nbase.dists.logistic.pdf( x:number, μ:number, s:number )\n Evaluates the probability density function (PDF) for a logistic distribution\n with location parameter `μ` and scale parameter `s` at a value `x`.\n","base.dists.logistic.pdf.factory":"\nbase.dists.logistic.pdf.factory( μ:number, s:number )\n Returns a function for evaluating the probability density function (PDF) of\n a Logistic distribution with location parameter `μ` and scale parameter `s`.\n","base.dists.logistic.quantile":"\nbase.dists.logistic.quantile( p:number, μ:number, s:number )\n Evaluates the quantile function for a logistic distribution with location\n parameter `μ` and scale parameter `s` at a probability `p`.\n","base.dists.logistic.quantile.factory":"\nbase.dists.logistic.quantile.factory( μ:number, s:number )\n Returns a function for evaluating the quantile function of a logistic\n distribution with location parameter `μ` and scale parameter `s`.\n","base.dists.logistic.skewness":"\nbase.dists.logistic.skewness( μ:number, s:number )\n Returns the skewness of a logistic distribution with location parameter `μ`\n and scale parameter `s`.\n","base.dists.logistic.stdev":"\nbase.dists.logistic.stdev( μ:number, s:number )\n Returns the standard deviation of a logistic distribution with location\n parameter `μ` and scale parameter `s`.\n","base.dists.logistic.variance":"\nbase.dists.logistic.variance( μ:number, s:number )\n Returns the variance of a logistic distribution with location parameter `μ`\n and scale parameter `s`.\n","base.dists.lognormal.cdf":"\nbase.dists.lognormal.cdf( x:number, μ:number, σ:number )\n Evaluates the cumulative distribution function (CDF) for a lognormal\n distribution with location parameter `μ` and scale parameter `σ` at a value\n `x`.\n","base.dists.lognormal.cdf.factory":"\nbase.dists.lognormal.cdf.factory( μ:number, σ:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a lognormal distribution with location parameter `μ` and scale parameter\n `σ`.\n","base.dists.lognormal.entropy":"\nbase.dists.lognormal.entropy( μ:number, σ:number )\n Returns the differential entropy of a lognormal distribution with location\n `μ` and scale `σ` (in nats).\n","base.dists.lognormal.kurtosis":"\nbase.dists.lognormal.kurtosis( μ:number, σ:number )\n Returns the excess kurtosis of a lognormal distribution with location `μ`\n and scale `σ`.\n","base.dists.lognormal.LogNormal":"\nbase.dists.lognormal.LogNormal( [μ:number, σ:number] )\n Returns a lognormal distribution object.\n","base.dists.lognormal.logcdf":"\nbase.dists.lognormal.logcdf( x:number, μ:number, σ:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for a lognormal distribution with mean `μ` and standard deviation `σ`\n at a value `x`.\n","base.dists.lognormal.logcdf.factory":"\nbase.dists.lognormal.logcdf.factory( μ:number, σ:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a lognormal distribution with mean `μ` and\n standard deviation `σ`.\n","base.dists.lognormal.logpdf":"\nbase.dists.lognormal.logpdf( x:number, μ:number, σ:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for a lognormal distribution with location parameter `μ` and scale parameter\n `σ` at a value `x`.\n","base.dists.lognormal.logpdf.factory":"\nbase.dists.lognormal.logpdf.factory( μ:number, σ:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of a lognormal distribution with location parameter\n `μ` and scale parameter `σ`.\n","base.dists.lognormal.mean":"\nbase.dists.lognormal.mean( μ:number, σ:number )\n Returns the expected value of a lognormal distribution with location `μ` and\n scale `σ`.\n","base.dists.lognormal.median":"\nbase.dists.lognormal.median( μ:number, σ:number )\n Returns the median of a lognormal distribution with location `μ` and scale\n `σ`.\n","base.dists.lognormal.mode":"\nbase.dists.lognormal.mode( μ:number, σ:number )\n Returns the mode of a lognormal distribution with location `μ` and scale\n `σ`.\n","base.dists.lognormal.pdf":"\nbase.dists.lognormal.pdf( x:number, μ:number, σ:number )\n Evaluates the probability density function (PDF) for a lognormal\n distribution with location parameter `μ` and scale parameter `σ` at a value\n `x`.\n","base.dists.lognormal.pdf.factory":"\nbase.dists.lognormal.pdf.factory( μ:number, σ:number )\n Returns a function for evaluating the probability density function (PDF) of\n a lognormal distribution with location parameter `μ` and scale parameter\n `σ`.\n","base.dists.lognormal.quantile":"\nbase.dists.lognormal.quantile( p:number, μ:number, σ:number )\n Evaluates the quantile function for a lognormal distribution with location\n parameter `μ` and scale parameter `σ` at a probability `p`.\n","base.dists.lognormal.quantile.factory":"\nbase.dists.lognormal.quantile.factory( μ:number, σ:number )\n Returns a function for evaluating the quantile function of a lognormal\n distribution with location parameter `μ` and scale parameter `σ`.\n","base.dists.lognormal.skewness":"\nbase.dists.lognormal.skewness( μ:number, σ:number )\n Returns the skewness of a lognormal distribution with location `μ` and scale\n `σ`.\n","base.dists.lognormal.stdev":"\nbase.dists.lognormal.stdev( μ:number, σ:number )\n Returns the standard deviation of a lognormal distribution with location `μ`\n and scale `σ`.\n","base.dists.lognormal.variance":"\nbase.dists.lognormal.variance( μ:number, σ:number )\n Returns the variance of a lognormal distribution with location `μ` and scale\n `σ`.\n","base.dists.negativeBinomial.cdf":"\nbase.dists.negativeBinomial.cdf( x:number, r:number, p:number )\n Evaluates the cumulative distribution function (CDF) for a negative binomial\n distribution with number of successes until experiment is stopped `r` and\n success probability `p` at a value `x`.\n","base.dists.negativeBinomial.cdf.factory":"\nbase.dists.negativeBinomial.cdf.factory( r:number, p:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a negative binomial distribution with number of successes until\n experiment is stopped `r` and success probability `p`.\n","base.dists.negativeBinomial.kurtosis":"\nbase.dists.negativeBinomial.kurtosis( r:integer, p:number )\n Returns the excess kurtosis of a negative binomial distribution.\n","base.dists.negativeBinomial.logpmf":"\nbase.dists.negativeBinomial.logpmf( x:number, r:number, p:number )\n Evaluates the natural logarithm of the probability mass function (PMF) for a\n negative binomial distribution with number of successes until experiment is\n stopped `r` and success probability `p` at a value `x`.\n","base.dists.negativeBinomial.logpmf.factory":"\nbase.dists.negativeBinomial.logpmf.factory( r:number, p:number )\n Returns a function for evaluating the natural logarithm of the probability\n mass function (PMF) of a negative binomial distribution with number of\n successes until experiment is stopped `r` and success probability `p`.\n","base.dists.negativeBinomial.mean":"\nbase.dists.negativeBinomial.mean( r:integer, p:number )\n Returns the expected value of a negative binomial distribution.\n","base.dists.negativeBinomial.mgf":"\nbase.dists.negativeBinomial.mgf( x:number, r:number, p:number )\n Evaluates the moment-generating function (MGF) for a negative binomial\n distribution with number of successes until experiment is stopped `r` and\n success probability `p` at a value `t`.\n","base.dists.negativeBinomial.mgf.factory":"\nbase.dists.negativeBinomial.mgf.factory( r:number, p:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n negative binomial distribution with number of successes until experiment is\n stopped `r` and success probability `p`.\n","base.dists.negativeBinomial.mode":"\nbase.dists.negativeBinomial.mode( r:integer, p:number )\n Returns the mode of a negative binomial distribution.\n","base.dists.negativeBinomial.NegativeBinomial":"\nbase.dists.negativeBinomial.NegativeBinomial( [r:number, p:number] )\n Returns a negative binomial distribution object.\n","base.dists.negativeBinomial.pmf":"\nbase.dists.negativeBinomial.pmf( x:number, r:number, p:number )\n Evaluates the probability mass function (PMF) for a negative binomial\n distribution with number of successes until experiment is stopped `r` and\n success probability `p` at a value `x`.\n","base.dists.negativeBinomial.pmf.factory":"\nbase.dists.negativeBinomial.pmf.factory( r:number, p:number )\n Returns a function for evaluating the probability mass function (PMF) of a\n negative binomial distribution with number of successes until experiment is\n stopped `r` and success probability `p`.\n","base.dists.negativeBinomial.quantile":"\nbase.dists.negativeBinomial.quantile( k:number, r:number, p:number )\n Evaluates the quantile function for a negative binomial distribution with\n number of successes until experiment is stopped `r` and success probability\n `p` at a probability `k`.\n","base.dists.negativeBinomial.quantile.factory":"\nbase.dists.negativeBinomial.quantile.factory( r:number, p:number )\n Returns a function for evaluating the quantile function of a negative\n binomial distribution with number of successes until experiment is stopped\n `r` and success probability `p`.\n","base.dists.negativeBinomial.skewness":"\nbase.dists.negativeBinomial.skewness( r:integer, p:number )\n Returns the skewness of a negative binomial distribution.\n","base.dists.negativeBinomial.stdev":"\nbase.dists.negativeBinomial.stdev( r:integer, p:number )\n Returns the standard deviation of a negative binomial distribution.\n","base.dists.negativeBinomial.variance":"\nbase.dists.negativeBinomial.variance( r:integer, p:number )\n Returns the variance of a negative binomial distribution.\n","base.dists.normal.cdf":"\nbase.dists.normal.cdf( x:number, μ:number, σ:number )\n Evaluates the cumulative distribution function (CDF) for a normal\n distribution with mean `μ` and standard deviation `σ` at a value `x`.\n","base.dists.normal.cdf.factory":"\nbase.dists.normal.cdf.factory( μ:number, σ:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a normal distribution with mean `μ` and standard deviation `σ`.\n","base.dists.normal.entropy":"\nbase.dists.normal.entropy( μ:number, σ:number )\n Returns the differential entropy of a normal distribution with mean `μ` and\n standard deviation `σ`.\n","base.dists.normal.kurtosis":"\nbase.dists.normal.kurtosis( μ:number, σ:number )\n Returns the excess kurtosis of a normal distribution with mean `μ` and\n standard deviation `σ`.\n","base.dists.normal.logcdf":"\nbase.dists.normal.logcdf( x:number, μ:number, σ:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for a normal distribution with mean `μ` and standard deviation `σ` at\n a value `x`.\n","base.dists.normal.logcdf.factory":"\nbase.dists.normal.logcdf.factory( μ:number, σ:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a normal distribution with mean `μ` and\n standard deviation `σ`.\n","base.dists.normal.logpdf":"\nbase.dists.normal.logpdf( x:number, μ:number, σ:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for a normal distribution with mean `μ` and standard deviation `σ` at a\n value `x`.\n","base.dists.normal.logpdf.factory":"\nbase.dists.normal.logpdf.factory( μ:number, σ:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of a normal distribution with mean `μ` and standard\n deviation `σ`.\n","base.dists.normal.mean":"\nbase.dists.normal.mean( μ:number, σ:number )\n Returns the expected value of a normal distribution with mean `μ` and\n standard deviation `σ`.\n","base.dists.normal.median":"\nbase.dists.normal.median( μ:number, σ:number )\n Returns the median of a normal distribution with mean `μ` and standard\n deviation `σ`.\n","base.dists.normal.mgf":"\nbase.dists.normal.mgf( x:number, μ:number, σ:number )\n Evaluates the moment-generating function (MGF) for a normal distribution\n with mean `μ` and standard deviation `σ` at a value `t`.\n","base.dists.normal.mgf.factory":"\nbase.dists.normal.mgf.factory( μ:number, σ:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n normal distribution with mean `μ` and standard deviation `σ`.\n","base.dists.normal.mode":"\nbase.dists.normal.mode( μ:number, σ:number )\n Returns the mode of a normal distribution with mean `μ` and standard\n deviation `σ`.\n","base.dists.normal.Normal":"\nbase.dists.normal.Normal( [μ:number, σ:number] )\n Returns a normal distribution object.\n","base.dists.normal.pdf":"\nbase.dists.normal.pdf( x:number, μ:number, σ:number )\n Evaluates the probability density function (PDF) for a normal distribution\n with mean `μ` and standard deviation `σ` at a value `x`.\n","base.dists.normal.pdf.factory":"\nbase.dists.normal.pdf.factory( μ:number, σ:number )\n Returns a function for evaluating the probability density function (PDF) of\n a normal distribution with mean `μ` and standard deviation `σ`.\n","base.dists.normal.quantile":"\nbase.dists.normal.quantile( p:number, μ:number, σ:number )\n Evaluates the quantile function for a normal distribution with mean `μ` and\n standard deviation `σ` at a probability `p`.\n","base.dists.normal.quantile.factory":"\nbase.dists.normal.quantile.factory( μ:number, σ:number )\n Returns a function for evaluating the quantile function\n of a normal distribution with mean `μ` and standard deviation `σ`.\n","base.dists.normal.skewness":"\nbase.dists.normal.skewness( μ:number, σ:number )\n Returns the skewness of a normal distribution with mean `μ` and standard\n deviation `σ`.\n","base.dists.normal.stdev":"\nbase.dists.normal.stdev( μ:number, σ:number )\n Returns the standard deviation of a normal distribution with mean `μ` and\n standard deviation `σ`.\n","base.dists.normal.variance":"\nbase.dists.normal.variance( μ:number, σ:number )\n Returns the variance of a normal distribution with mean `μ` and standard\n deviation `σ`.\n","base.dists.pareto1.cdf":"\nbase.dists.pareto1.cdf( x:number, α:number, β:number )\n Evaluates the cumulative distribution function (CDF) for a Pareto (Type I)\n distribution with shape parameter `α` and scale parameter `β` at a value\n `x`.\n","base.dists.pareto1.cdf.factory":"\nbase.dists.pareto1.cdf.factory( α:number, β:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Pareto (Type I) distribution with shape parameter `α` and scale\n parameter `β`.\n","base.dists.pareto1.entropy":"\nbase.dists.pareto1.entropy( α:number, β:number )\n Returns the differential entropy of a Pareto (Type I) distribution\n (in nats).\n","base.dists.pareto1.kurtosis":"\nbase.dists.pareto1.kurtosis( α:number, β:number )\n Returns the excess kurtosis of a Pareto (Type I) distribution.\n","base.dists.pareto1.logcdf":"\nbase.dists.pareto1.logcdf( x:number, α:number, β:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for a Pareto (Type I) distribution with shape parameter `α` and scale\n parameter `β` at a value `x`.\n","base.dists.pareto1.logcdf.factory":"\nbase.dists.pareto1.logcdf.factory( α:number, β:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a Pareto (Type I) distribution with shape\n parameter `α` and scale parameter `β`.\n","base.dists.pareto1.logpdf":"\nbase.dists.pareto1.logpdf( x:number, α:number, β:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for a Pareto (Type I) distribution with shape parameter `α` and scale\n parameter `β` at a value `x`.\n","base.dists.pareto1.logpdf.factory":"\nbase.dists.pareto1.logpdf.factory( α:number, β:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of a Pareto (Type I) distribution with shape\n parameter `α` and scale parameter `β`.\n","base.dists.pareto1.mean":"\nbase.dists.pareto1.mean( α:number, β:number )\n Returns the expected value of a Pareto (Type I) distribution.\n","base.dists.pareto1.median":"\nbase.dists.pareto1.median( α:number, β:number )\n Returns the median of a Pareto (Type I) distribution.\n","base.dists.pareto1.mode":"\nbase.dists.pareto1.mode( α:number, β:number )\n Returns the mode of a Pareto (Type I) distribution.\n","base.dists.pareto1.Pareto1":"\nbase.dists.pareto1.Pareto1( [α:number, β:number] )\n Returns a Pareto (Type I) distribution object.\n","base.dists.pareto1.pdf":"\nbase.dists.pareto1.pdf( x:number, α:number, β:number )\n Evaluates the probability density function (PDF) for a Pareto (Type I)\n distribution with shape parameter `α` and scale parameter `β` at a value\n `x`.\n","base.dists.pareto1.pdf.factory":"\nbase.dists.pareto1.pdf.factory( α:number, β:number )\n Returns a function for evaluating the probability density function (PDF) of\n a Pareto (Type I) distribution with shape parameter `α` and scale parameter\n `β`.\n","base.dists.pareto1.quantile":"\nbase.dists.pareto1.quantile( p:number, α:number, β:number )\n Evaluates the quantile function for a Pareto (Type I) distribution with\n shape parameter `α` and scale parameter `β` at a probability `p`.\n","base.dists.pareto1.quantile.factory":"\nbase.dists.pareto1.quantile.factory( α:number, β:number )\n Returns a function for evaluating the quantile function of a Pareto (Type I)\n distribution with shape parameter `α` and scale parameter `β`.\n","base.dists.pareto1.skewness":"\nbase.dists.pareto1.skewness( α:number, β:number )\n Returns the skewness of a Pareto (Type I) distribution.\n","base.dists.pareto1.stdev":"\nbase.dists.pareto1.stdev( α:number, β:number )\n Returns the standard deviation of a Pareto (Type I) distribution.\n","base.dists.pareto1.variance":"\nbase.dists.pareto1.variance( α:number, β:number )\n Returns the variance of a Pareto (Type I) distribution.\n","base.dists.poisson.cdf":"\nbase.dists.poisson.cdf( x:number, λ:number )\n Evaluates the cumulative distribution function (CDF) for a Poisson\n distribution with mean parameter `λ` at a value `x`.\n","base.dists.poisson.cdf.factory":"\nbase.dists.poisson.cdf.factory( λ:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Poisson distribution with mean parameter `λ`.\n","base.dists.poisson.entropy":"\nbase.dists.poisson.entropy( λ:number )\n Returns the entropy of a Poisson distribution.\n","base.dists.poisson.kurtosis":"\nbase.dists.poisson.kurtosis( λ:number )\n Returns the excess kurtosis of a Poisson distribution.\n","base.dists.poisson.logpmf":"\nbase.dists.poisson.logpmf( x:number, λ:number )\n Evaluates the natural logarithm of the probability mass function (PMF) for a\n Poisson distribution with mean parameter `λ` at a value `x`.\n","base.dists.poisson.logpmf.factory":"\nbase.dists.poisson.logpmf.factory( λ:number )\n Returns a function for evaluating the natural logarithm of the probability\n mass function (PMF) of a Poisson distribution with mean parameter `λ`.\n","base.dists.poisson.mean":"\nbase.dists.poisson.mean( λ:number )\n Returns the expected value of a Poisson distribution.\n","base.dists.poisson.median":"\nbase.dists.poisson.median( λ:number )\n Returns the median of a Poisson distribution.\n","base.dists.poisson.mgf":"\nbase.dists.poisson.mgf( x:number, λ:number )\n Evaluates the moment-generating function (MGF) for a Poisson distribution\n with mean parameter `λ` at a value `x`.\n","base.dists.poisson.mgf.factory":"\nbase.dists.poisson.mgf.factory( λ:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n Poisson distribution with mean parameter `λ`.\n","base.dists.poisson.mode":"\nbase.dists.poisson.mode( λ:number )\n Returns the mode of a Poisson distribution.\n","base.dists.poisson.pmf":"\nbase.dists.poisson.pmf( x:number, λ:number )\n Evaluates the probability mass function (PMF) for a Poisson\n distribution with mean parameter `λ` at a value `x`.\n","base.dists.poisson.pmf.factory":"\nbase.dists.poisson.pmf.factory( λ:number )\n Returns a function for evaluating the probability mass function (PMF)\n of a Poisson distribution with mean parameter `λ`.\n","base.dists.poisson.Poisson":"\nbase.dists.poisson.Poisson( [λ:number] )\n Returns a Poisson distribution object.\n","base.dists.poisson.quantile":"\nbase.dists.poisson.quantile( p:number, λ:number )\n Evaluates the quantile function for a Poisson distribution with mean\n parameter `λ` at a probability `p`.\n","base.dists.poisson.quantile.factory":"\nbase.dists.poisson.quantile.factory( λ:number )\n Returns a function for evaluating the quantile function of a Poisson\n distribution with mean parameter `λ`.\n","base.dists.poisson.skewness":"\nbase.dists.poisson.skewness( λ:number )\n Returns the skewness of a Poisson distribution.\n","base.dists.poisson.stdev":"\nbase.dists.poisson.stdev( λ:number )\n Returns the standard deviation of a Poisson distribution.\n","base.dists.poisson.variance":"\nbase.dists.poisson.variance( λ:number )\n Returns the variance of a Poisson distribution.\n","base.dists.rayleigh.cdf":"\nbase.dists.rayleigh.cdf( x:number, sigma:number )\n Evaluates the cumulative distribution function (CDF) for a Rayleigh\n distribution with scale parameter `sigma` at a value `x`.\n","base.dists.rayleigh.cdf.factory":"\nbase.dists.rayleigh.cdf.factory( sigma:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Rayleigh distribution with scale parameter `sigma`.\n","base.dists.rayleigh.entropy":"\nbase.dists.rayleigh.entropy( σ:number )\n Returns the differential entropy of a Rayleigh distribution.\n","base.dists.rayleigh.kurtosis":"\nbase.dists.rayleigh.kurtosis( σ:number )\n Returns the excess kurtosis of a Rayleigh distribution.\n","base.dists.rayleigh.logcdf":"\nbase.dists.rayleigh.logcdf( x:number, sigma:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for a\n Rayleigh distribution with scale parameter `sigma` at a value `x`.\n","base.dists.rayleigh.logcdf.factory":"\nbase.dists.rayleigh.logcdf.factory( sigma:number )\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of a Rayleigh distribution with scale parameter\n `sigma`.\n","base.dists.rayleigh.logpdf":"\nbase.dists.rayleigh.logpdf( x:number, sigma:number )\n Evaluates the logarithm of the probability density function (PDF) for a\n Rayleigh distribution with scale parameter `sigma` at a value `x`.\n","base.dists.rayleigh.logpdf.factory":"\nbase.dists.rayleigh.logpdf.factory( sigma:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a Rayleigh distribution with scale parameter `sigma`.\n","base.dists.rayleigh.mean":"\nbase.dists.rayleigh.mean( σ:number )\n Returns the expected value of a Rayleigh distribution.\n","base.dists.rayleigh.median":"\nbase.dists.rayleigh.median( σ:number )\n Returns the median of a Rayleigh distribution.\n","base.dists.rayleigh.mgf":"\nbase.dists.rayleigh.mgf( t:number, sigma:number )\n Evaluates the moment-generating function (MGF) for a Rayleigh distribution\n with scale parameter `sigma` at a value `t`.\n","base.dists.rayleigh.mgf.factory":"\nbase.dists.rayleigh.mgf.factory( sigma:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n Rayleigh distribution with scale parameter `sigma`.\n","base.dists.rayleigh.mode":"\nbase.dists.rayleigh.mode( σ:number )\n Returns the mode of a Rayleigh distribution.\n","base.dists.rayleigh.pdf":"\nbase.dists.rayleigh.pdf( x:number, sigma:number )\n Evaluates the probability density function (PDF) for a Rayleigh\n distribution with scale parameter `sigma` at a value `x`.\n","base.dists.rayleigh.pdf.factory":"\nbase.dists.rayleigh.pdf.factory( sigma:number )\n Returns a function for evaluating the probability density function (PDF) of\n a Rayleigh distribution with scale parameter `sigma`.\n","base.dists.rayleigh.quantile":"\nbase.dists.rayleigh.quantile( p:number, sigma:number )\n Evaluates the quantile function for a Rayleigh distribution with scale\n parameter `sigma` at a probability `p`.\n","base.dists.rayleigh.quantile.factory":"\nbase.dists.rayleigh.quantile.factory( sigma:number )\n Returns a function for evaluating the quantile function of a Rayleigh\n distribution with scale parameter `sigma`.\n","base.dists.rayleigh.Rayleigh":"\nbase.dists.rayleigh.Rayleigh( [σ:number] )\n Returns a Rayleigh distribution object.\n","base.dists.rayleigh.skewness":"\nbase.dists.rayleigh.skewness( σ:number )\n Returns the skewness of a Rayleigh distribution.\n","base.dists.rayleigh.stdev":"\nbase.dists.rayleigh.stdev( σ:number )\n Returns the standard deviation of a Rayleigh distribution.\n","base.dists.rayleigh.variance":"\nbase.dists.rayleigh.variance( σ:number )\n Returns the variance of a Rayleigh distribution.\n","base.dists.signrank.cdf":"\nbase.dists.signrank.cdf( x:number, n:integer )\n Evaluates the cumulative distribution function (CDF) for the distribution of\n the Wilcoxon signed rank test statistic with `n` observations.\n","base.dists.signrank.cdf.factory":"\nbase.dists.signrank.cdf.factory( n:integer )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of the distribution of the Wilcoxon signed rank test statistic.\n","base.dists.signrank.pdf":"\nbase.dists.signrank.pdf( x:number, n:integer )\n Evaluates the probability density function (PDF) for the distribution of\n the Wilcoxon signed rank test statistic with `n` observations.\n","base.dists.signrank.pdf.factory":"\nbase.dists.signrank.pdf.factory( n:integer )\n Returns a function for evaluating the probability density function (PDF)\n of the distribution of the Wilcoxon signed rank test statistic.\n","base.dists.signrank.quantile":"\nbase.dists.signrank.quantile( p:number, n:integer )\n Evaluates the quantile function for the Wilcoxon signed rank test statistic\n with `n` observations at a probability `p`.\n","base.dists.signrank.quantile.factory":"\nbase.dists.signrank.quantile.factory( n:integer )\n Returns a function for evaluating the quantile function of the Wilcoxon\n signed rank test statistic with `n` observations.\n","base.dists.t.cdf":"\nbase.dists.t.cdf( x:number, v:number )\n Evaluates the cumulative distribution function (CDF) for a Student's t\n distribution with degrees of freedom `v` at a value `x`.\n","base.dists.t.cdf.factory":"\nbase.dists.t.cdf.factory( v:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Student's t distribution with degrees of freedom `v`.\n","base.dists.t.entropy":"\nbase.dists.t.entropy( v:number )\n Returns the differential entropy of a Student's t distribution.\n","base.dists.t.kurtosis":"\nbase.dists.t.kurtosis( v:number )\n Returns the excess kurtosis of a Student's t distribution.\n","base.dists.t.mean":"\nbase.dists.t.mean( v:number )\n Returns the expected value of a Student's t distribution.\n","base.dists.t.median":"\nbase.dists.t.median( v:number )\n Returns the median of a Student's t distribution.\n","base.dists.t.mode":"\nbase.dists.t.mode( v:number )\n Returns the mode of a Student's t distribution.\n","base.dists.t.pdf":"\nbase.dists.t.pdf( x:number, v:number )\n Evaluates the probability density function (PDF) for a Student's t\n distribution with degrees of freedom `v` at a value `x`.\n","base.dists.t.pdf.factory":"\nbase.dists.t.pdf.factory( v:number )\n Returns a function for evaluating the probability density function (PDF)\n of a Student's t distribution with degrees of freedom `v`.\n","base.dists.t.quantile":"\nbase.dists.t.quantile( p:number, v:number )\n Evaluates the quantile function for a Student's t distribution with degrees\n of freedom `v` at a probability `p`.\n","base.dists.t.quantile.factory":"\nbase.dists.t.quantile.factory( v:number )\n Returns a function for evaluating the quantile function of a Student's t\n distribution with degrees of freedom `v`.\n","base.dists.t.skewness":"\nbase.dists.t.skewness( v:number )\n Returns the skewness of a Student's t distribution.\n","base.dists.t.stdev":"\nbase.dists.t.stdev( v:number )\n Returns the standard deviation of a Student's t distribution.\n","base.dists.t.T":"\nbase.dists.t.T( [v:number] )\n Returns a Student's t distribution object.\n","base.dists.t.variance":"\nbase.dists.t.variance( v:number )\n Returns the variance of a Student's t distribution.\n","base.dists.triangular.cdf":"\nbase.dists.triangular.cdf( x:number, a:number, b:number, c:number )\n Evaluates the cumulative distribution function (CDF) for a triangular\n distribution with minimum support `a`, maximum support `b`, and mode `c` at\n a value `x`.\n","base.dists.triangular.cdf.factory":"\nbase.dists.triangular.cdf.factory( a:number, b:number, c:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a triangular distribution with minimum support `a`, maximum support `b`,\n and mode `c`.\n","base.dists.triangular.entropy":"\nbase.dists.triangular.entropy( a:number, b:number, c:number )\n Returns the differential entropy of a triangular distribution (in nats).\n","base.dists.triangular.kurtosis":"\nbase.dists.triangular.kurtosis( a:number, b:number, c:number )\n Returns the excess kurtosis of a triangular distribution.\n","base.dists.triangular.logcdf":"\nbase.dists.triangular.logcdf( x:number, a:number, b:number, c:number )\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF) for a triangular distribution with minimum support `a`, maximum\n support `b`, and mode `c` at a value `x`.\n","base.dists.triangular.logcdf.factory":"\nbase.dists.triangular.logcdf.factory( a:number, b:number, c:number )\n Returns a function for evaluating the natural logarithm of the cumulative\n distribution function (CDF) of a triangular distribution with minimum\n support `a`, maximum support `b`, and mode `c`.\n","base.dists.triangular.logpdf":"\nbase.dists.triangular.logpdf( x:number, a:number, b:number, c:number )\n Evaluates the natural logarithm of the probability density function (PDF)\n for a triangular distribution with minimum support `a`, maximum support `b`,\n and mode `c` at a value `x`.\n","base.dists.triangular.logpdf.factory":"\nbase.dists.triangular.logpdf.factory( a:number, b:number, c:number )\n Returns a function for evaluating the natural logarithm of the probability\n density function (PDF) of a triangular distribution with minimum support\n `a`, maximum support `b`, and mode `c`.\n","base.dists.triangular.mean":"\nbase.dists.triangular.mean( a:number, b:number, c:number )\n Returns the expected value of a triangular distribution.\n","base.dists.triangular.median":"\nbase.dists.triangular.median( a:number, b:number, c:number )\n Returns the median of a triangular distribution.\n","base.dists.triangular.mgf":"\nbase.dists.triangular.mgf( t:number, a:number, b:number, c:number )\n Evaluates the moment-generating function (MGF) for a triangular distribution\n with minimum support `a`, maximum support `b`, and mode `c` at a value `t`.\n","base.dists.triangular.mgf.factory":"\nbase.dists.triangular.mgf.factory( a:number, b:number, c:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n triangular distribution with minimum support `a`, maximum support `b`, and\n mode `c`.\n","base.dists.triangular.mode":"\nbase.dists.triangular.mode( a:number, b:number, c:number )\n Returns the mode of a triangular distribution.\n","base.dists.triangular.pdf":"\nbase.dists.triangular.pdf( x:number, a:number, b:number, c:number )\n Evaluates the probability density function (PDF) for a triangular\n distribution with minimum support `a`, maximum support `b`, and mode `c` at\n a value `x`.\n","base.dists.triangular.pdf.factory":"\nbase.dists.triangular.pdf.factory( a:number, b:number, c:number )\n Returns a function for evaluating the probability density function (PDF) of\n a triangular distribution with minimum support `a`, maximum support `b`, and\n mode `c`.\n","base.dists.triangular.quantile":"\nbase.dists.triangular.quantile( p:number, a:number, b:number, c:number )\n Evaluates the quantile function for a triangular distribution with minimum\n support `a`, maximum support `b`, and mode `c` at a value `x`.\n","base.dists.triangular.quantile.factory":"\nbase.dists.triangular.quantile.factory( a:number, b:number, c:number )\n Returns a function for evaluating the quantile function of a triangular\n distribution with minimum support `a`, maximum support `b`, and mode `c`.\n","base.dists.triangular.skewness":"\nbase.dists.triangular.skewness( a:number, b:number, c:number )\n Returns the skewness of a triangular distribution.\n","base.dists.triangular.stdev":"\nbase.dists.triangular.stdev( a:number, b:number, c:number )\n Returns the standard deviation of a triangular distribution.\n","base.dists.triangular.Triangular":"\nbase.dists.triangular.Triangular( [a:number, b:number, c:number] )\n Returns a triangular distribution object.\n","base.dists.triangular.variance":"\nbase.dists.triangular.variance( a:number, b:number, c:number )\n Returns the variance of a triangular distribution.\n","base.dists.uniform.cdf":"\nbase.dists.uniform.cdf( x:number, a:number, b:number )\n Evaluates the cumulative distribution function (CDF) for a uniform\n distribution with minimum support `a` and maximum support `b` at a value\n `x`.\n","base.dists.uniform.cdf.factory":"\nbase.dists.uniform.cdf.factory( a:number, b:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a uniform distribution with minimum support `a` and maximum support `b`.\n","base.dists.uniform.entropy":"\nbase.dists.uniform.entropy( a:number, b:number )\n Returns the differential entropy of a uniform distribution.\n","base.dists.uniform.kurtosis":"\nbase.dists.uniform.kurtosis( a:number, b:number )\n Returns the excess kurtosis of a uniform distribution.\n","base.dists.uniform.logcdf":"\nbase.dists.uniform.logcdf( x:number, a:number, b:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for a\n uniform distribution with minimum support `a` and maximum support `b` at a\n value `x`.\n","base.dists.uniform.logcdf.factory":"\nbase.dists.uniform.logcdf.factory( a:number, b:number )\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of a uniform distribution with minimum support\n `a` and maximum support `b`.\n","base.dists.uniform.logpdf":"\nbase.dists.uniform.logpdf( x:number, a:number, b:number )\n Evaluates the logarithm of the probability density function (PDF) for a\n uniform distribution with minimum support `a` and maximum support `b` at a\n value `x`.\n","base.dists.uniform.logpdf.factory":"\nbase.dists.uniform.logpdf.factory( a:number, b:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a uniform distribution with minimum support `a` and\n maximum support `b`.\n","base.dists.uniform.mean":"\nbase.dists.uniform.mean( a:number, b:number )\n Returns the expected value of a uniform distribution.\n","base.dists.uniform.median":"\nbase.dists.uniform.median( a:number, b:number )\n Returns the median of a uniform distribution.\n","base.dists.uniform.mgf":"\nbase.dists.uniform.mgf( t:number, a:number, b:number )\n Evaluates the moment-generating function (MGF) for a uniform\n distribution with minimum support `a` and maximum support `b` at a value\n `t`.\n","base.dists.uniform.mgf.factory":"\nbase.dists.uniform.mgf.factory( a:number, b:number )\n Returns a function for evaluating the moment-generating function (MGF)\n of a uniform distribution with minimum support `a` and maximum support `b`.\n","base.dists.uniform.pdf":"\nbase.dists.uniform.pdf( x:number, a:number, b:number )\n Evaluates the probability density function (PDF) for a uniform distribution\n with minimum support `a` and maximum support `b` at a value `x`.\n","base.dists.uniform.pdf.factory":"\nbase.dists.uniform.pdf.factory( a:number, b:number )\n Returns a function for evaluating the probability density function (PDF) of\n a uniform distribution with minimum support `a` and maximum support `b`.\n","base.dists.uniform.quantile":"\nbase.dists.uniform.quantile( p:number, a:number, b:number )\n Evaluates the quantile function for a uniform distribution with minimum\n support `a` and maximum support `b` at a probability `p`.\n","base.dists.uniform.quantile.factory":"\nbase.dists.uniform.quantile.factory( a:number, b:number )\n Returns a function for evaluating the quantile function of a uniform\n distribution with minimum support `a` and maximum support `b`.\n","base.dists.uniform.skewness":"\nbase.dists.uniform.skewness( a:number, b:number )\n Returns the skewness of a uniform distribution.\n","base.dists.uniform.stdev":"\nbase.dists.uniform.stdev( a:number, b:number )\n Returns the standard deviation of a uniform distribution.\n","base.dists.uniform.Uniform":"\nbase.dists.uniform.Uniform( [a:number, b:number] )\n Returns a uniform distribution object.\n","base.dists.uniform.variance":"\nbase.dists.uniform.variance( a:number, b:number )\n Returns the variance of a uniform distribution.\n","base.dists.weibull.cdf":"\nbase.dists.weibull.cdf( x:number, k:number, λ:number )\n Evaluates the cumulative distribution function (CDF) for a Weibull\n distribution with shape parameter `k` and scale parameter `λ` at a value\n `x`.\n","base.dists.weibull.cdf.factory":"\nbase.dists.weibull.cdf.factory( k:number, λ:number )\n Returns a function for evaluating the cumulative distribution function (CDF)\n of a Weibull distribution with shape parameter `k` and scale parameter `λ`.\n","base.dists.weibull.entropy":"\nbase.dists.weibull.entropy( k:number, λ:number )\n Returns the differential entropy of a Weibull distribution (in nats).\n","base.dists.weibull.kurtosis":"\nbase.dists.weibull.kurtosis( k:number, λ:number )\n Returns the excess kurtosis of a Weibull distribution.\n","base.dists.weibull.logcdf":"\nbase.dists.weibull.logcdf( x:number, k:number, λ:number )\n Evaluates the logarithm of the cumulative distribution function (CDF) for a\n Weibull distribution with shape parameter `k` and scale parameter `λ` at a\n value `x`.\n","base.dists.weibull.logcdf.factory":"\nbase.dists.weibull.logcdf.factory( k:number, λ:number)\n Returns a function for evaluating the logarithm of the cumulative\n distribution function (CDF) of a Weibull distribution with scale parameter\n `λ` and shape parameter `k`.\n","base.dists.weibull.logpdf":"\nbase.dists.weibull.logpdf( x:number, k:number, λ:number )\n Evaluates the logarithm of the probability density function (PDF) for a\n Weibull distribution with shape parameter `k` and scale parameter `λ` at a\n value `x`.\n","base.dists.weibull.logpdf.factory":"\nbase.dists.weibull.logpdf.factory( k:number, λ:number )\n Returns a function for evaluating the logarithm of the probability density\n function (PDF) of a Weibull distribution with shape parameter `k` and scale\n parameter `λ`.\n","base.dists.weibull.mean":"\nbase.dists.weibull.mean( k:number, λ:number )\n Returns the expected value of a Weibull distribution.\n","base.dists.weibull.median":"\nbase.dists.weibull.median( k:number, λ:number )\n Returns the median of a Weibull distribution.\n","base.dists.weibull.mgf":"\nbase.dists.weibull.mgf( x:number, k:number, λ:number )\n Evaluates the moment-generating function (MGF) for a Weibull distribution\n with shape parameter `k` and scale parameter `λ` at a value `t`.\n","base.dists.weibull.mgf.factory":"\nbase.dists.weibull.mgf.factory( k:number, λ:number )\n Returns a function for evaluating the moment-generating function (MGF) of a\n Weibull distribution with shape parameter `k` and scale parameter `λ`.\n","base.dists.weibull.mode":"\nbase.dists.weibull.mode( k:number, λ:number )\n Returns the mode of a Weibull distribution.\n","base.dists.weibull.pdf":"\nbase.dists.weibull.pdf( x:number, k:number, λ:number )\n Evaluates the probability density function (PDF) for a Weibull distribution\n with shape parameter `k` and scale parameter `λ` at a value `x`.\n","base.dists.weibull.pdf.factory":"\nbase.dists.weibull.pdf.factory( k:number, λ:number )\n Returns a function for evaluating the probability density function (PDF) of\n a Weibull distribution with shape parameter `k` and scale parameter `λ`.\n","base.dists.weibull.quantile":"\nbase.dists.weibull.quantile( p:number, k:number, λ:number )\n Evaluates the quantile function for a Weibull distribution with scale\n parameter `k` and shape parameter `λ` at a probability `p`.\n","base.dists.weibull.quantile.factory":"\nbase.dists.weibull.quantile.factory( k:number, λ:number )\n Returns a function for evaluating the quantile function of a Weibull\n distribution with scale parameter `k` and shape parameter `λ`.\n","base.dists.weibull.skewness":"\nbase.dists.weibull.skewness( k:number, λ:number )\n Returns the skewness of a Weibull distribution.\n","base.dists.weibull.stdev":"\nbase.dists.weibull.stdev( k:number, λ:number )\n Returns the standard deviation of a Weibull distribution.\n","base.dists.weibull.variance":"\nbase.dists.weibull.variance( k:number, λ:number )\n Returns the variance of a Weibull distribution.\n","base.dists.weibull.Weibull":"\nbase.dists.weibull.Weibull( [k:number, λ:number] )\n Returns a Weibull distribution object.\n","base.ellipe":"\nbase.ellipe( m:number )\n Computes the complete elliptic integral of the second kind.\n","base.ellipk":"\nbase.ellipk( m:number )\n Computes the complete elliptic integral of the first kind.\n","base.epsdiff":"\nbase.epsdiff( x:number, y:number[, scale:string|Function] )\n Computes the relative difference of two real numbers in units of double-\n precision floating-point epsilon.\n","base.erf":"\nbase.erf( x:number )\n Evaluates the error function.\n","base.erfc":"\nbase.erfc( x:number )\n Evaluates the complementary error function.\n","base.erfcinv":"\nbase.erfcinv( x:number )\n Evaluates the inverse complementary error function.\n","base.erfcx":"\nbase.erfcx( x:number )\n Evaluates the scaled complementary error function.\n\nbase.erfcx( x:number )\n Evaluates the scaled complementary error function.\n","base.erfinv":"\nbase.erfinv( x:number )\n Evaluates the inverse error function.\n","base.eta":"\nbase.eta( s:number )\n Evaluates the Dirichlet eta function as a function of a real variable `s`.\n","base.evalpoly":"\nbase.evalpoly( c:Array, x:number )\n Evaluates a polynomial.\n","base.evalpoly.factory":"\nbase.evalpoly.factory( c:Array )\n Returns a function for evaluating a polynomial.\n","base.evalrational":"\nbase.evalrational( P:Array, Q:Array, x:number )\n Evaluates a rational function.\n","base.evalrational.factory":"\nbase.evalrational.factory( P:Array, Q:Array )\n Returns a function for evaluating a rational function.\n","base.exp":"\nbase.exp( x:number )\n Evaluates the natural exponential function.\n","base.exp2":"\nbase.exp2( x:number )\n Evaluates the base 2 exponential function.\n","base.exp10":"\nbase.exp10( x:number )\n Evaluates the base 10 exponential function.\n","base.expit":"\nbase.expit( x:number )\n Evaluates the standard logistic function.\n","base.expm1":"\nbase.expm1( x:number )\n Computes `exp(x)-1`, where `exp(x)` is the natural exponential function.\n","base.expm1rel":"\nbase.expm1rel( x:number )\n Relative error exponential.\n","base.exponent":"\nbase.exponent( x:number )\n Returns an integer corresponding to the unbiased exponent of a double-\n precision floating-point number.\n","base.exponentf":"\nbase.exponentf( x:float )\n Returns an integer corresponding to the unbiased exponent of a single-\n precision floating-point number.\n","base.factorial":"\nbase.factorial( x:number )\n Evaluates the factorial of `x`.\n","base.factorialln":"\nbase.factorialln( x:number )\n Evaluates the natural logarithm of the factorial of `x`.\n","base.fallingFactorial":"\nbase.fallingFactorial( x:number, n:integer )\n Computes the falling factorial of `x` and `n`.\n","base.fibonacci":"\nbase.fibonacci( n:integer )\n Computes the nth Fibonacci number.\n","base.fibonacciIndex":"\nbase.fibonacciIndex( F:integer )\n Computes the Fibonacci number index.\n","base.fibpoly":"\nbase.fibpoly( n:integer, x:number )\n Evaluates a Fibonacci polynomial.\n","base.fibpoly.factory":"\nbase.fibpoly.factory( n:integer )\n Returns a function for evaluating a Fibonacci polynomial.\n","base.flipsign":"\nbase.flipsign( x:number, y:number )\n Returns a double-precision floating-point number with the magnitude of `x`\n and the sign of `x*y`.\n","base.flipsignf":"\nbase.flipsignf( x:number, y:number )\n Returns a single-precision floating-point number with the magnitude of `x`\n and the sign of `x*y`.\n","base.float32ToInt32":"\nbase.float32ToInt32( x:float )\n Converts a single-precision floating-point number to a signed 32-bit\n integer.\n","base.float32ToUint32":"\nbase.float32ToUint32( x:float )\n Converts a single-precision floating-point number to a unsigned 32-bit\n integer.\n","base.float64ToFloat32":"\nbase.float64ToFloat32( x:number )\n Converts a double-precision floating-point number to the nearest single-\n precision floating-point number.\n","base.float64ToInt32":"\nbase.float64ToInt32( x:number )\n Converts a double-precision floating-point number to a signed 32-bit\n integer.\n","base.float64ToInt64Bytes":"\nbase.float64ToInt64Bytes( x:integer )\n Converts an integer-valued double-precision floating-point number to a\n signed 64-bit integer byte array according to host byte order (endianness).\n","base.float64ToInt64Bytes.assign":"\nbase.float64ToInt64Bytes.assign( x:integer, out:Array|TypedArray|Object, \n stride:integer, offset:integer )\n Converts an integer-valued double-precision floating-point number to a\n signed 64-bit integer byte array according to host byte order (endianness)\n and assigns results to a provided output array.\n","base.float64ToUint32":"\nbase.float64ToUint32( x:number )\n Converts a double-precision floating-point number to a unsigned 32-bit\n integer.\n","base.floor":"\nbase.floor( x:number )\n Rounds a double-precision floating-point number toward negative infinity.\n","base.floor2":"\nbase.floor2( x:number )\n Rounds a numeric value to the nearest power of two toward negative infinity.\n","base.floor10":"\nbase.floor10( x:number )\n Rounds a numeric value to the nearest power of ten toward negative infinity.\n","base.floorb":"\nbase.floorb( x:number, n:integer, b:integer )\n Rounds a numeric value to the nearest multiple of `b^n` toward negative\n infinity.\n","base.floorf":"\nbase.floorf( x:number )\n Rounds a single-precision floating-point number toward negative infinity.\n","base.floorn":"\nbase.floorn( x:number, n:integer )\n Rounds a numeric value to the nearest multiple of `10^n` toward negative\n infinity.\n","base.floorsd":"\nbase.floorsd( x:number, n:integer[, b:integer] )\n Rounds a numeric value to the nearest number toward negative infinity with\n `n` significant figures.\n","base.fresnel":"\nbase.fresnel( [out:Array|TypedArray|Object,] x:number )\n Computes the Fresnel integrals S(x) and C(x).\n","base.fresnelc":"\nbase.fresnelc( x:number )\n Computes the Fresnel integral C(x).\n","base.fresnels":"\nbase.fresnels( x:number )\n Computes the Fresnel integral S(x).\n","base.frexp":"\nbase.frexp( x:number )\n Splits a double-precision floating-point number into a normalized fraction\n and an integer power of two.\n","base.frexp.assign":"\nbase.frexp.assign( x:number, out:Array, stride:integer, offset:integer )\n Splits a double-precision floating-point number into a normalized fraction\n and an integer power of two and assigns results to a provided output array.\n","base.fromBinaryString":"\nbase.fromBinaryString( bstr:string )\n Creates a double-precision floating-point number from a literal bit\n representation.\n","base.fromBinaryStringf":"\nbase.fromBinaryStringf( bstr:string )\n Creates a single-precision floating-point number from an IEEE 754 literal\n bit representation.\n","base.fromBinaryStringUint8":"\nbase.fromBinaryStringUint8( bstr:string )\n Creates an unsigned 8-bit integer from a literal bit representation.\n","base.fromBinaryStringUint16":"\nbase.fromBinaryStringUint16( bstr:string )\n Creates an unsigned 16-bit integer from a literal bit representation.\n","base.fromBinaryStringUint32":"\nbase.fromBinaryStringUint32( bstr:string )\n Creates an unsigned 32-bit integer from a literal bit representation.\n","base.fromInt64Bytes":"\nbase.fromInt64Bytes( bytes:Array|TypedArray|Object, stride:integer, \n offset:integer )\n Converts a signed 64-bit integer byte array to a double-precision floating-\n point number.\n","base.fromWordf":"\nbase.fromWordf( word:integer )\n Creates a single-precision floating-point number from an unsigned integer\n corresponding to an IEEE 754 binary representation.\n","base.fromWords":"\nbase.fromWords( high:integer, low:integer )\n Creates a double-precision floating-point number from a higher order word\n (unsigned 32-bit integer) and a lower order word (unsigned 32-bit integer).\n","base.gamma":"\nbase.gamma( x:number )\n Evaluates the gamma function.\n","base.gamma1pm1":"\nbase.gamma1pm1( x:number )\n Computes `gamma(x+1) - 1` without cancellation errors, where `gamma(x)` is\n the gamma function.\n","base.gammaDeltaRatio":"\nbase.gammaDeltaRatio( z:number, delta:number )\n Computes the ratio of two gamma functions.\n","base.gammainc":"\nbase.gammainc( x:number, s:number[, regularized:boolean[, upper:boolean]] )\n Computes the regularized incomplete gamma function.\n","base.gammaincinv":"\nbase.gammaincinv( p:number, a:number[, upper:boolean] )\n Computes the inverse of the lower incomplete gamma function.\n","base.gammaLanczosSum":"\nbase.gammaLanczosSum( x:number )\n Calculates the Lanczos sum for the approximation of the gamma function.\n","base.gammaLanczosSumExpGScaled":"\nbase.gammaLanczosSumExpGScaled( x:number )\n Calculates the scaled Lanczos sum for the approximation of the gamma\n function.\n","base.gammaln":"\nbase.gammaln( x:number )\n Evaluates the natural logarithm of the gamma function.\n","base.gcd":"\nbase.gcd( a:integer, b:integer )\n Computes the greatest common divisor (gcd).\n","base.getHighWord":"\nbase.getHighWord( x:number )\n Returns an unsigned 32-bit integer corresponding to the more significant 32\n bits of a double-precision floating-point number.\n","base.getLowWord":"\nbase.getLowWord( x:number )\n Returns an unsigned 32-bit integer corresponding to the less significant 32\n bits of a double-precision floating-point number.\n","base.hacovercos":"\nbase.hacovercos( x:number )\n Computes the half-value coversed cosine.\n","base.hacoversin":"\nbase.hacoversin( x:number )\n Computes the half-value coversed sine.\n","base.havercos":"\nbase.havercos( x:number )\n Computes the half-value versed cosine.\n","base.haversin":"\nbase.haversin( x:number )\n Computes the half-value versed sine.\n","base.heaviside":"\nbase.heaviside( x:number[, continuity:string] )\n Evaluates the Heaviside function.\n","base.hermitepoly":"\nbase.hermitepoly( n:integer, x:number )\n Evaluates a physicist's Hermite polynomial.\n","base.hermitepoly.factory":"\nbase.hermitepoly.factory( n:integer )\n Returns a function for evaluating a physicist's Hermite polynomial.\n","base.hypot":"\nbase.hypot( x:number, y:number )\n Computes the hypotenuse avoiding overflow and underflow.\n","base.hypotf":"\nbase.hypotf( x:number, y:number )\n Computes the hypotenuse avoiding overflow and underflow (single-precision).\n","base.identity":"\nbase.identity( x:number )\n Evaluates the identity function for a double-precision floating-point number\n `x`.\n","base.identityf":"\nbase.identityf( x:number )\n Evaluates the identity function for a single-precision floating-point number\n `x`.\n","base.imul":"\nbase.imul( a:integer, b:integer )\n Performs C-like multiplication of two signed 32-bit integers.\n","base.imuldw":"\nbase.imuldw( [out:ArrayLikeObject,] a:integer, b:integer )\n Multiplies two signed 32-bit integers and returns an array of two signed 32-\n bit integers which represents the signed 64-bit integer product.\n","base.int32ToUint32":"\nbase.int32ToUint32( x:integer )\n Converts a signed 32-bit integer to an unsigned 32-bit integer.\n","base.inv":"\nbase.inv( x:number )\n Computes the multiplicative inverse of a double-precision floating-point\n number `x`.\n","base.invf":"\nbase.invf( x:number )\n Computes the multiplicative inverse of a single-precision floating-point\n number `x`.\n","base.isComposite":"\nbase.isComposite( x:number )\n Tests if a number is composite.\n","base.isCoprime":"\nbase.isCoprime( a:number, b:number )\n Tests if two numbers are coprime.\n","base.isEven":"\nbase.isEven( x:number )\n Tests if a finite numeric value is an even number.\n","base.isEvenInt32":"\nbase.isEvenInt32( x:integer )\n Tests if a 32-bit integer is even.\n","base.isFinite":"\nbase.isFinite( x:number )\n Tests if a double-precision floating-point numeric value is finite.\n","base.isFinitef":"\nbase.isFinitef( x:number )\n Tests if a single-precision floating-point numeric value is finite.\n","base.isInfinite":"\nbase.isInfinite( x:number )\n Tests if a double-precision floating-point numeric value is infinite.\n","base.isInfinitef":"\nbase.isInfinitef( x:number )\n Tests if a single-precision floating-point numeric value is infinite.\n","base.isInteger":"\nbase.isInteger( x:number )\n Tests if a finite double-precision floating-point number is an integer.\n","base.isnan":"\nbase.isnan( x:number )\n Tests if a double-precision floating-point numeric value is `NaN`.\n","base.isnanf":"\nbase.isnanf( x:number )\n Tests if a single-precision floating-point numeric value is `NaN`.\n","base.isNegativeInteger":"\nbase.isNegativeInteger( x:number )\n Tests if a finite double-precision floating-point number is a negative\n integer.\n","base.isNegativeZero":"\nbase.isNegativeZero( x:number )\n Tests if a double-precision floating-point numeric value is negative zero.\n","base.isNegativeZerof":"\nbase.isNegativeZerof( x:number )\n Tests if a single-precision floating-point numeric value is negative zero.\n","base.isNonNegativeInteger":"\nbase.isNonNegativeInteger( x:number )\n Tests if a finite double-precision floating-point number is a nonnegative\n integer.\n","base.isNonPositiveInteger":"\nbase.isNonPositiveInteger( x:number )\n Tests if a finite double-precision floating-point number is a nonpositive\n integer.\n","base.isOdd":"\nbase.isOdd( x:number )\n Tests if a finite numeric value is an odd number.\n","base.isOddInt32":"\nbase.isOddInt32( x:integer )\n Tests if a 32-bit integer is odd.\n","base.isPositiveInteger":"\nbase.isPositiveInteger( x:number )\n Tests if a finite double-precision floating-point number is a positive\n integer.\n","base.isPositiveZero":"\nbase.isPositiveZero( x:number )\n Tests if a double-precision floating-point numeric value is positive zero.\n","base.isPositiveZerof":"\nbase.isPositiveZerof( x:number )\n Tests if a single-precision floating-point numeric value is positive zero.\n","base.isPow2Uint32":"\nbase.isPow2Uint32( x:integer )\n Tests whether an unsigned integer is a power of 2.\n","base.isPrime":"\nbase.isPrime( x:number )\n Tests if a number is prime.\n","base.isProbability":"\nbase.isProbability( x:number )\n Tests if a numeric value is a probability.\n","base.isSafeInteger":"\nbase.isSafeInteger( x:number )\n Tests if a finite double-precision floating-point number is a safe integer.\n","base.kernelBetainc":"\nbase.kernelBetainc( x:number, a:number, b:number, regularized:boolean, \n upper:boolean )\n Computes the kernel function for the regularized incomplete beta function.\n","base.kernelBetainc.assign":"\nbase.kernelBetainc.assign( x:number, a:number, b:number, regularized:boolean, \n upper:boolean, out:Array|TypedArray|Object, stride:integer, offset:integer )\n Computes the kernel function for the regularized incomplete beta function.\n","base.kernelBetaincinv":"\nbase.kernelBetaincinv( a:number, b:number, p:number, q:number )\n Computes the inverse of the lower incomplete beta function.\n","base.kernelCos":"\nbase.kernelCos( x:number, y:number )\n Computes the cosine of a number on `[-π/4, π/4]`.\n","base.kernelSin":"\nbase.kernelSin( x:number, y:number )\n Computes the sine of a number on `[-π/4, π/4]`.\n","base.kernelTan":"\nbase.kernelTan( x:number, y:number, k:integer )\n Computes the tangent of a number on `[-π/4, π/4]`.\n","base.kroneckerDelta":"\nbase.kroneckerDelta( i:number, j:number )\n Evaluates the Kronecker delta.\n","base.kroneckerDeltaf":"\nbase.kroneckerDeltaf( i:number, j:number )\n Evaluates the Kronecker delta (single-precision).\n","base.labs":"\nbase.labs( x:integer )\n Computes an absolute value of a signed 32-bit integer in two's complement\n format.\n","base.lcm":"\nbase.lcm( a:integer, b:integer )\n Computes the least common multiple (lcm).\n","base.ldexp":"\nbase.ldexp( frac:number, exp:number )\n Multiplies a double-precision floating-point number by an integer power of\n two; i.e., `x = frac * 2^exp`.\n","base.ln":"\nbase.ln( x:number )\n Evaluates the natural logarithm.\n","base.log":"\nbase.log( x:number, b:number )\n Computes the base `b` logarithm of `x`.\n","base.log1mexp":"\nbase.log1mexp( x:number )\n Evaluates the natural logarithm of `1-exp(-|x|)`.\n","base.log1p":"\nbase.log1p( x:number )\n Evaluates the natural logarithm of `1+x`.\n","base.log1pexp":"\nbase.log1pexp( x:number )\n Evaluates the natural logarithm of `1+exp(x)`.\n","base.log2":"\nbase.log2( x:number )\n Evaluates the binary logarithm (base two).\n","base.log10":"\nbase.log10( x:number )\n Evaluates the common logarithm (base 10).\n","base.logaddexp":"\nbase.logaddexp( x:number, y:number )\n Computes the natural logarithm of `exp(x) + exp(y)`.\n","base.logit":"\nbase.logit( p:number )\n Evaluates the logit function.\n","base.lucas":"\nbase.lucas( n:integer )\n Computes the nth Lucas number.\n","base.lucaspoly":"\nbase.lucaspoly( n:integer, x:number )\n Evaluates a Lucas polynomial.\n","base.lucaspoly.factory":"\nbase.lucaspoly.factory( n:integer )\n Returns a function for evaluating a Lucas polynomial.\n","base.max":"\nbase.max( [x:number[, y:number[, ...args:number]]] )\n Returns the maximum value.\n","base.maxabs":"\nbase.maxabs( [x:number[, y:number[, ...args:number]]] )\n Returns the maximum absolute value.\n","base.min":"\nbase.min( [x:number[, y:number[, ...args:number]]] )\n Returns the minimum value.\n","base.minabs":"\nbase.minabs( [x:number[, y:number[, ...args:number]]] )\n Returns the minimum absolute value.\n","base.minmax":"\nbase.minmax( [out:Array|TypedArray|Object,] x:number[, y:number[, \n ...args:number]] )\n Returns the minimum and maximum values.\n","base.minmaxabs":"\nbase.minmaxabs( [out:Array|TypedArray|Object,] x:number[, y:number[, \n ...args:number]] )\n Returns the minimum and maximum absolute values.\n","base.modf":"\nbase.modf( [out:Array|TypedArray|Object,] x:number )\n Decomposes a double-precision floating-point number into integral and\n fractional parts, each having the same type and sign as the input value.\n","base.mul":"\nbase.mul( x:number, y:number )\n Multiplies two double-precision floating-point numbers `x` and `y`.\n","base.mulf":"\nbase.mulf( x:number, y:number )\n Multiplies two single-precision floating-point numbers `x` and `y`.\n","base.ndarray":"\nbase.ndarray( dtype:string, buffer:ArrayLikeObject|TypedArray|Buffer, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n offset:integer, order:string )\n Returns an ndarray.\n","base.ndarray.prototype.byteLength":"\nbase.ndarray.prototype.byteLength\n Size (in bytes) of the array (if known).\n","base.ndarray.prototype.BYTES_PER_ELEMENT":"\nbase.ndarray.prototype.BYTES_PER_ELEMENT\n Size (in bytes) of each array element (if known).\n","base.ndarray.prototype.data":"\nbase.ndarray.prototype.data\n Pointer to the underlying data buffer.\n","base.ndarray.prototype.dtype":"\nbase.ndarray.prototype.dtype\n Underlying data type.\n","base.ndarray.prototype.flags":"\nbase.ndarray.prototype.flags\n Meta information, such as information concerning the memory layout of the\n array.\n","base.ndarray.prototype.length":"\nbase.ndarray.prototype.length\n Length of the array (i.e., number of elements).\n","base.ndarray.prototype.ndims":"\nbase.ndarray.prototype.ndims\n Number of dimensions.\n","base.ndarray.prototype.offset":"\nbase.ndarray.prototype.offset\n Index offset which specifies the buffer index at which to start iterating\n over array elements.\n","base.ndarray.prototype.order: string":"\nbase.ndarray.prototype.order: string\n Array order.\n","base.ndarray.prototype.shape":"\nbase.ndarray.prototype.shape\n Array shape.\n","base.ndarray.prototype.strides":"\nbase.ndarray.prototype.strides\n Index strides which specify how to access data along corresponding array\n dimensions.\n","base.ndarray.prototype.get":"\nbase.ndarray.prototype.get( ...idx:integer )\n Returns an array element specified according to provided subscripts.\n","base.ndarray.prototype.iget":"\nbase.ndarray.prototype.iget( idx:integer )\n Returns an array element located at a specified linear index.\n","base.ndarray.prototype.set":"\nbase.ndarray.prototype.set( ...idx:integer, v:any )\n Sets an array element specified according to provided subscripts.\n","base.ndarray.prototype.iset":"\nbase.ndarray.prototype.iset( idx:integer, v:any )\n Sets an array element located at a specified linear index.\n","base.ndarray.prototype.toString":"\nbase.ndarray.prototype.toString()\n Serializes an ndarray as a string.\n","base.ndarray.prototype.toJSON":"\nbase.ndarray.prototype.toJSON()\n Serializes an ndarray as a JSON object.\n","base.ndarrayUnary":"\nbase.ndarrayUnary( arrays:ArrayLikeObject, fcn:Function )\n Applies a unary callback to elements in an input ndarray and assigns results\n to elements in an output ndarray.\n","base.ndzeros":"\nbase.ndzeros( dtype:string, shape:ArrayLikeObject, order:string )\n Returns a zero-filled ndarray having a specified shape and data type.\n","base.ndzerosLike":"\nbase.ndzerosLike( x:ndarray )\n Returns a zero-filled ndarray having the same shape and data type as a\n provided input ndarray.\n","base.negafibonacci":"\nbase.negafibonacci( n:integer )\n Computes the nth negaFibonacci number.\n","base.negalucas":"\nbase.negalucas( n:integer )\n Computes the nth negaLucas number.\n","base.nonfibonacci":"\nbase.nonfibonacci( n:integer )\n Computes the nth non-Fibonacci number.\n","base.normalize":"\nbase.normalize( x:number )\n Returns a normal number and exponent satisfying `x = y * 2^exp` as an array.\n","base.normalize.assign":"\nbase.normalize.assign( x:number, out:Array|TypedArray|Object, stride:integer, \n offset:integer )\n Returns a normal number and exponent satisfying `x = y * 2^exp` and assigns\n results to a provided output array.\n","base.normalizef":"\nbase.normalizef( [out:Array|TypedArray|Object,] x:float )\n Returns a normal number `y` and exponent `exp` satisfying `x = y * 2^exp` as\n an array.\n","base.normhermitepoly":"\nbase.normhermitepoly( n:integer, x:number )\n Evaluates a normalized Hermite polynomial.\n","base.normhermitepoly.factory":"\nbase.normhermitepoly.factory( n:integer )\n Returns a function for evaluating a normalized Hermite polynomial.\n","base.pdiff":"\nbase.pdiff( x:number, y:number )\n Returns the positive difference between `x` and `y` if `x > y`; otherwise,\n returns `0`.\n","base.pdifff":"\nbase.pdifff( x:number, y:number )\n Returns the positive difference between `x` and `y` if `x > y`; otherwise,\n returns `0`.\n","base.polygamma":"\nbase.polygamma( n:integer, x:number )\n Evaluates the polygamma function of order `n`; i.e., the (n+1)th derivative\n of the natural logarithm of the gamma function.\n","base.pow":"\nbase.pow( b:number, x:number )\n Evaluates the exponential function `bˣ`.\n","base.powm1":"\nbase.powm1( b:number, x:number )\n Evaluates `bˣ - 1`.\n","base.rad2deg":"\nbase.rad2deg( x:number )\n Converts an angle from radians to degrees.\n","base.ramp":"\nbase.ramp( x:number )\n Evaluates the ramp function.\n","base.rampf":"\nbase.rampf( x:number )\n Evaluates the ramp function (single-precision).\n","base.random.arcsine":"\nbase.random.arcsine( a:number, b:number )\n Returns a pseudorandom number drawn from an arcsine distribution.\n","base.random.arcsine.factory":"\nbase.random.arcsine.factory( [a:number, b:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from an arcsine distribution.\n","base.random.arcsine.NAME":"\nbase.random.arcsine.NAME\n Generator name.\n","base.random.arcsine.PRNG":"\nbase.random.arcsine.PRNG\n Underlying pseudorandom number generator.\n","base.random.arcsine.seed":"\nbase.random.arcsine.seed\n Pseudorandom number generator seed.\n","base.random.arcsine.seedLength":"\nbase.random.arcsine.seedLength\n Length of generator seed.\n","base.random.arcsine.state":"\nbase.random.arcsine.state\n Generator state.\n","base.random.arcsine.stateLength":"\nbase.random.arcsine.stateLength\n Length of generator state.\n","base.random.arcsine.byteLength":"\nbase.random.arcsine.byteLength\n Size (in bytes) of generator state.\n","base.random.arcsine.toJSON":"\nbase.random.arcsine.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.bernoulli":"\nbase.random.bernoulli( p:number )\n Returns a pseudorandom number drawn from a Bernoulli distribution.\n","base.random.bernoulli.factory":"\nbase.random.bernoulli.factory( [p:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Bernoulli distribution.\n","base.random.bernoulli.NAME":"\nbase.random.bernoulli.NAME\n Generator name.\n","base.random.bernoulli.PRNG":"\nbase.random.bernoulli.PRNG\n Underlying pseudorandom number generator.\n","base.random.bernoulli.seed":"\nbase.random.bernoulli.seed\n Pseudorandom number generator seed.\n","base.random.bernoulli.seedLength":"\nbase.random.bernoulli.seedLength\n Length of generator seed.\n","base.random.bernoulli.state":"\nbase.random.bernoulli.state\n Generator state.\n","base.random.bernoulli.stateLength":"\nbase.random.bernoulli.stateLength\n Length of generator state.\n","base.random.bernoulli.byteLength":"\nbase.random.bernoulli.byteLength\n Size (in bytes) of generator state.\n","base.random.bernoulli.toJSON":"\nbase.random.bernoulli.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.beta":"\nbase.random.beta( α:number, β:number )\n Returns a pseudorandom number drawn from a beta distribution.\n","base.random.beta.factory":"\nbase.random.beta.factory( [α:number, β:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a beta distribution.\n","base.random.beta.NAME":"\nbase.random.beta.NAME\n Generator name.\n","base.random.beta.PRNG":"\nbase.random.beta.PRNG\n Underlying pseudorandom number generator.\n","base.random.beta.seed":"\nbase.random.beta.seed\n Pseudorandom number generator seed.\n","base.random.beta.seedLength":"\nbase.random.beta.seedLength\n Length of generator seed.\n","base.random.beta.state":"\nbase.random.beta.state\n Generator state.\n","base.random.beta.stateLength":"\nbase.random.beta.stateLength\n Length of generator state.\n","base.random.beta.byteLength":"\nbase.random.beta.byteLength\n Size (in bytes) of generator state.\n","base.random.beta.toJSON":"\nbase.random.beta.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.betaprime":"\nbase.random.betaprime( α:number, β:number )\n Returns a pseudorandom number drawn from a beta prime distribution.\n","base.random.betaprime.factory":"\nbase.random.betaprime.factory( [α:number, β:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a beta prime distribution.\n","base.random.betaprime.NAME":"\nbase.random.betaprime.NAME\n Generator name.\n","base.random.betaprime.PRNG":"\nbase.random.betaprime.PRNG\n Underlying pseudorandom number generator.\n","base.random.betaprime.seed":"\nbase.random.betaprime.seed\n Pseudorandom number generator seed.\n","base.random.betaprime.seedLength":"\nbase.random.betaprime.seedLength\n Length of generator seed.\n","base.random.betaprime.state":"\nbase.random.betaprime.state\n Generator state.\n","base.random.betaprime.stateLength":"\nbase.random.betaprime.stateLength\n Length of generator state.\n","base.random.betaprime.byteLength":"\nbase.random.betaprime.byteLength\n Size (in bytes) of generator state.\n","base.random.betaprime.toJSON":"\nbase.random.betaprime.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.binomial":"\nbase.random.binomial( n:integer, p:number )\n Returns a pseudorandom number drawn from a binomial distribution.\n","base.random.binomial.factory":"\nbase.random.binomial.factory( [n:integer, p:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a binomial distribution.\n","base.random.binomial.NAME":"\nbase.random.binomial.NAME\n Generator name.\n","base.random.binomial.PRNG":"\nbase.random.binomial.PRNG\n Underlying pseudorandom number generator.\n","base.random.binomial.seed":"\nbase.random.binomial.seed\n Pseudorandom number generator seed.\n","base.random.binomial.seedLength":"\nbase.random.binomial.seedLength\n Length of generator seed.\n","base.random.binomial.state":"\nbase.random.binomial.state\n Generator state.\n","base.random.binomial.stateLength":"\nbase.random.binomial.stateLength\n Length of generator state.\n","base.random.binomial.byteLength":"\nbase.random.binomial.byteLength\n Size of generator state.\n","base.random.binomial.toJSON":"\nbase.random.binomial.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.boxMuller":"\nbase.random.boxMuller()\n Returns a pseudorandom number drawn from a standard normal distribution.\n","base.random.boxMuller.factory":"\nbase.random.boxMuller.factory( [options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a standard normal distribution.\n","base.random.boxMuller.NAME":"\nbase.random.boxMuller.NAME\n Generator name.\n","base.random.boxMuller.PRNG":"\nbase.random.boxMuller.PRNG\n Underlying pseudorandom number generator.\n","base.random.boxMuller.seed":"\nbase.random.boxMuller.seed\n Pseudorandom number generator seed.\n","base.random.boxMuller.seedLength":"\nbase.random.boxMuller.seedLength\n Length of generator seed.\n","base.random.boxMuller.state":"\nbase.random.boxMuller.state\n Generator state.\n","base.random.boxMuller.stateLength":"\nbase.random.boxMuller.stateLength\n Length of generator state.\n","base.random.boxMuller.byteLength":"\nbase.random.boxMuller.byteLength\n Size (in bytes) of generator state.\n","base.random.boxMuller.toJSON":"\nbase.random.boxMuller.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.cauchy":"\nbase.random.cauchy( x0:number, Ɣ:number )\n Returns a pseudorandom number drawn from a Cauchy distribution.\n","base.random.cauchy.factory":"\nbase.random.cauchy.factory( [x0:number, Ɣ:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Cauchy distribution.\n","base.random.cauchy.NAME":"\nbase.random.cauchy.NAME\n Generator name.\n","base.random.cauchy.PRNG":"\nbase.random.cauchy.PRNG\n Underlying pseudorandom number generator.\n","base.random.cauchy.seed":"\nbase.random.cauchy.seed\n Pseudorandom number generator seed.\n","base.random.cauchy.seedLength":"\nbase.random.cauchy.seedLength\n Length of generator seed.\n","base.random.cauchy.state":"\nbase.random.cauchy.state\n Generator state.\n","base.random.cauchy.stateLength":"\nbase.random.cauchy.stateLength\n Length of generator state.\n","base.random.cauchy.byteLength":"\nbase.random.cauchy.byteLength\n Size (in bytes) of generator state.\n","base.random.cauchy.toJSON":"\nbase.random.cauchy.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.chi":"\nbase.random.chi( k:number )\n Returns a pseudorandom number drawn from a chi distribution.\n","base.random.chi.factory":"\nbase.random.chi.factory( [k:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a chi distribution.\n","base.random.chi.NAME":"\nbase.random.chi.NAME\n Generator name.\n","base.random.chi.PRNG":"\nbase.random.chi.PRNG\n Underlying pseudorandom number generator.\n","base.random.chi.seed":"\nbase.random.chi.seed\n Pseudorandom number generator seed.\n","base.random.chi.seedLength":"\nbase.random.chi.seedLength\n Length of generator seed.\n","base.random.chi.state":"\nbase.random.chi.state\n Generator state.\n","base.random.chi.stateLength":"\nbase.random.chi.stateLength\n Length of generator state.\n","base.random.chi.byteLength":"\nbase.random.chi.byteLength\n Size (in bytes) of generator state.\n","base.random.chi.toJSON":"\nbase.random.chi.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.chisquare":"\nbase.random.chisquare( k:number )\n Returns a pseudorandom number drawn from a chi-square distribution.\n","base.random.chisquare.factory":"\nbase.random.chisquare.factory( [k:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a chi-square distribution.\n","base.random.chisquare.NAME":"\nbase.random.chisquare.NAME\n Generator name.\n","base.random.chisquare.PRNG":"\nbase.random.chisquare.PRNG\n Underlying pseudorandom number generator.\n","base.random.chisquare.seed":"\nbase.random.chisquare.seed\n Pseudorandom number generator seed.\n","base.random.chisquare.seedLength":"\nbase.random.chisquare.seedLength\n Length of generator seed.\n","base.random.chisquare.state":"\nbase.random.chisquare.state\n Generator state.\n","base.random.chisquare.stateLength":"\nbase.random.chisquare.stateLength\n Length of generator state.\n","base.random.chisquare.byteLength":"\nbase.random.chisquare.byteLength\n Size (in bytes) of generator state.\n","base.random.chisquare.toJSON":"\nbase.random.chisquare.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.cosine":"\nbase.random.cosine( μ:number, s:number )\n Returns a pseudorandom number drawn from a raised cosine distribution.\n","base.random.cosine.factory":"\nbase.random.cosine.factory( [μ:number, s:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a raised cosine distribution.\n","base.random.cosine.NAME":"\nbase.random.cosine.NAME\n Generator name.\n","base.random.cosine.PRNG":"\nbase.random.cosine.PRNG\n Underlying pseudorandom number generator.\n","base.random.cosine.seed":"\nbase.random.cosine.seed\n Pseudorandom number generator seed.\n","base.random.cosine.seedLength":"\nbase.random.cosine.seedLength\n Length of generator seed.\n","base.random.cosine.state":"\nbase.random.cosine.state\n Generator state.\n","base.random.cosine.stateLength":"\nbase.random.cosine.stateLength\n Length of generator state.\n","base.random.cosine.byteLength":"\nbase.random.cosine.byteLength\n Size (in bytes) of generator state.\n","base.random.cosine.toJSON":"\nbase.random.cosine.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.discreteUniform":"\nbase.random.discreteUniform( a:integer, b:integer )\n Returns a pseudorandom number drawn from a discrete uniform distribution.\n","base.random.discreteUniform.factory":"\nbase.random.discreteUniform.factory( [a:integer, b:integer, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a discrete uniform distribution.\n","base.random.discreteUniform.NAME":"\nbase.random.discreteUniform.NAME\n Generator name.\n","base.random.discreteUniform.PRNG":"\nbase.random.discreteUniform.PRNG\n Underlying pseudorandom number generator.\n","base.random.discreteUniform.seed":"\nbase.random.discreteUniform.seed\n Pseudorandom number generator seed.\n","base.random.discreteUniform.seedLength":"\nbase.random.discreteUniform.seedLength\n Length of generator seed.\n","base.random.discreteUniform.state":"\nbase.random.discreteUniform.state\n Generator state.\n","base.random.discreteUniform.stateLength":"\nbase.random.discreteUniform.stateLength\n Length of generator state.\n","base.random.discreteUniform.byteLength":"\nbase.random.discreteUniform.byteLength\n Size (in bytes) of generator state.\n","base.random.discreteUniform.toJSON":"\nbase.random.discreteUniform.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.erlang":"\nbase.random.erlang( k:integer, λ:number )\n Returns a pseudorandom number drawn from an Erlang distribution.\n","base.random.erlang.factory":"\nbase.random.erlang.factory( [k:integer, λ:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from an Erlang distribution.\n","base.random.erlang.NAME":"\nbase.random.erlang.NAME\n Generator name.\n","base.random.erlang.PRNG":"\nbase.random.erlang.PRNG\n Underlying pseudorandom number generator.\n","base.random.erlang.seed":"\nbase.random.erlang.seed\n Pseudorandom number generator seed.\n","base.random.erlang.seedLength":"\nbase.random.erlang.seedLength\n Length of generator seed.\n","base.random.erlang.state":"\nbase.random.erlang.state\n Generator state.\n","base.random.erlang.stateLength":"\nbase.random.erlang.stateLength\n Length of generator state.\n","base.random.erlang.byteLength":"\nbase.random.erlang.byteLength\n Size (in bytes) of generator state.\n","base.random.erlang.toJSON":"\nbase.random.erlang.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.exponential":"\nbase.random.exponential( λ:number )\n Returns a pseudorandom number drawn from an exponential distribution.\n","base.random.exponential.factory":"\nbase.random.exponential.factory( [λ:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from an exponential distribution.\n","base.random.exponential.NAME":"\nbase.random.exponential.NAME\n Generator name.\n","base.random.exponential.PRNG":"\nbase.random.exponential.PRNG\n Underlying pseudorandom number generator.\n","base.random.exponential.seed":"\nbase.random.exponential.seed\n Pseudorandom number generator seed.\n","base.random.exponential.seedLength":"\nbase.random.exponential.seedLength\n Length of generator seed.\n","base.random.exponential.state":"\nbase.random.exponential.state\n Generator state.\n","base.random.exponential.stateLength":"\nbase.random.exponential.stateLength\n Length of generator state.\n","base.random.exponential.byteLength":"\nbase.random.exponential.byteLength\n Size (in bytes) of generator state.\n","base.random.exponential.toJSON":"\nbase.random.exponential.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.f":"\nbase.random.f( d1:number, d2:number )\n Returns a pseudorandom number drawn from an F distribution.\n","base.random.f.factory":"\nbase.random.f.factory( [d1:number, d2:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from an F distribution.\n","base.random.f.NAME":"\nbase.random.f.NAME\n Generator name.\n","base.random.f.PRNG":"\nbase.random.f.PRNG\n Underlying pseudorandom number generator.\n","base.random.f.seed":"\nbase.random.f.seed\n Pseudorandom number generator seed.\n","base.random.f.seedLength":"\nbase.random.f.seedLength\n Length of generator seed.\n","base.random.f.state":"\nbase.random.f.state\n Generator state.\n","base.random.f.stateLength":"\nbase.random.f.stateLength\n Length of generator state.\n","base.random.f.byteLength":"\nbase.random.f.byteLength\n Size (in bytes) of generator state.\n","base.random.f.toJSON":"\nbase.random.f.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.frechet":"\nbase.random.frechet( α:number, s:number, m:number )\n Returns a pseudorandom number drawn from a Fréchet distribution.\n","base.random.frechet.factory":"\nbase.random.frechet.factory( [α:number, s:number, m:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a triangular distribution.\n","base.random.frechet.NAME":"\nbase.random.frechet.NAME\n Generator name.\n","base.random.frechet.PRNG":"\nbase.random.frechet.PRNG\n Underlying pseudorandom number generator.\n","base.random.frechet.seed":"\nbase.random.frechet.seed\n Pseudorandom number generator seed.\n","base.random.frechet.seedLength":"\nbase.random.frechet.seedLength\n Length of generator seed.\n","base.random.frechet.state":"\nbase.random.frechet.state\n Generator state.\n","base.random.frechet.stateLength":"\nbase.random.frechet.stateLength\n Length of generator state.\n","base.random.frechet.byteLength":"\nbase.random.frechet.byteLength\n Size (in bytes) of generator state.\n","base.random.frechet.toJSON":"\nbase.random.frechet.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.gamma":"\nbase.random.gamma( α:number, β:number )\n Returns a pseudorandom number drawn from a gamma distribution.\n","base.random.gamma.factory":"\nbase.random.gamma.factory( [α:number, β:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a gamma distribution.\n","base.random.gamma.NAME":"\nbase.random.gamma.NAME\n Generator name.\n","base.random.gamma.PRNG":"\nbase.random.gamma.PRNG\n Underlying pseudorandom number generator.\n","base.random.gamma.seed":"\nbase.random.gamma.seed\n Pseudorandom number generator seed.\n","base.random.gamma.seedLength":"\nbase.random.gamma.seedLength\n Length of generator seed.\n","base.random.gamma.state":"\nbase.random.gamma.state\n Generator state.\n","base.random.gamma.stateLength":"\nbase.random.gamma.stateLength\n Length of generator state.\n","base.random.gamma.byteLength":"\nbase.random.gamma.byteLength\n Size of generator state.\n","base.random.gamma.toJSON":"\nbase.random.gamma.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.geometric":"\nbase.random.geometric( p:number )\n Returns a pseudorandom number drawn from a geometric distribution.\n","base.random.geometric.factory":"\nbase.random.geometric.factory( [p:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a geometric distribution.\n","base.random.geometric.NAME":"\nbase.random.geometric.NAME\n Generator name.\n","base.random.geometric.PRNG":"\nbase.random.geometric.PRNG\n Underlying pseudorandom number generator.\n","base.random.geometric.seed":"\nbase.random.geometric.seed\n Pseudorandom number generator seed.\n","base.random.geometric.seedLength":"\nbase.random.geometric.seedLength\n Length of generator seed.\n","base.random.geometric.state":"\nbase.random.geometric.state\n Generator state.\n","base.random.geometric.stateLength":"\nbase.random.geometric.stateLength\n Length of generator state.\n","base.random.geometric.byteLength":"\nbase.random.geometric.byteLength\n Size (in bytes) of generator state.\n","base.random.geometric.toJSON":"\nbase.random.geometric.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.gumbel":"\nbase.random.gumbel( μ:number, β:number )\n Returns a pseudorandom number drawn from a Gumbel distribution.\n","base.random.gumbel.factory":"\nbase.random.gumbel.factory( [μ:number, β:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Gumbel distribution.\n","base.random.gumbel.NAME":"\nbase.random.gumbel.NAME\n Generator name.\n","base.random.gumbel.PRNG":"\nbase.random.gumbel.PRNG\n Underlying pseudorandom number generator.\n","base.random.gumbel.seed":"\nbase.random.gumbel.seed\n Pseudorandom number generator seed.\n","base.random.gumbel.seedLength":"\nbase.random.gumbel.seedLength\n Length of generator seed.\n","base.random.gumbel.state":"\nbase.random.gumbel.state\n Generator state.\n","base.random.gumbel.stateLength":"\nbase.random.gumbel.stateLength\n Length of generator state.\n","base.random.gumbel.byteLength":"\nbase.random.gumbel.byteLength\n Size (in bytes) of generator state.\n","base.random.gumbel.toJSON":"\nbase.random.gumbel.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.hypergeometric":"\nbase.random.hypergeometric( N:integer, K:integer, n:integer )\n Returns a pseudorandom number drawn from a hypergeometric distribution.\n","base.random.hypergeometric.factory":"\nbase.random.hypergeometric.factory( [N:integer, K:integer, n:integer, ]\n [options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a hypergeometric distribution.\n","base.random.hypergeometric.NAME":"\nbase.random.hypergeometric.NAME\n Generator name.\n","base.random.hypergeometric.PRNG":"\nbase.random.hypergeometric.PRNG\n Underlying pseudorandom number generator.\n","base.random.hypergeometric.seed":"\nbase.random.hypergeometric.seed\n Pseudorandom number generator seed.\n","base.random.hypergeometric.seedLength":"\nbase.random.hypergeometric.seedLength\n Length of generator seed.\n","base.random.hypergeometric.state":"\nbase.random.hypergeometric.state\n Generator state.\n","base.random.hypergeometric.stateLength":"\nbase.random.hypergeometric.stateLength\n Length of generator state.\n","base.random.hypergeometric.byteLength":"\nbase.random.hypergeometric.byteLength\n Size (in bytes) of generator state.\n","base.random.hypergeometric.toJSON":"\nbase.random.hypergeometric.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.improvedZiggurat":"\nbase.random.improvedZiggurat()\n Returns a pseudorandom number drawn from a standard normal distribution.\n","base.random.improvedZiggurat.factory":"\nbase.random.improvedZiggurat.factory( [options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a standard normal distribution.\n","base.random.improvedZiggurat.NAME":"\nbase.random.improvedZiggurat.NAME\n Generator name.\n","base.random.improvedZiggurat.PRNG":"\nbase.random.improvedZiggurat.PRNG\n Underlying pseudorandom number generator.\n","base.random.improvedZiggurat.seed":"\nbase.random.improvedZiggurat.seed\n Pseudorandom number generator seed.\n","base.random.improvedZiggurat.seedLength":"\nbase.random.improvedZiggurat.seedLength\n Length of generator seed.\n","base.random.improvedZiggurat.state":"\nbase.random.improvedZiggurat.state\n Generator state.\n","base.random.improvedZiggurat.stateLength":"\nbase.random.improvedZiggurat.stateLength\n Length of generator state.\n","base.random.improvedZiggurat.byteLength":"\nbase.random.improvedZiggurat.byteLength\n Size (in bytes) of generator state.\n","base.random.improvedZiggurat.toJSON":"\nbase.random.improvedZiggurat.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.invgamma":"\nbase.random.invgamma( α:number, β:number )\n Returns a pseudorandom number drawn from an inverse gamma distribution.\n","base.random.invgamma.factory":"\nbase.random.invgamma.factory( [α:number, β:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from an inverse gamma distribution.\n","base.random.invgamma.NAME":"\nbase.random.invgamma.NAME\n Generator name.\n","base.random.invgamma.PRNG":"\nbase.random.invgamma.PRNG\n Underlying pseudorandom number generator.\n","base.random.invgamma.seed":"\nbase.random.invgamma.seed\n Pseudorandom number generator seed.\n","base.random.invgamma.seedLength":"\nbase.random.invgamma.seedLength\n Length of generator seed.\n","base.random.invgamma.state":"\nbase.random.invgamma.state\n Generator state.\n","base.random.invgamma.stateLength":"\nbase.random.invgamma.stateLength\n Length of generator state.\n","base.random.invgamma.byteLength":"\nbase.random.invgamma.byteLength\n Size of generator state.\n","base.random.invgamma.toJSON":"\nbase.random.invgamma.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.kumaraswamy":"\nbase.random.kumaraswamy( a:number, b:number )\n Returns a pseudorandom number drawn from Kumaraswamy's double bounded\n distribution.\n","base.random.kumaraswamy.factory":"\nbase.random.kumaraswamy.factory( [a:number, b:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from Kumaraswamy's double bounded distribution.\n","base.random.kumaraswamy.NAME":"\nbase.random.kumaraswamy.NAME\n Generator name.\n","base.random.kumaraswamy.PRNG":"\nbase.random.kumaraswamy.PRNG\n Underlying pseudorandom number generator.\n","base.random.kumaraswamy.seed":"\nbase.random.kumaraswamy.seed\n Pseudorandom number generator seed.\n","base.random.kumaraswamy.seedLength":"\nbase.random.kumaraswamy.seedLength\n Length of generator seed.\n","base.random.kumaraswamy.state":"\nbase.random.kumaraswamy.state\n Generator state.\n","base.random.kumaraswamy.stateLength":"\nbase.random.kumaraswamy.stateLength\n Length of generator state.\n","base.random.kumaraswamy.byteLength":"\nbase.random.kumaraswamy.byteLength\n Size (in bytes) of generator state.\n","base.random.kumaraswamy.toJSON":"\nbase.random.kumaraswamy.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.laplace":"\nbase.random.laplace( μ:number, b:number )\n Returns a pseudorandom number drawn from a Laplace distribution.\n","base.random.laplace.factory":"\nbase.random.laplace.factory( [μ:number, b:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Laplace distribution.\n","base.random.laplace.NAME":"\nbase.random.laplace.NAME\n Generator name.\n","base.random.laplace.PRNG":"\nbase.random.laplace.PRNG\n Underlying pseudorandom number generator.\n","base.random.laplace.seed":"\nbase.random.laplace.seed\n Pseudorandom number generator seed.\n","base.random.laplace.seedLength":"\nbase.random.laplace.seedLength\n Length of generator seed.\n","base.random.laplace.state":"\nbase.random.laplace.state\n Generator state.\n","base.random.laplace.stateLength":"\nbase.random.laplace.stateLength\n Length of generator state.\n","base.random.laplace.byteLength":"\nbase.random.laplace.byteLength\n Size (in bytes) of generator state.\n","base.random.laplace.toJSON":"\nbase.random.laplace.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.levy":"\nbase.random.levy( μ:number, c:number )\n Returns a pseudorandom number drawn from a Lévy distribution.\n","base.random.levy.factory":"\nbase.random.levy.factory( [μ:number, c:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Lévy distribution.\n","base.random.levy.NAME":"\nbase.random.levy.NAME\n Generator name.\n","base.random.levy.PRNG":"\nbase.random.levy.PRNG\n Underlying pseudorandom number generator.\n","base.random.levy.seed":"\nbase.random.levy.seed\n Pseudorandom number generator seed.\n","base.random.levy.seedLength":"\nbase.random.levy.seedLength\n Length of generator seed.\n","base.random.levy.state":"\nbase.random.levy.state\n Generator state.\n","base.random.levy.stateLength":"\nbase.random.levy.stateLength\n Length of generator state.\n","base.random.levy.byteLength":"\nbase.random.levy.byteLength\n Size (in bytes) of generator state.\n","base.random.levy.toJSON":"\nbase.random.levy.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.logistic":"\nbase.random.logistic( μ:number, s:number )\n Returns a pseudorandom number drawn from a logistic distribution.\n","base.random.logistic.factory":"\nbase.random.logistic.factory( [μ:number, s:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a logistic distribution.\n","base.random.logistic.NAME":"\nbase.random.logistic.NAME\n Generator name.\n","base.random.logistic.PRNG":"\nbase.random.logistic.PRNG\n Underlying pseudorandom number generator.\n","base.random.logistic.seed":"\nbase.random.logistic.seed\n Pseudorandom number generator seed.\n","base.random.logistic.seedLength":"\nbase.random.logistic.seedLength\n Length of generator seed.\n","base.random.logistic.state":"\nbase.random.logistic.state\n Generator state.\n","base.random.logistic.stateLength":"\nbase.random.logistic.stateLength\n Length of generator state.\n","base.random.logistic.byteLength":"\nbase.random.logistic.byteLength\n Size (in bytes) of generator state.\n","base.random.logistic.toJSON":"\nbase.random.logistic.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.lognormal":"\nbase.random.lognormal( μ:number, σ:number )\n Returns a pseudorandom number drawn from a lognormal distribution.\n","base.random.lognormal.factory":"\nbase.random.lognormal.factory( [μ:number, σ:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a lognormal distribution.\n","base.random.lognormal.NAME":"\nbase.random.lognormal.NAME\n Generator name.\n","base.random.lognormal.PRNG":"\nbase.random.lognormal.PRNG\n Underlying pseudorandom number generator.\n","base.random.lognormal.seed":"\nbase.random.lognormal.seed\n Pseudorandom number generator seed.\n","base.random.lognormal.seedLength":"\nbase.random.lognormal.seedLength\n Length of generator seed.\n","base.random.lognormal.state":"\nbase.random.lognormal.state\n Generator state.\n","base.random.lognormal.stateLength":"\nbase.random.lognormal.stateLength\n Length of generator state.\n","base.random.lognormal.byteLength":"\nbase.random.lognormal.byteLength\n Size (in bytes) of generator state.\n","base.random.lognormal.toJSON":"\nbase.random.lognormal.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.minstd":"\nbase.random.minstd()\n Returns a pseudorandom integer on the interval `[1, 2147483646]`.\n","base.random.minstd.normalized":"\nbase.random.minstd.normalized()\n Returns a pseudorandom number on the interval `[0,1)`.\n","base.random.minstd.factory":"\nbase.random.minstd.factory( [options:Object] )\n Returns a linear congruential pseudorandom number generator (LCG).\n","base.random.minstd.NAME":"\nbase.random.minstd.NAME\n Generator name.\n","base.random.minstd.MIN":"\nbase.random.minstd.MIN\n Minimum possible value.\n","base.random.minstd.MAX":"\nbase.random.minstd.MAX\n Maximum possible value.\n","base.random.minstd.seed":"\nbase.random.minstd.seed\n Pseudorandom number generator seed.\n","base.random.minstd.seedLength":"\nbase.random.minstd.seedLength\n Length of generator seed.\n","base.random.minstd.state":"\nbase.random.minstd.state\n Generator state.\n","base.random.minstd.stateLength":"\nbase.random.minstd.stateLength\n Length of generator state.\n","base.random.minstd.byteLength":"\nbase.random.minstd.byteLength\n Size (in bytes) of generator state.\n","base.random.minstd.toJSON":"\nbase.random.minstd.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.minstdShuffle":"\nbase.random.minstdShuffle()\n Returns a pseudorandom integer on the interval `[1, 2147483646]`.\n","base.random.minstdShuffle.normalized":"\nbase.random.minstdShuffle.normalized()\n Returns a pseudorandom number on the interval `[0,1)`.\n","base.random.minstdShuffle.factory":"\nbase.random.minstdShuffle.factory( [options:Object] )\n Returns a linear congruential pseudorandom number generator (LCG) whose\n output is shuffled.\n","base.random.minstdShuffle.NAME":"\nbase.random.minstdShuffle.NAME\n Generator name.\n","base.random.minstdShuffle.MIN":"\nbase.random.minstdShuffle.MIN\n Minimum possible value.\n","base.random.minstdShuffle.MAX":"\nbase.random.minstdShuffle.MAX\n Maximum possible value.\n","base.random.minstdShuffle.seed":"\nbase.random.minstdShuffle.seed\n Pseudorandom number generator seed.\n","base.random.minstdShuffle.seedLength":"\nbase.random.minstdShuffle.seedLength\n Length of generator seed.\n","base.random.minstdShuffle.state":"\nbase.random.minstdShuffle.state\n Generator state.\n","base.random.minstdShuffle.stateLength":"\nbase.random.minstdShuffle.stateLength\n Length of generator state.\n","base.random.minstdShuffle.byteLength":"\nbase.random.minstdShuffle.byteLength\n Size (in bytes) of generator state.\n","base.random.minstdShuffle.toJSON":"\nbase.random.minstdShuffle.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.mt19937":"\nbase.random.mt19937()\n Returns a pseudorandom integer on the interval `[0, 4294967295]`.\n","base.random.mt19937.normalized":"\nbase.random.mt19937.normalized()\n Returns a pseudorandom number on the interval `[0,1)` with 53-bit precision.\n","base.random.mt19937.factory":"\nbase.random.mt19937.factory( [options:Object] )\n Returns a 32-bit Mersenne Twister pseudorandom number generator.\n","base.random.mt19937.NAME":"\nbase.random.mt19937.NAME\n Generator name.\n","base.random.mt19937.MIN":"\nbase.random.mt19937.MIN\n Minimum possible value.\n","base.random.mt19937.MAX":"\nbase.random.mt19937.MAX\n Maximum possible value.\n","base.random.mt19937.seed":"\nbase.random.mt19937.seed\n Pseudorandom number generator seed.\n","base.random.mt19937.seedLength":"\nbase.random.mt19937.seedLength\n Length of generator seed.\n","base.random.mt19937.state":"\nbase.random.mt19937.state\n Generator state.\n","base.random.mt19937.stateLength":"\nbase.random.mt19937.stateLength\n Length of generator state.\n","base.random.mt19937.byteLength":"\nbase.random.mt19937.byteLength\n Size (in bytes) of generator state.\n","base.random.mt19937.toJSON":"\nbase.random.mt19937.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.negativeBinomial":"\nbase.random.negativeBinomial( r:number, p:number )\n Returns a pseudorandom number drawn from a negative binomial distribution.\n","base.random.negativeBinomial.factory":"\nbase.random.negativeBinomial.factory( [r:number, p:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a negative binomial distribution.\n","base.random.negativeBinomial.NAME":"\nbase.random.negativeBinomial.NAME\n Generator name.\n","base.random.negativeBinomial.PRNG":"\nbase.random.negativeBinomial.PRNG\n Underlying pseudorandom number generator.\n","base.random.negativeBinomial.seed":"\nbase.random.negativeBinomial.seed\n Pseudorandom number generator seed.\n","base.random.negativeBinomial.seedLength":"\nbase.random.negativeBinomial.seedLength\n Length of generator seed.\n","base.random.negativeBinomial.state":"\nbase.random.negativeBinomial.state\n Generator state.\n","base.random.negativeBinomial.stateLength":"\nbase.random.negativeBinomial.stateLength\n Length of generator state.\n","base.random.negativeBinomial.byteLength":"\nbase.random.negativeBinomial.byteLength\n Size (in bytes) of generator state.\n","base.random.negativeBinomial.toJSON":"\nbase.random.negativeBinomial.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.normal":"\nbase.random.normal( μ:number, σ:number )\n Returns a pseudorandom number drawn from a normal distribution.\n","base.random.normal.factory":"\nbase.random.normal.factory( [μ:number, σ:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a normal distribution.\n","base.random.normal.NAME":"\nbase.random.normal.NAME\n Generator name.\n","base.random.normal.PRNG":"\nbase.random.normal.PRNG\n Underlying pseudorandom number generator.\n","base.random.normal.seed":"\nbase.random.normal.seed\n Pseudorandom number generator seed.\n","base.random.normal.seedLength":"\nbase.random.normal.seedLength\n Length of generator seed.\n","base.random.normal.state":"\nbase.random.normal.state\n Generator state.\n","base.random.normal.stateLength":"\nbase.random.normal.stateLength\n Length of generator state.\n","base.random.normal.byteLength":"\nbase.random.normal.byteLength\n Size of generator state.\n","base.random.normal.toJSON":"\nbase.random.normal.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.pareto1":"\nbase.random.pareto1( α:number, β:number )\n Returns a pseudorandom number drawn from a Pareto (Type I) distribution.\n","base.random.pareto1.factory":"\nbase.random.pareto1.factory( [α:number, β:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Pareto (Type I) distribution.\n","base.random.pareto1.NAME":"\nbase.random.pareto1.NAME\n Generator name.\n","base.random.pareto1.PRNG":"\nbase.random.pareto1.PRNG\n Underlying pseudorandom number generator.\n","base.random.pareto1.seed":"\nbase.random.pareto1.seed\n Pseudorandom number generator seed.\n","base.random.pareto1.seedLength":"\nbase.random.pareto1.seedLength\n Length of generator seed.\n","base.random.pareto1.state":"\nbase.random.pareto1.state\n Generator state.\n","base.random.pareto1.stateLength":"\nbase.random.pareto1.stateLength\n Length of generator state.\n","base.random.pareto1.byteLength":"\nbase.random.pareto1.byteLength\n Size (in bytes) of generator state.\n","base.random.pareto1.toJSON":"\nbase.random.pareto1.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.poisson":"\nbase.random.poisson( λ:number )\n Returns a pseudorandom number drawn from a Poisson distribution.\n","base.random.poisson.factory":"\nbase.random.poisson.factory( [λ:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Poisson distribution.\n","base.random.poisson.NAME":"\nbase.random.poisson.NAME\n Generator name.\n","base.random.poisson.PRNG":"\nbase.random.poisson.PRNG\n Underlying pseudorandom number generator.\n","base.random.poisson.seed":"\nbase.random.poisson.seed\n Pseudorandom number generator seed.\n","base.random.poisson.seedLength":"\nbase.random.poisson.seedLength\n Length of generator seed.\n","base.random.poisson.state":"\nbase.random.poisson.state\n Generator state.\n","base.random.poisson.stateLength":"\nbase.random.poisson.stateLength\n Length of generator state.\n","base.random.poisson.byteLength":"\nbase.random.poisson.byteLength\n Size (in bytes) of generator state.\n","base.random.poisson.toJSON":"\nbase.random.poisson.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.randi":"\nbase.random.randi()\n Returns a pseudorandom number having an integer value.\n","base.random.randi.factory":"\nbase.random.randi.factory( [options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers having integer values.\n","base.random.randi.NAME":"\nbase.random.randi.NAME\n Generator name.\n","base.random.randi.PRNG":"\nbase.random.randi.PRNG\n Underlying pseudorandom number generator.\n","base.random.randi.MIN":"\nbase.random.randi.MIN\n Minimum possible value (specific to underlying PRNG).\n","base.random.randi.MAX":"\nbase.random.randi.MAX\n Maximum possible value (specific to underlying PRNG).\n","base.random.randi.seed":"\nbase.random.randi.seed\n Pseudorandom number generator seed.\n","base.random.randi.seedLength":"\nbase.random.randi.seedLength\n Length of generator seed.\n","base.random.randi.state":"\nbase.random.randi.state\n Generator state.\n","base.random.randi.stateLength":"\nbase.random.randi.stateLength\n Length of generator state.\n","base.random.randi.byteLength":"\nbase.random.randi.byteLength\n Size (in bytes) of generator state.\n","base.random.randi.toJSON":"\nbase.random.randi.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.randn":"\nbase.random.randn()\n Returns a pseudorandom number drawn from a standard normal distribution.\n","base.random.randn.factory":"\nbase.random.randn.factory( [options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a standard normal distribution.\n","base.random.randn.NAME":"\nbase.random.randn.NAME\n Generator name.\n","base.random.randn.PRNG":"\nbase.random.randn.PRNG\n Underlying pseudorandom number generator.\n","base.random.randn.seed":"\nbase.random.randn.seed\n Pseudorandom number generator seed.\n","base.random.randn.seedLength":"\nbase.random.randn.seedLength\n Length of generator seed.\n","base.random.randn.state":"\nbase.random.randn.state\n Generator state.\n","base.random.randn.stateLength":"\nbase.random.randn.stateLength\n Length of generator state.\n","base.random.randn.byteLength":"\nbase.random.randn.byteLength\n Size (in bytes) of generator state.\n","base.random.randn.toJSON":"\nbase.random.randn.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.randu":"\nbase.random.randu()\n Returns a pseudorandom number drawn from a uniform distribution.\n","base.random.randu.factory":"\nbase.random.randu.factory( [options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a uniform distribution.\n","base.random.randu.NAME":"\nbase.random.randu.NAME\n Generator name.\n","base.random.randu.PRNG":"\nbase.random.randu.PRNG\n Underlying pseudorandom number generator.\n","base.random.randu.MIN":"\nbase.random.randu.MIN\n Minimum possible value (specific to underlying PRNG).\n","base.random.randu.MAX":"\nbase.random.randu.MAX\n Maximum possible value (specific to underlying PRNG).\n","base.random.randu.seed":"\nbase.random.randu.seed\n Pseudorandom number generator seed.\n","base.random.randu.seedLength":"\nbase.random.randu.seedLength\n Length of generator seed.\n","base.random.randu.state":"\nbase.random.randu.state\n Generator state.\n","base.random.randu.stateLength":"\nbase.random.randu.stateLength\n Length of generator state.\n","base.random.randu.byteLength":"\nbase.random.randu.byteLength\n Size (in bytes) of generator state.\n","base.random.randu.toJSON":"\nbase.random.randu.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.rayleigh":"\nbase.random.rayleigh( σ:number )\n Returns a pseudorandom number drawn from a Rayleigh distribution.\n","base.random.rayleigh.factory":"\nbase.random.rayleigh.factory( [σ:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Rayleigh distribution.\n","base.random.rayleigh.NAME":"\nbase.random.rayleigh.NAME\n Generator name.\n","base.random.rayleigh.PRNG":"\nbase.random.rayleigh.PRNG\n Underlying pseudorandom number generator.\n","base.random.rayleigh.seed":"\nbase.random.rayleigh.seed\n Pseudorandom number generator seed.\n","base.random.rayleigh.seedLength":"\nbase.random.rayleigh.seedLength\n Length of generator seed.\n","base.random.rayleigh.state":"\nbase.random.rayleigh.state\n Generator state.\n","base.random.rayleigh.stateLength":"\nbase.random.rayleigh.stateLength\n Length of generator state.\n","base.random.rayleigh.byteLength":"\nbase.random.rayleigh.byteLength\n Size (in bytes) of generator state.\n","base.random.rayleigh.toJSON":"\nbase.random.rayleigh.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.t":"\nbase.random.t( v:number )\n Returns a pseudorandom number drawn from a Student's t distribution.\n","base.random.t.factory":"\nbase.random.t.factory( [v:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Student's t distribution.\n","base.random.t.NAME":"\nbase.random.t.NAME\n Generator name.\n","base.random.t.PRNG":"\nbase.random.t.PRNG\n Underlying pseudorandom number generator.\n","base.random.t.seed":"\nbase.random.t.seed\n Pseudorandom number generator seed.\n","base.random.t.seedLength":"\nbase.random.t.seedLength\n Length of generator seed.\n","base.random.t.state":"\nbase.random.t.state\n Generator state.\n","base.random.t.stateLength":"\nbase.random.t.stateLength\n Length of generator state.\n","base.random.t.byteLength":"\nbase.random.t.byteLength\n Size (in bytes) of generator state.\n","base.random.t.toJSON":"\nbase.random.t.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.triangular":"\nbase.random.triangular( a:number, b:number, c:number )\n Returns a pseudorandom number drawn from a triangular distribution.\n","base.random.triangular.factory":"\nbase.random.triangular.factory( [a:number, b:number, c:number, ]\n [options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a triangular distribution.\n","base.random.triangular.NAME":"\nbase.random.triangular.NAME\n Generator name.\n","base.random.triangular.PRNG":"\nbase.random.triangular.PRNG\n Underlying pseudorandom number generator.\n","base.random.triangular.seed":"\nbase.random.triangular.seed\n Pseudorandom number generator seed.\n","base.random.triangular.seedLength":"\nbase.random.triangular.seedLength\n Length of generator seed.\n","base.random.triangular.state":"\nbase.random.triangular.state\n Generator state.\n","base.random.triangular.stateLength":"\nbase.random.triangular.stateLength\n Length of generator state.\n","base.random.triangular.byteLength":"\nbase.random.triangular.byteLength\n Size (in bytes) of generator state.\n","base.random.triangular.toJSON":"\nbase.random.triangular.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.uniform":"\nbase.random.uniform( a:number, b:number )\n Returns a pseudorandom number drawn from a continuous uniform distribution.\n","base.random.uniform.factory":"\nbase.random.uniform.factory( [a:number, b:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a continuous uniform distribution.\n","base.random.uniform.NAME":"\nbase.random.uniform.NAME\n Generator name.\n","base.random.uniform.PRNG":"\nbase.random.uniform.PRNG\n Underlying pseudorandom number generator.\n","base.random.uniform.seed":"\nbase.random.uniform.seed\n Pseudorandom number generator seed.\n","base.random.uniform.seedLength":"\nbase.random.uniform.seedLength\n Length of generator seed.\n","base.random.uniform.state":"\nbase.random.uniform.state\n Generator state.\n","base.random.uniform.stateLength":"\nbase.random.uniform.stateLength\n Length of generator state.\n","base.random.uniform.byteLength":"\nbase.random.uniform.byteLength\n Size (in bytes) of generator state.\n","base.random.uniform.toJSON":"\nbase.random.uniform.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.random.weibull":"\nbase.random.weibull( k:number, λ:number )\n Returns a pseudorandom number drawn from a Weibull distribution.\n","base.random.weibull.factory":"\nbase.random.weibull.factory( [k:number, λ:number, ][options:Object] )\n Returns a pseudorandom number generator (PRNG) for generating pseudorandom\n numbers drawn from a Weibull distribution.\n","base.random.weibull.NAME":"\nbase.random.weibull.NAME\n Generator name.\n","base.random.weibull.PRNG":"\nbase.random.weibull.PRNG\n Underlying pseudorandom number generator.\n","base.random.weibull.seed":"\nbase.random.weibull.seed\n Pseudorandom number generator seed.\n","base.random.weibull.seedLength":"\nbase.random.weibull.seedLength\n Length of generator seed.\n","base.random.weibull.state":"\nbase.random.weibull.state\n Generator state.\n","base.random.weibull.stateLength":"\nbase.random.weibull.stateLength\n Length of generator state.\n","base.random.weibull.byteLength":"\nbase.random.weibull.byteLength\n Size (in bytes) of generator state.\n","base.random.weibull.toJSON":"\nbase.random.weibull.toJSON()\n Serializes the pseudorandom number generator as a JSON object.\n","base.reldiff":"\nbase.reldiff( x:number, y:number[, scale:string|Function] )\n Computes the relative difference of two real numbers.\n","base.rempio2":"\nbase.rempio2( x:number, y:Array|TypedArray|Object )\n Computes `x - nπ/2 = r`.\n","base.risingFactorial":"\nbase.risingFactorial( x:number, n:integer )\n Computes the rising factorial of `x` and `n`.\n","base.rotl32":"\nbase.rotl32( x:integer, shift:integer )\n Performs a bitwise rotation to the left.\n","base.rotr32":"\nbase.rotr32( x:integer, shift:integer )\n Performs a bitwise rotation to the right.\n","base.round":"\nbase.round( x:number )\n Rounds a numeric value to the nearest integer.\n","base.round2":"\nbase.round2( x:number )\n Rounds a numeric value to the nearest power of two on a linear scale.\n","base.round10":"\nbase.round10( x:number )\n Rounds a numeric value to the nearest power of ten on a linear scale.\n","base.roundb":"\nbase.roundb( x:number, n:integer, b:integer )\n Rounds a numeric value to the nearest multiple of `b^n` on a linear scale.\n","base.roundn":"\nbase.roundn( x:number, n:integer )\n Rounds a numeric value to the nearest multiple of `10^n`.\n","base.roundsd":"\nbase.roundsd( x:number, n:integer[, b:integer] )\n Rounds a numeric value to the nearest number with `n` significant figures.\n","base.rsqrt":"\nbase.rsqrt( x:number )\n Computes the reciprocal square root of a double-precision floating-point\n number.\n","base.rsqrtf":"\nbase.rsqrtf( x:number )\n Computes the reciprocal square root of a single-precision floating-point\n number.\n","base.scalar2ndarray":"\nbase.scalar2ndarray( value:any, dtype:string )\n Returns a zero-dimensional ndarray containing a provided scalar value.\n","base.setHighWord":"\nbase.setHighWord( x:number, high:integer )\n Sets the more significant 32 bits of a double-precision floating-point\n number.\n","base.setLowWord":"\nbase.setLowWord( x:number, low:integer )\n Sets the less significant 32 bits of a double-precision floating-point\n number.\n","base.sici":"\nbase.sici( [out:Array|TypedArray|Object,] x:number )\n Computes the sine and cosine integrals.\n","base.signbit":"\nbase.signbit( x:number )\n Returns a boolean indicating if the sign bit is on (true) or off (false).\n","base.signbitf":"\nbase.signbitf( x:float )\n Returns a boolean indicating if the sign bit is on (true) or off (false).\n","base.significandf":"\nbase.significandf( x:float )\n Returns an integer corresponding to the significand of a single-precision\n floating-point number.\n","base.signum":"\nbase.signum( x:number )\n Evaluates the signum function for a double-precision floating-point number.\n","base.signumf":"\nbase.signumf( x:number )\n Evaluates the signum function for a single-precision floating-point number.\n","base.sin":"\nbase.sin( x:number )\n Computes the sine of a number.\n","base.sinc":"\nbase.sinc( x:number )\n Computes the normalized cardinal sine of a number.\n","base.sincos":"\nbase.sincos( [out:Array|TypedArray|Object,] x:number )\n Simultaneously computes the sine and cosine of a number.\n","base.sincospi":"\nbase.sincospi( [out:Array|TypedArray|Object,] x:number )\n Simultaneously computes the sine and cosine of a number times π.\n","base.sinh":"\nbase.sinh( x:number )\n Computes the hyperbolic sine of a number.\n","base.sinpi":"\nbase.sinpi( x:number )\n Computes the value of `sin(πx)`.\n","base.spence":"\nbase.spence( x:number )\n Evaluates Spence’s function, which is also known as the dilogarithm.\n","base.sqrt":"\nbase.sqrt( x:number )\n Computes the principal square root of a double-precision floating-point\n number.\n","base.sqrt1pm1":"\nbase.sqrt1pm1( x:number )\n Computes the principal square root of `1+x` minus one.\n","base.sqrtf":"\nbase.sqrtf( x:number )\n Computes the principal square root of a single-precision floating-point\n number.\n","base.sqrtpi":"\nbase.sqrtpi( x:number )\n Computes the principal square root of the product of π and a positive\n number.\n","base.strided.binary":"\nbase.strided.binary( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n fcn:Function )\n Applies a binary callback to strided input array elements and assigns\n results to elements in a strided output array.\n","base.strided.binary.ndarray":"\nbase.strided.binary.ndarray( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n offsets:ArrayLikeObject, fcn:Function )\n Applies a binary callback to strided input array elements and assigns\n results to elements in a strided output array using alternative indexing\n semantics.\n","base.strided.ccopy":"\nbase.strided.ccopy( N:integer, x:Complex64Array, strideX:integer, \n y:Complex64Array, strideY:integer )\n Copies values from one complex single-precision floating-point vector to\n another complex single-precision floating-point vector.\n","base.strided.ccopy.ndarray":"\nbase.strided.ccopy.ndarray( N:integer, x:Complex64Array, strideX:integer, \n offsetX:integer, y:Complex64Array, strideY:integer, offsetY:integer )\n Copies values from one complex single-precision floating-point vector to\n another complex single-precision floating-point vector using alternative\n indexing semantics.\n","base.strided.cmap":"\nbase.strided.cmap( N:integer, x:Complex64Array, strideX:integer, \n y:Complex64Array, strideY:integer, fcn:Function )\n Applies a unary function to a single-precision complex floating-point\n strided input array and assigns results to a single-precision complex\n floating-point strided output array.\n","base.strided.cmap.ndarray":"\nbase.strided.cmap.ndarray( N:integer, x:Complex64Array, strideX:integer, \n offsetX:integer, y:Complex64Array, strideY:integer, offsetY:integer, \n fcn:Function )\n Applies a unary function to a single-precision complex floating-point\n strided input array and assigns results to a single-precision complex\n floating-point strided output array using alternative indexing semantics.\n","base.strided.cswap":"\nbase.strided.cswap( N:integer, x:Complex64Array, strideX:integer, \n y:Complex64Array, strideY:integer )\n Interchanges two complex single-precision floating-point vectors.\n","base.strided.cswap.ndarray":"\nbase.strided.cswap.ndarray( N:integer, x:Complex64Array, strideX:integer, \n offsetX:integer, y:Complex64Array, strideY:integer, offsetY:integer )\n Interchanges two complex single-precision floating-point vectors using\n alternative indexing semantics.\n","base.strided.cumax":"\nbase.strided.cumax( N:integer, x:Array|TypedArray, strideX:integer, \n y:Array|TypedArray, strideY:integer )\n Computes the cumulative maximum of a strided array.\n","base.strided.cumax.ndarray":"\nbase.strided.cumax.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, y:Array|TypedArray, strideY:integer, offsetY:integer )\n Computes the cumulative maximum of a strided array using alternative\n indexing semantics.\n","base.strided.cumaxabs":"\nbase.strided.cumaxabs( N:integer, x:Array|TypedArray, strideX:integer, \n y:Array|TypedArray, strideY:integer )\n Computes the cumulative maximum absolute value of a strided array.\n","base.strided.cumaxabs.ndarray":"\nbase.strided.cumaxabs.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, y:Array|TypedArray, strideY:integer, offsetY:integer )\n Computes the cumulative maximum absolute value of a strided array using\n alternative indexing semantics.\n","base.strided.cumin":"\nbase.strided.cumin( N:integer, x:Array|TypedArray, strideX:integer, \n y:Array|TypedArray, strideY:integer )\n Computes the cumulative minimum of a strided array.\n","base.strided.cumin.ndarray":"\nbase.strided.cumin.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, y:Array|TypedArray, strideY:integer, offsetY:integer )\n Computes the cumulative minimum of a strided array using alternative\n indexing semantics.\n","base.strided.cuminabs":"\nbase.strided.cuminabs( N:integer, x:Array|TypedArray, strideX:integer, \n y:Array|TypedArray, strideY:integer )\n Computes the cumulative minimum absolute value of a strided array.\n","base.strided.cuminabs.ndarray":"\nbase.strided.cuminabs.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, y:Array|TypedArray, strideY:integer, offsetY:integer )\n Computes the cumulative minimum absolute value of a strided array using\n alternative indexing semantics.\n","base.strided.dabs":"\nbase.strided.dabs( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Computes the absolute value for each element in a double-precision floating-\n point strided array `x` and assigns the results to elements in a double-\n precision floating-point strided array `y`.\n","base.strided.dabs.ndarray":"\nbase.strided.dabs.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the absolute value for each element in a double-precision floating-\n point strided array `x` and assigns the results to elements in a double-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.dabs2":"\nbase.strided.dabs2( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Computes the squared absolute value for each element in a double-precision\n floating-point strided array `x` and assigns the results to elements in a\n double-precision floating-point strided array `y`.\n","base.strided.dabs2.ndarray":"\nbase.strided.dabs2.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the squared absolute value for each element in a double-precision\n floating-point strided array `x` and assigns the results to elements in a\n double-precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.dapx":"\nbase.strided.dapx( N:integer, alpha:number, x:Float64Array, stride:integer )\n Adds a constant to each element in a double-precision floating-point strided\n array.\n","base.strided.dapx.ndarray":"\nbase.strided.dapx.ndarray( N:integer, alpha:number, x:Float64Array, \n stride:integer, offset:integer )\n Adds a constant to each element in a double-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.dapxsum":"\nbase.strided.dapxsum( N:integer, alpha:number, x:Float64Array, stride:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum.\n","base.strided.dapxsum.ndarray":"\nbase.strided.dapxsum.ndarray( N:integer, alpha:number, x:Float64Array, \n stride:integer, offset:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum using alternative indexing semantics.\n","base.strided.dapxsumkbn":"\nbase.strided.dapxsumkbn( N:integer, alpha:number, x:Float64Array, \n stride:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum using an improved Kahan–Babuška algorithm.\n","base.strided.dapxsumkbn.ndarray":"\nbase.strided.dapxsumkbn.ndarray( N:integer, alpha:number, x:Float64Array, \n stride:integer, offset:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum using an improved Kahan–Babuška algorithm and\n alternative indexing semantics.\n","base.strided.dapxsumkbn2":"\nbase.strided.dapxsumkbn2( N:integer, alpha:number, x:Float64Array, \n stride:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum using a second-order iterative Kahan–Babuška\n algorithm.\n","base.strided.dapxsumkbn2.ndarray":"\nbase.strided.dapxsumkbn2.ndarray( N:integer, alpha:number, x:Float64Array, \n stride:integer, offset:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum using a second-order iterative Kahan–Babuška\n algorithm and alternative indexing semantics.\n","base.strided.dapxsumors":"\nbase.strided.dapxsumors( N:integer, alpha:number, x:Float64Array, \n stride:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum using ordinary recursive summation.\n","base.strided.dapxsumors.ndarray":"\nbase.strided.dapxsumors.ndarray( N:integer, alpha:number, x:Float64Array, \n stride:integer, offset:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum using ordinary recursive summation and\n alternative indexing semantics.\n","base.strided.dapxsumpw":"\nbase.strided.dapxsumpw( N:integer, alpha:number, x:Float64Array, \n stride:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum using pairwise summation.\n","base.strided.dapxsumpw.ndarray":"\nbase.strided.dapxsumpw.ndarray( N:integer, alpha:number, x:Float64Array, \n stride:integer, offset:integer )\n Adds a constant to each double-precision floating-point strided array\n element and computes the sum using pairwise summation and alternative\n indexing semantics.\n","base.strided.dasum":"\nbase.strided.dasum( N:integer, x:Float64Array, stride:integer )\n Computes the sum of the absolute values.\n","base.strided.dasum.ndarray":"\nbase.strided.dasum.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of absolute values using alternative indexing semantics.\n","base.strided.dasumpw":"\nbase.strided.dasumpw( N:integer, x:Float64Array, stride:integer )\n Computes the sum of absolute values (L1 norm) of double-precision floating-\n point strided array elements using pairwise summation.\n","base.strided.dasumpw.ndarray":"\nbase.strided.dasumpw.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of absolute values (L1 norm) of double-precision floating-\n point strided array elements using pairwise summation and alternative\n indexing semantics.\n","base.strided.daxpy":"\nbase.strided.daxpy( N:integer, alpha:number, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Multiplies a vector `x` by a constant `alpha` and adds the result to `y`.\n","base.strided.daxpy.ndarray":"\nbase.strided.daxpy.ndarray( N:integer, alpha:number, x:Float64Array, \n strideX:integer, offsetX:integer, y:Float64Array, strideY:integer, \n offsetY:integer )\n Multiplies a vector `x` by a constant `alpha` and adds the result to `y`,\n using alternative indexing semantics.\n","base.strided.dcbrt":"\nbase.strided.dcbrt( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Computes the cube root of each element in a double-precision floating-point\n strided array `x` and assigns the results to elements in a double-precision\n floating-point strided array `y`.\n","base.strided.dcbrt.ndarray":"\nbase.strided.dcbrt.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the cube root of each element in a double-precision floating-point\n strided array `x` and assigns the results to elements in a double-precision\n floating-point strided array `y` using alternative indexing semantics.\n","base.strided.dceil":"\nbase.strided.dceil( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward positive infinity and assigns the results to elements in a double-\n precision floating-point strided array `y`.\n","base.strided.dceil.ndarray":"\nbase.strided.dceil.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward positive infinity and assigns the results to elements in a double-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.dcopy":"\nbase.strided.dcopy( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Copies values from `x` into `y`.\n","base.strided.dcopy.ndarray":"\nbase.strided.dcopy.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Copies values from `x` into `y` using alternative indexing semantics.\n","base.strided.dcumax":"\nbase.strided.dcumax( N:integer, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Computes the cumulative maximum of double-precision floating-point strided\n array elements.\n","base.strided.dcumax.ndarray":"\nbase.strided.dcumax.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the cumulative maximum of double-precision floating-point strided\n array elements using alternative indexing semantics.\n","base.strided.dcumaxabs":"\nbase.strided.dcumaxabs( N:integer, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Computes the cumulative maximum absolute value of double-precision floating-\n point strided array elements.\n","base.strided.dcumaxabs.ndarray":"\nbase.strided.dcumaxabs.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the cumulative maximum absolute value of double-precision floating-\n point strided array elements using alternative indexing semantics.\n","base.strided.dcumin":"\nbase.strided.dcumin( N:integer, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Computes the cumulative minimum of double-precision floating-point strided\n array elements.\n","base.strided.dcumin.ndarray":"\nbase.strided.dcumin.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the cumulative minimum of double-precision floating-point strided\n array elements using alternative indexing semantics.\n","base.strided.dcuminabs":"\nbase.strided.dcuminabs( N:integer, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Computes the cumulative minimum absolute value of double-precision floating-\n point strided array elements.\n","base.strided.dcuminabs.ndarray":"\nbase.strided.dcuminabs.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the cumulative minimum absolute value of double-precision floating-\n point strided array elements using alternative indexing semantics.\n","base.strided.dcusum":"\nbase.strided.dcusum( N:integer, sum:number, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements.\n","base.strided.dcusum.ndarray":"\nbase.strided.dcusum.ndarray( N:integer, sum:number, x:Float64Array, \n strideX:integer, offsetX:integer, y:Float64Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements using alternative indexing semantics.\n","base.strided.dcusumkbn":"\nbase.strided.dcusumkbn( N:integer, sum:number, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements using an improved Kahan–Babuška algorithm.\n","base.strided.dcusumkbn.ndarray":"\nbase.strided.dcusumkbn.ndarray( N:integer, sum:number, x:Float64Array, \n strideX:integer, offsetX:integer, y:Float64Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements using an improved Kahan–Babuška algorithm and alternative indexing\n semantics.\n","base.strided.dcusumkbn2":"\nbase.strided.dcusumkbn2( N:integer, sum:number, x:Float64Array, \n strideX:integer, y:Float64Array, strideY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements using a second-order iterative Kahan–Babuška algorithm.\n","base.strided.dcusumkbn2.ndarray":"\nbase.strided.dcusumkbn2.ndarray( N:integer, sum:number, x:Float64Array, \n strideX:integer, offsetX:integer, y:Float64Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements using a second-order iterative Kahan–Babuška algorithm and\n alternative indexing semantics.\n","base.strided.dcusumors":"\nbase.strided.dcusumors( N:integer, sum:number, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements using ordinary recursive summation.\n","base.strided.dcusumors.ndarray":"\nbase.strided.dcusumors.ndarray( N:integer, sum:number, x:Float64Array, \n strideX:integer, offsetX:integer, y:Float64Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements using ordinary recursive summation and alternative indexing\n semantics.\n","base.strided.dcusumpw":"\nbase.strided.dcusumpw( N:integer, sum:number, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements using pairwise summation.\n","base.strided.dcusumpw.ndarray":"\nbase.strided.dcusumpw.ndarray( N:integer, sum:number, x:Float64Array, \n strideX:integer, offsetX:integer, y:Float64Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of double-precision floating-point strided array\n elements using pairwise summation and alternative indexing semantics.\n","base.strided.ddeg2rad":"\nbase.strided.ddeg2rad( N:integer, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Converts each element in a double-precision floating-point strided array `x`\n from degrees to radians and assigns the results to elements in a double-\n precision floating-point strided array `y`.\n","base.strided.ddeg2rad.ndarray":"\nbase.strided.ddeg2rad.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Converts each element in a double-precision floating-point strided array `x`\n from degrees to radians and assigns the results to elements in a double-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.ddot":"\nbase.strided.ddot( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Computes the dot product of two double-precision floating-point vectors.\n","base.strided.ddot.ndarray":"\nbase.strided.ddot.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the dot product of two double-precision floating-point vectors\n using alternative indexing semantics.\n","base.strided.dfill":"\nbase.strided.dfill( N:integer, alpha:number, x:Float64Array, stride:integer )\n Fills a double-precision floating-point strided array with a specified\n scalar value.\n","base.strided.dfill.ndarray":"\nbase.strided.dfill.ndarray( N:integer, alpha:number, x:Float64Array, \n stride:integer, offset:integer )\n Fills a double-precision floating-point strided array with a specified\n scalar value using alternative indexing semantics.\n","base.strided.dfloor":"\nbase.strided.dfloor( N:integer, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward negative infinity and assigns the results to elements in a double-\n precision floating-point strided array `y`.\n","base.strided.dfloor.ndarray":"\nbase.strided.dfloor.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward negative infinity and assigns the results to elements in a double-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.dinv":"\nbase.strided.dinv( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Computes the multiplicative inverse for each element in a double-precision\n floating-point strided array `x` and assigns the results to elements in a\n double-precision floating-point strided array `y`.\n","base.strided.dinv.ndarray":"\nbase.strided.dinv.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the multiplicative inverse for each element in a double-precision\n floating-point strided array `x` and assigns the results to elements in a\n double-precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.dmap":"\nbase.strided.dmap( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer, fcn:Function )\n Applies a unary function to a double-precision floating-point strided input\n array and assigns results to a double-precision floating-point strided\n output array.\n","base.strided.dmap.ndarray":"\nbase.strided.dmap.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer, \n fcn:Function )\n Applies a unary function to a double-precision floating-point strided input\n array and assigns results to a double-precision floating-point strided\n output array using alternative indexing semantics.\n","base.strided.dmap2":"\nbase.strided.dmap2( N:integer, x:Float64Array, sx:integer, y:Float64Array, \n sy:integer, z:Float64Array, sz:integer, fcn:Function )\n Applies a binary function to double-precision floating-point strided input\n arrays and assigns results to a double-precision floating-point strided\n output array.\n","base.strided.dmap2.ndarray":"\nbase.strided.dmap2.ndarray( N:integer, x:Float64Array, sx:integer, ox:integer, \n y:Float64Array, sy:integer, oy:integer, z:Float64Array, sz:integer, \n oz:integer, fcn:Function )\n Applies a unary function to each element retrieved from a strided input\n array according to a callback function and assigns results to a strided\n output array using alternative indexing semantics.\n","base.strided.dmax":"\nbase.strided.dmax( N:integer, x:Float64Array, stride:integer )\n Computes the maximum value of a double-precision floating-point strided\n array.\n","base.strided.dmax.ndarray":"\nbase.strided.dmax.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the maximum value of a double-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.dmaxabs":"\nbase.strided.dmaxabs( N:integer, x:Float64Array, stride:integer )\n Computes the maximum absolute value of a double-precision floating-point\n strided array.\n","base.strided.dmaxabs.ndarray":"\nbase.strided.dmaxabs.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the maximum absolute value of a double-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.dmaxabssorted":"\nbase.strided.dmaxabssorted( N:integer, x:Float64Array, stride:integer )\n Computes the maximum absolute value of a sorted double-precision floating-\n point strided array.\n","base.strided.dmaxabssorted.ndarray":"\nbase.strided.dmaxabssorted.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the maximum absolute value of a sorted double-precision floating-\n point strided array using alternative indexing semantics.\n","base.strided.dmaxsorted":"\nbase.strided.dmaxsorted( N:integer, x:Float64Array, stride:integer )\n Computes the maximum value of a sorted double-precision floating-point\n strided array.\n","base.strided.dmaxsorted.ndarray":"\nbase.strided.dmaxsorted.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the maximum value of a sorted double-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.dmean":"\nbase.strided.dmean( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array.\n","base.strided.dmean.ndarray":"\nbase.strided.dmean.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.dmeankbn":"\nbase.strided.dmeankbn( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using an improved Kahan–Babuška algorithm.\n","base.strided.dmeankbn.ndarray":"\nbase.strided.dmeankbn.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using an improved Kahan–Babuška algorithm and alternative indexing\n semantics.\n","base.strided.dmeankbn2":"\nbase.strided.dmeankbn2( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using a second-order iterative Kahan–Babuška algorithm.\n","base.strided.dmeankbn2.ndarray":"\nbase.strided.dmeankbn2.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using a second-order iterative Kahan–Babuška algorithm and alternative\n indexing semantics.\n","base.strided.dmeanli":"\nbase.strided.dmeanli( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using a one-pass trial mean algorithm.\n","base.strided.dmeanli.ndarray":"\nbase.strided.dmeanli.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using a one-pass trial mean algorithm and alternative indexing\n semantics.\n","base.strided.dmeanlipw":"\nbase.strided.dmeanlipw( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using a one-pass trial mean algorithm with pairwise summation.\n","base.strided.dmeanlipw.ndarray":"\nbase.strided.dmeanlipw.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using a one-pass trial mean algorithm with pairwise summation and\n alternative indexing semantics.\n","base.strided.dmeanors":"\nbase.strided.dmeanors( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using ordinary recursive summation.\n","base.strided.dmeanors.ndarray":"\nbase.strided.dmeanors.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using ordinary recursive summation and alternative indexing semantics.\n","base.strided.dmeanpn":"\nbase.strided.dmeanpn( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using a two-pass error correction algorithm.\n","base.strided.dmeanpn.ndarray":"\nbase.strided.dmeanpn.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using a two-pass error correction algorithm and alternative indexing\n semantics.\n","base.strided.dmeanpw":"\nbase.strided.dmeanpw( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using pairwise summation.\n","base.strided.dmeanpw.ndarray":"\nbase.strided.dmeanpw.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using pairwise summation and alternative indexing semantics.\n","base.strided.dmeanstdev":"\nbase.strided.dmeanstdev( N:integer, c:number, x:Float64Array, strideX:integer, \n out:Float64Array, strideOut:integer )\n Computes the mean and standard deviation of a double-precision floating-\n point strided array.\n","base.strided.dmeanstdev.ndarray":"\nbase.strided.dmeanstdev.ndarray( N:integer, c:number, x:Float64Array, \n strideX:integer, offsetX:integer, out:Float64Array, strideOut:integer, \n offsetOut:integer )\n Computes the mean and standard deviation of a double-precision floating-\n point strided array using alternative indexing semantics.\n","base.strided.dmeanstdevpn":"\nbase.strided.dmeanstdevpn( N:integer, c:number, x:Float64Array, \n strideX:integer, out:Float64Array, strideOut:integer )\n Computes the mean and standard deviation of a double-precision floating-\n point strided array using a two-pass algorithm.\n","base.strided.dmeanstdevpn.ndarray":"\nbase.strided.dmeanstdevpn.ndarray( N:integer, c:number, x:Float64Array, \n strideX:integer, offsetX:integer, out:Float64Array, strideOut:integer, \n offsetOut:integer )\n Computes the mean and standard deviation of a double-precision floating-\n point strided array using a two-pass algorithm and alternative indexing\n semantics.\n","base.strided.dmeanvar":"\nbase.strided.dmeanvar( N:integer, c:number, x:Float64Array, strideX:integer, \n out:Float64Array, strideOut:integer )\n Computes the mean and variance of a double-precision floating-point strided\n array.\n","base.strided.dmeanvar.ndarray":"\nbase.strided.dmeanvar.ndarray( N:integer, c:number, x:Float64Array, \n strideX:integer, offsetX:integer, out:Float64Array, strideOut:integer, \n offsetOut:integer )\n Computes the mean and variance of a double-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.dmeanvarpn":"\nbase.strided.dmeanvarpn( N:integer, c:number, x:Float64Array, strideX:integer, \n out:Float64Array, strideOut:integer )\n Computes the mean and variance of a double-precision floating-point strided\n array using a two-pass algorithm.\n","base.strided.dmeanvarpn.ndarray":"\nbase.strided.dmeanvarpn.ndarray( N:integer, c:number, x:Float64Array, \n strideX:integer, offsetX:integer, out:Float64Array, strideOut:integer, \n offsetOut:integer )\n Computes the mean and variance of a double-precision floating-point strided\n array using a two-pass algorithm and alternative indexing semantics.\n","base.strided.dmeanwd":"\nbase.strided.dmeanwd( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using Welford's algorithm.\n","base.strided.dmeanwd.ndarray":"\nbase.strided.dmeanwd.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array using Welford's algorithm and alternative indexing semantics.\n","base.strided.dmediansorted":"\nbase.strided.dmediansorted( N:integer, x:Float64Array, stride:integer )\n Computes the median value of a sorted double-precision floating-point\n strided array.\n","base.strided.dmediansorted.ndarray":"\nbase.strided.dmediansorted.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the median value of a sorted double-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.dmidrange":"\nbase.strided.dmidrange( N:integer, x:Float64Array, stride:integer )\n Computes the mid-range of a double-precision floating-point strided array.\n","base.strided.dmidrange.ndarray":"\nbase.strided.dmidrange.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the mid-range of a double-precision floating-point strided array\n using alternative indexing semantics.\n","base.strided.dmin":"\nbase.strided.dmin( N:integer, x:Float64Array, stride:integer )\n Computes the minimum value of a double-precision floating-point strided\n array.\n","base.strided.dmin.ndarray":"\nbase.strided.dmin.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the minimum value of a double-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.dminabs":"\nbase.strided.dminabs( N:integer, x:Float64Array, stride:integer )\n Computes the minimum absolute value of a double-precision floating-point\n strided array.\n","base.strided.dminabs.ndarray":"\nbase.strided.dminabs.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the minimum absolute value of a double-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.dminsorted":"\nbase.strided.dminsorted( N:integer, x:Float64Array, stride:integer )\n Computes the minimum value of a sorted double-precision floating-point\n strided array.\n","base.strided.dminsorted.ndarray":"\nbase.strided.dminsorted.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the minimum value of a sorted double-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.dmskabs":"\nbase.strided.dmskabs( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Computes the absolute value for each element in a double-precision floating-\n point strided array `x` according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`.\n","base.strided.dmskabs.ndarray":"\nbase.strided.dmskabs.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Computes the absolute value for each element in a double-precision floating-\n point strided array `x` according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.dmskabs2":"\nbase.strided.dmskabs2( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Computes the squared absolute value for each element in a double-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a double-precision floating-point\n strided array `y`.\n","base.strided.dmskabs2.ndarray":"\nbase.strided.dmskabs2.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Computes the squared absolute value for each element in a double-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a double-precision floating-point\n strided array `y` using alternative indexing semantics.\n","base.strided.dmskcbrt":"\nbase.strided.dmskcbrt( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Computes the cube root for each element in a double-precision floating-point\n strided array `x` according to a strided mask array and assigns the results\n to elements in a double-precision floating-point strided array `y`.\n","base.strided.dmskcbrt.ndarray":"\nbase.strided.dmskcbrt.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Computes the cube root for each element in a double-precision floating-point\n strided array `x` according to a strided mask array and assigns the results\n to elements in a double-precision floating-point strided array `y` using\n alternative indexing semantics.\n","base.strided.dmskceil":"\nbase.strided.dmskceil( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward positive infinity according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`.\n","base.strided.dmskceil.ndarray":"\nbase.strided.dmskceil.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward positive infinity according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.dmskdeg2rad":"\nbase.strided.dmskdeg2rad( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Converts each element in a double-precision floating-point strided array `x`\n from degrees to radians according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`.\n","base.strided.dmskdeg2rad.ndarray":"\nbase.strided.dmskdeg2rad.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Converts each element in a double-precision floating-point strided array `x`\n from degrees to radians according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.dmskfloor":"\nbase.strided.dmskfloor( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward negative infinity according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`.\n","base.strided.dmskfloor.ndarray":"\nbase.strided.dmskfloor.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward negative infinity according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.dmskinv":"\nbase.strided.dmskinv( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Computes the multiplicative inverse for each element in a double-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a double-precision floating-point strided\n array `y`.\n","base.strided.dmskinv.ndarray":"\nbase.strided.dmskinv.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Computes the multiplicative inverse for each element in a double-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a double-precision floating-point strided\n array `y` using alternative indexing semantics.\n","base.strided.dmskmap":"\nbase.strided.dmskmap( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer, fcn:Function )\n Applies a unary function to a double-precision floating-point strided input\n array according to a strided mask array and assigns results to a double-\n precision floating-point strided output array.\n","base.strided.dmskmap.ndarray":"\nbase.strided.dmskmap.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Uint8Array, sm:integer, om:integer, y:Float64Array, sy:integer, \n oy:integer, fcn:Function )\n Applies a unary function to a double-precision floating-point strided input\n array according to a strided mask array and assigns results to a double-\n precision floating-point strided output array using alternative indexing\n semantics.\n","base.strided.dmskmap2":"\nbase.strided.dmskmap2( N:integer, x:Float64Array, sx:integer, y:Float64Array, \n sy:integer, m:Uint8Array, sm:integer, z:Float64Array, sz:integer, \n fcn:Function )\n Applies a binary function to double-precision floating-point strided input\n arrays according to a strided mask array and assigns results to a double-\n precision floating-point strided output array.\n","base.strided.dmskmap2.ndarray":"\nbase.strided.dmskmap2.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, y:Float64Array, sy:integer, oy:integer, m:Uint8Array, sm:integer, \n om:integer, z:Float64Array, sz:integer, oz:integer, fcn:Function )\n Applies a binary function to double-precision floating-point strided input\n arrays according to a strided mask array and assigns results to a double-\n precision floating-point strided output array using alternative indexing\n semantics.\n","base.strided.dmskmax":"\nbase.strided.dmskmax( N:integer, x:Float64Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the maximum value of a double-precision floating-point strided\n array according to a mask.\n","base.strided.dmskmax.ndarray":"\nbase.strided.dmskmax.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the maximum value of a double-precision floating-point strided\n array according to a mask and using alternative indexing semantics.\n","base.strided.dmskmin":"\nbase.strided.dmskmin( N:integer, x:Float64Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the minimum value of a double-precision floating-point strided\n array according to a mask.\n","base.strided.dmskmin.ndarray":"\nbase.strided.dmskmin.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the minimum value of a double-precision floating-point strided\n array according to a mask and using alternative indexing semantics.\n","base.strided.dmskramp":"\nbase.strided.dmskramp( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Evaluates the ramp function for each element in a double-precision floating-\n point strided array `x` according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`.\n","base.strided.dmskramp.ndarray":"\nbase.strided.dmskramp.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Evaluates the ramp function for each element in a double-precision floating-\n point strided array `x` according to a strided mask array and assigns the\n results to elements in a double-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.dmskrange":"\nbase.strided.dmskrange( N:integer, x:Float64Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the range of a double-precision floating-point strided array\n according to a mask.\n","base.strided.dmskrange.ndarray":"\nbase.strided.dmskrange.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the range of a double-precision floating-point strided array\n according to a mask and using alternative indexing semantics.\n","base.strided.dmskrsqrt":"\nbase.strided.dmskrsqrt( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Computes the reciprocal square root for each element in a double-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a double-precision floating-point strided\n array `y`.\n","base.strided.dmskrsqrt.ndarray":"\nbase.strided.dmskrsqrt.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Computes the reciprocal square root for each element in a double-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a double-precision floating-point strided\n array `y` using alternative indexing semantics.\n","base.strided.dmsksqrt":"\nbase.strided.dmsksqrt( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Computes the principal square root for each element in a double-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a double-precision floating-point strided\n array `y`.\n","base.strided.dmsksqrt.ndarray":"\nbase.strided.dmsksqrt.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Computes the principal square root for each element in a double-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a double-precision floating-point strided\n array `y` using alternative indexing semantics.\n","base.strided.dmsktrunc":"\nbase.strided.dmsktrunc( N:integer, x:Float64Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float64Array, sy:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward zero according to a strided mask array and assigns the results to\n elements in a double-precision floating-point strided array `y`.\n","base.strided.dmsktrunc.ndarray":"\nbase.strided.dmsktrunc.ndarray( N:integer, x:Float64Array, sx:integer, \n ox:integer, m:Float64Array, sm:integer, om:integer, y:Float64Array, \n sy:integer, oy:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward zero according to a strided mask array and assigns the results to\n elements in a double-precision floating-point strided array `y` using\n alternative indexing semantics.\n","base.strided.dnanasum":"\nbase.strided.dnanasum( N:integer, x:Float64Array, stride:integer )\n Computes the sum of absolute values (L1 norm) of double-precision floating-\n point strided array elements, ignoring `NaN` values.\n","base.strided.dnanasum.ndarray":"\nbase.strided.dnanasum.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of absolute values (L1 norm) of double-precision floating-\n point strided array elements, ignoring `NaN` values and using alternative\n indexing semantics.\n","base.strided.dnanasumors":"\nbase.strided.dnanasumors( N:integer, x:Float64Array, stride:integer )\n Computes the sum of absolute values (L1 norm) of double-precision floating-\n point strided array elements, ignoring `NaN` values and using ordinary\n recursive summation.\n","base.strided.dnanasumors.ndarray":"\nbase.strided.dnanasumors.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of absolute values (L1 norm) of double-precision floating-\n point strided array elements, ignoring `NaN` values and using ordinary\n recursive summation alternative indexing semantics.\n","base.strided.dnanmax":"\nbase.strided.dnanmax( N:integer, x:Float64Array, stride:integer )\n Computes the maximum value of a double-precision floating-point strided\n array, ignoring `NaN` values.\n","base.strided.dnanmax.ndarray":"\nbase.strided.dnanmax.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the maximum value of a double-precision floating-point strided\n array, ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.dnanmaxabs":"\nbase.strided.dnanmaxabs( N:integer, x:Float64Array, stride:integer )\n Computes the maximum absolute value of a double-precision floating-point\n strided array, ignoring `NaN` values.\n","base.strided.dnanmaxabs.ndarray":"\nbase.strided.dnanmaxabs.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the maximum absolute value of a double-precision floating-point\n strided array, ignoring `NaN` values and using alternative indexing\n semantics.\n","base.strided.dnanmean":"\nbase.strided.dnanmean( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, ignoring `NaN` values.\n","base.strided.dnanmean.ndarray":"\nbase.strided.dnanmean.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.dnanmeanors":"\nbase.strided.dnanmeanors( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, ignoring `NaN` values and using ordinary recursive summation.\n","base.strided.dnanmeanors.ndarray":"\nbase.strided.dnanmeanors.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, ignoring `NaN` values and using ordinary recursive summation and\n alternative indexing semantics.\n","base.strided.dnanmeanpn":"\nbase.strided.dnanmeanpn( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, ignoring `NaN` values and using a two-pass error correction\n algorithm.\n","base.strided.dnanmeanpn.ndarray":"\nbase.strided.dnanmeanpn.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, ignoring `NaN` values and using a two-pass error correction algorithm\n and alternative indexing semantics.\n","base.strided.dnanmeanpw":"\nbase.strided.dnanmeanpw( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, ignoring `NaN` values and using pairwise summation.\n","base.strided.dnanmeanpw.ndarray":"\nbase.strided.dnanmeanpw.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, ignoring `NaN` values and using pairwise summation and alternative\n indexing semantics.\n","base.strided.dnanmeanwd":"\nbase.strided.dnanmeanwd( N:integer, x:Float64Array, stride:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, using Welford's algorithm and ignoring `NaN` values.\n","base.strided.dnanmeanwd.ndarray":"\nbase.strided.dnanmeanwd.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a double-precision floating-point strided\n array, ignoring `NaN` values and using Welford's algorithm and alternative\n indexing semantics.\n","base.strided.dnanmin":"\nbase.strided.dnanmin( N:integer, x:Float64Array, stride:integer )\n Computes the minimum value of a double-precision floating-point strided\n array, ignoring `NaN` values.\n","base.strided.dnanmin.ndarray":"\nbase.strided.dnanmin.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the minimum value of a double-precision floating-point strided\n array, ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.dnanminabs":"\nbase.strided.dnanminabs( N:integer, x:Float64Array, stride:integer )\n Computes the minimum absolute value of a double-precision floating-point\n strided array, ignoring `NaN` values.\n","base.strided.dnanminabs.ndarray":"\nbase.strided.dnanminabs.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the minimum absolute value of a double-precision floating-point\n strided array, ignoring `NaN` values and using alternative indexing\n semantics.\n","base.strided.dnanmskmax":"\nbase.strided.dnanmskmax( N:integer, x:Float64Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the maximum value of a double-precision floating-point strided\n array according to a mask, ignoring `NaN` values.\n","base.strided.dnanmskmax.ndarray":"\nbase.strided.dnanmskmax.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the maximum value of a double-precision floating-point strided\n array according to a mask, ignoring `NaN` values and using alternative\n indexing semantics.\n","base.strided.dnanmskmin":"\nbase.strided.dnanmskmin( N:integer, x:Float64Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the minimum value of a double-precision floating-point strided\n array according to a mask, ignoring `NaN` values.\n","base.strided.dnanmskmin.ndarray":"\nbase.strided.dnanmskmin.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the minimum value of a double-precision floating-point strided\n array according to a mask, ignoring `NaN` values and using alternative\n indexing semantics.\n","base.strided.dnanmskrange":"\nbase.strided.dnanmskrange( N:integer, x:Float64Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the range of a double-precision floating-point strided array\n according to a mask, ignoring `NaN` values.\n","base.strided.dnanmskrange.ndarray":"\nbase.strided.dnanmskrange.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the range of a double-precision floating-point strided array\n according to a mask, ignoring `NaN` values and using alternative indexing\n semantics.\n","base.strided.dnannsum":"\nbase.strided.dnannsum( N:integer, x:Float64Array, strideX:integer, \n out:Float64Array, strideOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values.\n","base.strided.dnannsum.ndarray":"\nbase.strided.dnannsum.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, out:Float64Array, strideOut:integer, offsetOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.dnannsumkbn":"\nbase.strided.dnannsumkbn( N:integer, x:Float64Array, strideX:integer, \n out:Float64Array, strideOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using an improved Kahan–Babuška algorithm.\n","base.strided.dnannsumkbn.ndarray":"\nbase.strided.dnannsumkbn.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, out:Float64Array, strideOut:integer, offsetOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using an improved Kahan–Babuška algorithm and\n alternative indexing semantics.\n","base.strided.dnannsumkbn2":"\nbase.strided.dnannsumkbn2( N:integer, x:Float64Array, strideX:integer, \n out:Float64Array, strideOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using a second-order iterative Kahan–Babuška\n algorithm.\n","base.strided.dnannsumkbn2.ndarray":"\nbase.strided.dnannsumkbn2.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, out:Float64Array, strideOut:integer, offsetOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using a second-order iterative Kahan–Babuška\n algorithm and alternative indexing semantics.\n","base.strided.dnannsumors":"\nbase.strided.dnannsumors( N:integer, x:Float64Array, strideX:integer, \n out:Float64Array, strideOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation.\n","base.strided.dnannsumors.ndarray":"\nbase.strided.dnannsumors.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, out:Float64Array, strideOut:integer, offsetOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation and alternative\n indexing semantics.\n","base.strided.dnannsumpw":"\nbase.strided.dnannsumpw( N:integer, x:Float64Array, strideX:integer, \n out:Float64Array, strideOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation.\n","base.strided.dnannsumpw.ndarray":"\nbase.strided.dnannsumpw.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, out:Float64Array, strideOut:integer, offsetOut:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation and alternative indexing\n semantics.\n","base.strided.dnanrange":"\nbase.strided.dnanrange( N:integer, x:Float64Array, stride:integer )\n Computes the range of a double-precision floating-point strided array,\n ignoring `NaN` values.\n","base.strided.dnanrange.ndarray":"\nbase.strided.dnanrange.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the range of a double-precision floating-point strided array,\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.dnanstdev":"\nbase.strided.dnanstdev( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values.\n","base.strided.dnanstdev.ndarray":"\nbase.strided.dnanstdev.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.dnanstdevch":"\nbase.strided.dnanstdevch( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using a one-pass trial mean algorithm.\n","base.strided.dnanstdevch.ndarray":"\nbase.strided.dnanstdevch.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using a one-pass trial mean algorithm and\n alternative indexing semantics.\n","base.strided.dnanstdevpn":"\nbase.strided.dnanstdevpn( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using a two-pass algorithm.\n","base.strided.dnanstdevpn.ndarray":"\nbase.strided.dnanstdevpn.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using a two-pass algorithm and alternative\n indexing semantics.\n","base.strided.dnanstdevtk":"\nbase.strided.dnanstdevtk( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using a one-pass textbook algorithm.\n","base.strided.dnanstdevtk.ndarray":"\nbase.strided.dnanstdevtk.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using a one-pass textbook algorithm and\n alternative indexing semantics.\n","base.strided.dnanstdevwd":"\nbase.strided.dnanstdevwd( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using Welford's algorithm.\n","base.strided.dnanstdevwd.ndarray":"\nbase.strided.dnanstdevwd.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using Welford's algorithm and alternative\n indexing semantics.\n","base.strided.dnanstdevyc":"\nbase.strided.dnanstdevyc( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using a one-pass algorithm proposed by\n Youngs and Cramer.\n","base.strided.dnanstdevyc.ndarray":"\nbase.strided.dnanstdevyc.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array ignoring `NaN` values and using a one-pass algorithm proposed by\n Youngs and Cramer and alternative indexing semantics.\n","base.strided.dnansum":"\nbase.strided.dnansum( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values.\n","base.strided.dnansum.ndarray":"\nbase.strided.dnansum.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.dnansumkbn":"\nbase.strided.dnansumkbn( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using an improved Kahan–Babuška algorithm.\n","base.strided.dnansumkbn.ndarray":"\nbase.strided.dnansumkbn.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using an improved Kahan–Babuška algorithm and\n alternative indexing semantics.\n","base.strided.dnansumkbn2":"\nbase.strided.dnansumkbn2( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using a second-order iterative Kahan–Babuška\n algorithm.\n","base.strided.dnansumkbn2.ndarray":"\nbase.strided.dnansumkbn2.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using a second-order iterative Kahan–Babuška\n algorithm and alternative indexing semantics.\n","base.strided.dnansumors":"\nbase.strided.dnansumors( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation.\n","base.strided.dnansumors.ndarray":"\nbase.strided.dnansumors.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation and alternative\n indexing semantics.\n","base.strided.dnansumpw":"\nbase.strided.dnansumpw( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation.\n","base.strided.dnansumpw.ndarray":"\nbase.strided.dnansumpw.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation and alternative indexing\n semantics.\n","base.strided.dnanvariance":"\nbase.strided.dnanvariance( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values.\n","base.strided.dnanvariance.ndarray":"\nbase.strided.dnanvariance.ndarray( N:integer, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.dnanvariancech":"\nbase.strided.dnanvariancech( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass trial mean algorithm.\n","base.strided.dnanvariancech.ndarray":"\nbase.strided.dnanvariancech.ndarray( N:integer, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass trial mean algorithm and\n alternative indexing semantics.\n","base.strided.dnanvariancepn":"\nbase.strided.dnanvariancepn( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a two-pass algorithm.\n","base.strided.dnanvariancepn.ndarray":"\nbase.strided.dnanvariancepn.ndarray( N:integer, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a two-pass algorithm and alternative\n indexing semantics.\n","base.strided.dnanvariancetk":"\nbase.strided.dnanvariancetk( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass textbook algorithm.\n","base.strided.dnanvariancetk.ndarray":"\nbase.strided.dnanvariancetk.ndarray( N:integer, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass textbook algorithm and\n alternative indexing semantics.\n","base.strided.dnanvariancewd":"\nbase.strided.dnanvariancewd( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using Welford's algorithm.\n","base.strided.dnanvariancewd.ndarray":"\nbase.strided.dnanvariancewd.ndarray( N:integer, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using Welford's algorithm and alternative indexing\n semantics.\n","base.strided.dnanvarianceyc":"\nbase.strided.dnanvarianceyc( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and\n Cramer.\n","base.strided.dnanvarianceyc.ndarray":"\nbase.strided.dnanvarianceyc.ndarray( N:integer, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and\n Cramer and alternative indexing semantics.\n","base.strided.dnrm2":"\nbase.strided.dnrm2( N:integer, x:Float64Array, stride:integer )\n Computes the L2-norm of a double-precision floating-point vector.\n","base.strided.dnrm2.ndarray":"\nbase.strided.dnrm2.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the L2-norm of a double-precision floating-point vector using\n alternative indexing semantics.\n","base.strided.dramp":"\nbase.strided.dramp( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Evaluates the ramp function for each element in a double-precision floating-\n point strided array `x` and assigns the results to elements in a double-\n precision floating-point strided array `y`.\n","base.strided.dramp.ndarray":"\nbase.strided.dramp.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Evaluates the ramp function for each element in a double-precision floating-\n point strided array `x` and assigns the results to elements in a double-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.drange":"\nbase.strided.drange( N:integer, x:Float64Array, stride:integer )\n Computes the range of a double-precision floating-point strided array.\n","base.strided.drange.ndarray":"\nbase.strided.drange.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the range of a double-precision floating-point strided array using\n alternative indexing semantics.\n","base.strided.drev":"\nbase.strided.drev( N:integer, x:Float64Array, stride:integer )\n Reverses a double-precision floating-point strided array in-place.\n","base.strided.drev.ndarray":"\nbase.strided.drev.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Reverses a double-precision floating-point strided array in-place using\n alternative indexing semantics.\n","base.strided.drsqrt":"\nbase.strided.drsqrt( N:integer, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Computes the reciprocal square root for each element in a double-precision\n floating-point strided array `x` and assigns the results to elements in a\n double-precision floating-point strided array `y`.\n","base.strided.drsqrt.ndarray":"\nbase.strided.drsqrt.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the reciprocal square root for each element in a double-precision\n floating-point strided array `x` and assigns the results to elements in a\n double-precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.dsapxsum":"\nbase.strided.dsapxsum( N:integer, alpha:number, x:Float32Array, stride:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using extended accumulation and returning an\n extended precision result.\n","base.strided.dsapxsum.ndarray":"\nbase.strided.dsapxsum.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using extended accumulation and alternative\n indexing semantics and returning an extended precision result.\n","base.strided.dsapxsumpw":"\nbase.strided.dsapxsumpw( N:integer, alpha:number, x:Float32Array, \n stride:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using pairwise summation with extended\n accumulation and returning an extended precision result.\n","base.strided.dsapxsumpw.ndarray":"\nbase.strided.dsapxsumpw.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using pairwise summation with extended\n accumulation and alternative indexing semantics and returning an extended\n precision result.\n","base.strided.dscal":"\nbase.strided.dscal( N:integer, alpha:number, x:Float64Array, stride:integer )\n Multiplies a double-precision floating-point vector `x` by a constant\n `alpha`.\n","base.strided.dscal.ndarray":"\nbase.strided.dscal.ndarray( N:integer, alpha:number, x:Float64Array, \n stride:integer, offset:integer )\n Multiplies a double-precision floating-point vector `x` by a constant\n `alpha` using alternative indexing semantics.\n","base.strided.dsdot":"\nbase.strided.dsdot( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Computes the dot product of two single-precision floating-point vectors with\n extended accumulation and result.\n","base.strided.dsdot.ndarray":"\nbase.strided.dsdot.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the dot product of two single-precision floating-point vectors\n using alternative indexing semantics and with extended accumulation and\n result.\n","base.strided.dsem":"\nbase.strided.dsem( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array.\n","base.strided.dsem.ndarray":"\nbase.strided.dsem.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using alternative indexing semantics.\n","base.strided.dsemch":"\nbase.strided.dsemch( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using a one-pass trial mean algorithm.\n","base.strided.dsemch.ndarray":"\nbase.strided.dsemch.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using a one-pass trial mean algorithm and alternative\n indexing semantics.\n","base.strided.dsempn":"\nbase.strided.dsempn( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using a two-pass algorithm.\n","base.strided.dsempn.ndarray":"\nbase.strided.dsempn.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using a two-pass algorithm and alternative indexing\n semantics.\n","base.strided.dsemtk":"\nbase.strided.dsemtk( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using a one-pass textbook algorithm.\n","base.strided.dsemtk.ndarray":"\nbase.strided.dsemtk.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using a one-pass textbook algorithm and alternative\n indexing semantics.\n","base.strided.dsemwd":"\nbase.strided.dsemwd( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using Welford's algorithm.\n","base.strided.dsemwd.ndarray":"\nbase.strided.dsemwd.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using Welford's algorithm and alternative indexing\n semantics.\n","base.strided.dsemyc":"\nbase.strided.dsemyc( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using a one-pass algorithm proposed by Youngs and\n Cramer.\n","base.strided.dsemyc.ndarray":"\nbase.strided.dsemyc.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard error of the mean for a double-precision floating-\n point strided array using a one-pass algorithm proposed by Youngs and Cramer\n and alternative indexing semantics.\n","base.strided.dsmean":"\nbase.strided.dsmean( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using extended accumulation and returning an extended precision\n result.\n","base.strided.dsmean.ndarray":"\nbase.strided.dsmean.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using extended accumulation and alternative indexing semantics and\n returning an extended precision result.\n","base.strided.dsmeanors":"\nbase.strided.dsmeanors( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using ordinary recursive summation with extended accumulation and\n returning an extended precision result.\n","base.strided.dsmeanors.ndarray":"\nbase.strided.dsmeanors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using ordinary recursive summation with extended accumulation and\n alternative indexing semantics and returning an extended precision result.\n","base.strided.dsmeanpn":"\nbase.strided.dsmeanpn( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a two-pass error correction algorithm with extended accumulation\n and returning an extended precision result.\n","base.strided.dsmeanpn.ndarray":"\nbase.strided.dsmeanpn.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a two-pass error correction algorithm with extended accumulation\n and alternative indexing semantics and returning an extended precision\n result.\n","base.strided.dsmeanpw":"\nbase.strided.dsmeanpw( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using pairwise summation with extended accumulation and returning an\n extended precision result.\n","base.strided.dsmeanpw.ndarray":"\nbase.strided.dsmeanpw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using pairwise summation with extended accumulation and alternative\n indexing semantics and returning an extended precision result.\n","base.strided.dsmeanwd":"\nbase.strided.dsmeanwd( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using Welford's algorithm with extended accumulation and returning an\n extended precision result.\n","base.strided.dsmeanwd.ndarray":"\nbase.strided.dsmeanwd.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using Welford's algorithm with extended accumulation and alternative\n indexing semantics and returning an extended precision result.\n","base.strided.dsnanmean":"\nbase.strided.dsnanmean( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values, using extended accumulation, and returning an\n extended precision result.\n","base.strided.dsnanmean.ndarray":"\nbase.strided.dsnanmean.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using extended accumulation and alternative\n indexing semantics.\n","base.strided.dsnanmeanors":"\nbase.strided.dsnanmeanors( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values, using ordinary recursive summation with\n extended accumulation, and returning an extended precision result.\n","base.strided.dsnanmeanors.ndarray":"\nbase.strided.dsnanmeanors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using ordinary recursive summation with\n extended accumulation and alternative indexing semantics.\n","base.strided.dsnanmeanpn":"\nbase.strided.dsnanmeanpn( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values, using a two-pass error correction algorithm\n with extended accumulation, and returning an extended precision result.\n","base.strided.dsnanmeanpn.ndarray":"\nbase.strided.dsnanmeanpn.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using a two-pass error correction algorithm\n with extended accumulation and alternative indexing semantics.\n","base.strided.dsnanmeanwd":"\nbase.strided.dsnanmeanwd( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values, using Welford's algorithm with extended\n accumulation, and returning an extended precision result.\n","base.strided.dsnanmeanwd.ndarray":"\nbase.strided.dsnanmeanwd.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using Welford's algorithm with extended\n accumulation and alternative indexing semantics.\n","base.strided.dsnannsumors":"\nbase.strided.dsnannsumors( N:integer, x:Float32Array, strideX:integer, \n out:Float64Array, strideOut:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values, using ordinary recursive summation with extended\n accumulation, and returning an extended precision result.\n","base.strided.dsnannsumors.ndarray":"\nbase.strided.dsnannsumors.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, out:Float64Array, strideOut:integer, offsetOut:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation with extended\n accumulation and alternative indexing semantics.\n","base.strided.dsnansum":"\nbase.strided.dsnansum( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values, using extended accumulation, and returning an\n extended precision result.\n","base.strided.dsnansum.ndarray":"\nbase.strided.dsnansum.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using extended accumulation and alternative\n indexing semantics.\n","base.strided.dsnansumors":"\nbase.strided.dsnansumors( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values, using ordinary recursive summation with extended\n accumulation, and returning an extended precision result.\n","base.strided.dsnansumors.ndarray":"\nbase.strided.dsnansumors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation with extended\n accumulation and alternative indexing semantics.\n","base.strided.dsnansumpw":"\nbase.strided.dsnansumpw( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values, using pairwise summation with extended accumulation,\n and returning an extended precision result.\n","base.strided.dsnansumpw.ndarray":"\nbase.strided.dsnansumpw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation with extended\n accumulation and alternative indexing semantics.\n","base.strided.dsort2hp":"\nbase.strided.dsort2hp( N:integer, order:number, x:Float64Array, \n strideX:integer, y:Float64Array, strideY:integer )\n Simultaneously sorts two double-precision floating-point strided arrays\n based on the sort order of the first array using heapsort.\n","base.strided.dsort2hp.ndarray":"\nbase.strided.dsort2hp.ndarray( N:integer, order:number, x:Float64Array, \n strideX:integer, offsetX:integer, y:Float64Array, strideY:integer, \n offsetY:integer )\n Simultaneously sorts two double-precision floating-point strided arrays\n based on the sort order of the first array using heapsort and alternative\n indexing semantics.\n","base.strided.dsort2ins":"\nbase.strided.dsort2ins( N:integer, order:number, x:Float64Array, \n strideX:integer, y:Float64Array, strideY:integer )\n Simultaneously sorts two double-precision floating-point strided arrays\n based on the sort order of the first array using insertion sort.\n","base.strided.dsort2ins.ndarray":"\nbase.strided.dsort2ins.ndarray( N:integer, order:number, x:Float64Array, \n strideX:integer, offsetX:integer, y:Float64Array, strideY:integer, \n offsetY:integer )\n Simultaneously sorts two double-precision floating-point strided arrays\n based on the sort order of the first array using insertion sort and\n alternative indexing semantics.\n","base.strided.dsort2sh":"\nbase.strided.dsort2sh( N:integer, order:number, x:Float64Array, \n strideX:integer, y:Float64Array, strideY:integer )\n Simultaneously sorts two double-precision floating-point strided arrays\n based on the sort order of the first array using Shellsort.\n","base.strided.dsort2sh.ndarray":"\nbase.strided.dsort2sh.ndarray( N:integer, order:number, x:Float64Array, \n strideX:integer, offsetX:integer, y:Float64Array, strideY:integer, \n offsetY:integer )\n Simultaneously sorts two double-precision floating-point strided arrays\n based on the sort order of the first array using Shellsort and alternative\n indexing semantics.\n","base.strided.dsorthp":"\nbase.strided.dsorthp( N:integer, order:number, x:Float64Array, stride:integer )\n Sorts a double-precision floating-point strided array using heapsort.\n","base.strided.dsorthp.ndarray":"\nbase.strided.dsorthp.ndarray( N:integer, order:number, x:Float64Array, \n stride:integer, offset:integer )\n Sorts a double-precision floating-point strided array using heapsort and\n alternative indexing semantics.\n","base.strided.dsortins":"\nbase.strided.dsortins( N:integer, order:number, x:Float64Array, stride:integer )\n Sorts a double-precision floating-point strided array using insertion sort.\n","base.strided.dsortins.ndarray":"\nbase.strided.dsortins.ndarray( N:integer, order:number, x:Float64Array, \n stride:integer, offset:integer )\n Sorts a double-precision floating-point strided array using insertion sort\n and alternative indexing semantics.\n","base.strided.dsortsh":"\nbase.strided.dsortsh( N:integer, order:number, x:Float64Array, stride:integer )\n Sorts a double-precision floating-point strided array using Shellsort.\n","base.strided.dsortsh.ndarray":"\nbase.strided.dsortsh.ndarray( N:integer, order:number, x:Float64Array, \n stride:integer, offset:integer )\n Sorts a double-precision floating-point strided array using Shellsort and\n alternative indexing semantics.\n","base.strided.dsqrt":"\nbase.strided.dsqrt( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Computes the principal square root for each element in a double-precision\n floating-point strided array `x` and assigns the results to elements in a\n double-precision floating-point strided array `y`.\n","base.strided.dsqrt.ndarray":"\nbase.strided.dsqrt.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Computes the principal square root for each element in a double-precision\n floating-point strided array `x` and assigns the results to elements in a\n double-precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.dssum":"\nbase.strided.dssum( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements\n using extended accumulation and returning an extended precision result.\n","base.strided.dssum.ndarray":"\nbase.strided.dssum.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using extended accumulation and alternative indexing semantics and returning\n an extended precision result.\n","base.strided.dssumors":"\nbase.strided.dssumors( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements\n using ordinary recursive summation with extended accumulation and returning\n an extended precision result.\n","base.strided.dssumors.ndarray":"\nbase.strided.dssumors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using ordinary recursive summation with extended accumulation and\n alternative indexing semantics and returning an extended precision result.\n","base.strided.dssumpw":"\nbase.strided.dssumpw( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements\n using pairwise summation with extended accumulation and returning an\n extended precision result.\n","base.strided.dssumpw.ndarray":"\nbase.strided.dssumpw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using pairwise summation with extended accumulation and alternative indexing\n semantics and returning an extended precision result.\n","base.strided.dstdev":"\nbase.strided.dstdev( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array.\n","base.strided.dstdev.ndarray":"\nbase.strided.dstdev.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.dstdevch":"\nbase.strided.dstdevch( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using a one-pass trial mean algorithm.\n","base.strided.dstdevch.ndarray":"\nbase.strided.dstdevch.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using a one-pass trial mean algorithm and alternative indexing\n semantics.\n","base.strided.dstdevpn":"\nbase.strided.dstdevpn( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using a two-pass algorithm.\n","base.strided.dstdevpn.ndarray":"\nbase.strided.dstdevpn.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using a two-pass algorithm and alternative indexing semantics.\n","base.strided.dstdevtk":"\nbase.strided.dstdevtk( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using a one-pass textbook algorithm.\n","base.strided.dstdevtk.ndarray":"\nbase.strided.dstdevtk.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using a one-pass textbook algorithm and alternative indexing\n semantics.\n","base.strided.dstdevwd":"\nbase.strided.dstdevwd( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using Welford's algorithm.\n","base.strided.dstdevwd.ndarray":"\nbase.strided.dstdevwd.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using Welford's algorithm and alternative indexing semantics.\n","base.strided.dstdevyc":"\nbase.strided.dstdevyc( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using a one-pass algorithm proposed by Youngs and Cramer.\n","base.strided.dstdevyc.ndarray":"\nbase.strided.dstdevyc.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a double-precision floating-point strided\n array using a one-pass algorithm proposed by Youngs and Cramer and\n alternative indexing semantics.\n","base.strided.dsum":"\nbase.strided.dsum( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements.\n","base.strided.dsum.ndarray":"\nbase.strided.dsum.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements\n using alternative indexing semantics.\n","base.strided.dsumkbn":"\nbase.strided.dsumkbn( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements\n using an improved Kahan–Babuška algorithm.\n","base.strided.dsumkbn.ndarray":"\nbase.strided.dsumkbn.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements\n using an improved Kahan–Babuška algorithm and alternative indexing\n semantics.\n","base.strided.dsumkbn2":"\nbase.strided.dsumkbn2( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements\n using a second-order iterative Kahan–Babuška algorithm.\n","base.strided.dsumkbn2.ndarray":"\nbase.strided.dsumkbn2.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements\n using a second-order iterative Kahan–Babuška algorithm and alternative\n indexing semantics.\n","base.strided.dsumors":"\nbase.strided.dsumors( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements\n using ordinary recursive summation.\n","base.strided.dsumors.ndarray":"\nbase.strided.dsumors.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements\n using ordinary recursive summation and alternative indexing semantics.\n","base.strided.dsumpw":"\nbase.strided.dsumpw( N:integer, x:Float64Array, stride:integer )\n Computes the sum of double-precision floating-point strided array elements\n using pairwise summation.\n","base.strided.dsumpw.ndarray":"\nbase.strided.dsumpw.ndarray( N:integer, x:Float64Array, stride:integer, \n offset:integer )\n Computes the sum of double-precision floating-point strided array elements\n using pairwise summation and alternative indexing semantics.\n","base.strided.dsvariance":"\nbase.strided.dsvariance( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n using extended accumulation and returning an extended precision result.\n","base.strided.dsvariance.ndarray":"\nbase.strided.dsvariance.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n using extended accumulation and alternative indexing semantics and\n returning an extended precision result.\n","base.strided.dsvariancepn":"\nbase.strided.dsvariancepn( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n using a two-pass algorithm with extended accumulation and returning an\n extended precision result.\n","base.strided.dsvariancepn.ndarray":"\nbase.strided.dsvariancepn.ndarray( N:integer, correction:number, \n x:Float32Array, stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n using a two-pass algorithm with extended accumulation and alternative\n indexing semantics and returning an extended precision result.\n","base.strided.dswap":"\nbase.strided.dswap( N:integer, x:Float64Array, strideX:integer, y:Float64Array, \n strideY:integer )\n Interchanges two double-precision floating-point vectors.\n","base.strided.dswap.ndarray":"\nbase.strided.dswap.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Interchanges two double-precision floating-point vectors using alternative\n indexing semantics.\n","base.strided.dtrunc":"\nbase.strided.dtrunc( N:integer, x:Float64Array, strideX:integer, \n y:Float64Array, strideY:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward zero and assigns the results to elements in a double-precision\n floating-point strided array `y`.\n","base.strided.dtrunc.ndarray":"\nbase.strided.dtrunc.ndarray( N:integer, x:Float64Array, strideX:integer, \n offsetX:integer, y:Float64Array, strideY:integer, offsetY:integer )\n Rounds each element in a double-precision floating-point strided array `x`\n toward zero and assigns the results to elements in a double-precision\n floating-point strided array `y` using alternative indexing semantics.\n","base.strided.dvariance":"\nbase.strided.dvariance( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array.\n","base.strided.dvariance.ndarray":"\nbase.strided.dvariance.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n using alternative indexing semantics.\n","base.strided.dvariancech":"\nbase.strided.dvariancech( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n using a one-pass trial mean algorithm.\n","base.strided.dvariancech.ndarray":"\nbase.strided.dvariancech.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n using a one-pass trial mean algorithm and alternative indexing semantics.\n","base.strided.dvariancepn":"\nbase.strided.dvariancepn( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n using a two-pass algorithm.\n","base.strided.dvariancepn.ndarray":"\nbase.strided.dvariancepn.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n using a two-pass algorithm and alternative indexing semantics.\n","base.strided.dvariancetk":"\nbase.strided.dvariancetk( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n using a one-pass textbook algorithm.\n","base.strided.dvariancetk.ndarray":"\nbase.strided.dvariancetk.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n using a one-pass textbook algorithm and alternative indexing semantics.\n","base.strided.dvariancewd":"\nbase.strided.dvariancewd( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n using Welford's algorithm.\n","base.strided.dvariancewd.ndarray":"\nbase.strided.dvariancewd.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n using Welford's algorithm and alternative indexing semantics.\n","base.strided.dvarianceyc":"\nbase.strided.dvarianceyc( N:integer, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n using a one-pass algorithm proposed by Youngs and Cramer.\n","base.strided.dvarianceyc.ndarray":"\nbase.strided.dvarianceyc.ndarray( N:integer, correction:number, x:Float64Array, \n stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n using a one-pass algorithm proposed by Youngs and Cramer and alternative\n indexing semantics.\n","base.strided.dvarm":"\nbase.strided.dvarm( N:integer, mean:number, correction:number, x:Float64Array, \n stride:integer )\n Computes the variance of a double-precision floating-point strided array\n provided a known mean.\n","base.strided.dvarm.ndarray":"\nbase.strided.dvarm.ndarray( N:integer, mean:number, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n provided a known mean and using alternative indexing semantics.\n","base.strided.dvarmpn":"\nbase.strided.dvarmpn( N:integer, mean:number, correction:number, \n x:Float64Array, stride:integer )\n Computes the variance of a double-precision floating-point strided array\n provided a known mean and using Neely's correction algorithm.\n","base.strided.dvarmpn.ndarray":"\nbase.strided.dvarmpn.ndarray( N:integer, mean:number, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n provided a known mean and using Neely's correction algorithm and alternative\n indexing semantics.\n","base.strided.dvarmtk":"\nbase.strided.dvarmtk( N:integer, mean:number, correction:number, \n x:Float64Array, stride:integer )\n Computes the variance of a double-precision floating-point strided array\n provided a known mean and using a one-pass textbook algorithm.\n","base.strided.dvarmtk.ndarray":"\nbase.strided.dvarmtk.ndarray( N:integer, mean:number, correction:number, \n x:Float64Array, stride:integer, offset:integer )\n Computes the variance of a double-precision floating-point strided array\n provided a known mean and using a one-pass textbook algorithm and\n alternative indexing semantics.\n","base.strided.gapx":"\nbase.strided.gapx( N:integer, alpha:number, x:Array|TypedArray, stride:integer )\n Adds a constant to each element in a strided array.\n","base.strided.gapx.ndarray":"\nbase.strided.gapx.ndarray( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Adds a constant to each element in a strided array using alternative\n indexing semantics.\n","base.strided.gapxsum":"\nbase.strided.gapxsum( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer )\n Adds a constant to each strided array element and computes the sum.\n","base.strided.gapxsum.ndarray":"\nbase.strided.gapxsum.ndarray( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Adds a constant to each strided array element and computes the sum using\n alternative indexing semantics.\n","base.strided.gapxsumkbn":"\nbase.strided.gapxsumkbn( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer )\n Adds a constant to each strided array element and computes the sum using an\n improved Kahan–Babuška algorithm.\n","base.strided.gapxsumkbn.ndarray":"\nbase.strided.gapxsumkbn.ndarray( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Adds a constant to each strided array element and computes the sum using an\n improved Kahan–Babuška algorithm and alternative indexing semantics.\n","base.strided.gapxsumkbn2":"\nbase.strided.gapxsumkbn2( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer )\n Adds a constant to each strided array element and computes the sum using a\n second-order iterative Kahan–Babuška algorithm.\n","base.strided.gapxsumkbn2.ndarray":"\nbase.strided.gapxsumkbn2.ndarray( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Adds a constant to each strided array element and computes the sum using a\n second-order iterative Kahan–Babuška algorithm and alternative indexing\n semantics.\n","base.strided.gapxsumors":"\nbase.strided.gapxsumors( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer )\n Adds a constant to each strided array element and computes the sum using\n ordinary recursive summation.\n","base.strided.gapxsumors.ndarray":"\nbase.strided.gapxsumors.ndarray( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Adds a constant to each strided array element and computes the sum using\n ordinary recursive summation and alternative indexing semantics.\n","base.strided.gapxsumpw":"\nbase.strided.gapxsumpw( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer )\n Adds a constant to each strided array element and computes the sum using\n pairwise summation.\n","base.strided.gapxsumpw.ndarray":"\nbase.strided.gapxsumpw.ndarray( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Adds a constant to each strided array element and computes the sum using\n pairwise summation and alternative indexing semantics.\n","base.strided.gasum":"\nbase.strided.gasum( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of the absolute values.\n","base.strided.gasum.ndarray":"\nbase.strided.gasum.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of absolute values using alternative indexing semantics.\n","base.strided.gasumpw":"\nbase.strided.gasumpw( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of absolute values (L1 norm) of strided array elements\n using pairwise summation.\n","base.strided.gasumpw.ndarray":"\nbase.strided.gasumpw.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of absolute values (L1 norm) of strided array elements\n using pairwise summation and alternative indexing semantics.\n","base.strided.gaxpy":"\nbase.strided.gaxpy( N:integer, alpha:number, x:Array|TypedArray, \n strideX:integer, y:Array|TypedArray, strideY:integer )\n Multiplies `x` by a constant `alpha` and adds the result to `y`.\n","base.strided.gaxpy.ndarray":"\nbase.strided.gaxpy.ndarray( N:integer, alpha:number, x:Array|TypedArray, \n strideX:integer, offsetX:integer, y:Array|TypedArray, strideY:integer, \n offsetY:integer )\n Multiplies `x` by a constant `alpha` and adds the result to `y`, with\n alternative indexing semantics.\n","base.strided.gcopy":"\nbase.strided.gcopy( N:integer, x:ArrayLikeObject, strideX:integer, \n y:ArrayLikeObject, strideY:integer )\n Copies values from `x` into `y`.\n","base.strided.gcopy.ndarray":"\nbase.strided.gcopy.ndarray( N:integer, x:ArrayLikeObject, strideX:integer, \n offsetX:integer, y:ArrayLikeObject, strideY:integer, offsetY:integer )\n Copies values from `x` into `y` using alternative indexing semantics.\n","base.strided.gcusum":"\nbase.strided.gcusum( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, y:Array|TypedArray, strideY:integer )\n Computes the cumulative sum of strided array elements.\n","base.strided.gcusum.ndarray":"\nbase.strided.gcusum.ndarray( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, offsetX:integer, y:Array|TypedArray, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of strided array elements using alternative\n indexing semantics.\n","base.strided.gcusumkbn":"\nbase.strided.gcusumkbn( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, y:Array|TypedArray, strideY:integer )\n Computes the cumulative sum of strided array elements using an improved\n Kahan–Babuška algorithm.\n","base.strided.gcusumkbn.ndarray":"\nbase.strided.gcusumkbn.ndarray( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, offsetX:integer, y:Array|TypedArray, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of strided array elements using an improved\n Kahan–Babuška algorithm and alternative indexing semantics.\n","base.strided.gcusumkbn2":"\nbase.strided.gcusumkbn2( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, y:Array|TypedArray, strideY:integer )\n Computes the cumulative sum of strided array elements using a second-order\n iterative Kahan–Babuška algorithm.\n","base.strided.gcusumkbn2.ndarray":"\nbase.strided.gcusumkbn2.ndarray( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, offsetX:integer, y:Array|TypedArray, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of strided array elements using a second-order\n iterative Kahan–Babuška algorithm and alternative indexing semantics.\n","base.strided.gcusumors":"\nbase.strided.gcusumors( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, y:Array|TypedArray, strideY:integer )\n Computes the cumulative sum of strided array elements using ordinary\n recursive summation.\n","base.strided.gcusumors.ndarray":"\nbase.strided.gcusumors.ndarray( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, offsetX:integer, y:Array|TypedArray, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of strided array elements using ordinary\n recursive summation and alternative indexing semantics.\n","base.strided.gcusumpw":"\nbase.strided.gcusumpw( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, y:Array|TypedArray, strideY:integer )\n Computes the cumulative sum of strided array elements using pairwise\n summation.\n","base.strided.gcusumpw.ndarray":"\nbase.strided.gcusumpw.ndarray( N:integer, sum:number, x:Array|TypedArray, \n strideX:integer, offsetX:integer, y:Array|TypedArray, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of strided array elements using pairwise\n summation and alternative indexing semantics.\n","base.strided.gdot":"\nbase.strided.gdot( N:integer, x:Array|TypedArray, strideX:integer, \n y:Array|TypedArray, strideY:integer )\n Computes the dot product of two vectors.\n","base.strided.gdot.ndarray":"\nbase.strided.gdot.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, y:Array|TypedArray, strideY:integer, offsetY:integer )\n Computes the dot product of two vectors using alternative indexing\n semantics.\n","base.strided.gfill":"\nbase.strided.gfill( N:integer, alpha:any, x:ArrayLikeObject, stride:integer )\n Fills a strided array with a specified scalar value.\n","base.strided.gfill.ndarray":"\nbase.strided.gfill.ndarray( N:integer, alpha:any, x:ArrayLikeObject, \n stride:integer, offset:integer )\n Fills a strided array with a specified scalar value using alternative\n indexing semantics.\n","base.strided.gfillBy":"\nbase.strided.gfillBy( N:integer, x:ArrayLikeObject, stride:integer, \n clbk:Function[, thisArg:any] )\n Fills a strided array according to a provided callback function.\n","base.strided.gfillBy.ndarray":"\nbase.strided.gfillBy.ndarray( N:integer, x:ArrayLikeObject, stride:integer, \n offset:integer, clbk:Function[, thisArg:any] )\n Fills a strided array according to a provided callback function and using\n alternative indexing semantics.\n","base.strided.gnannsumkbn":"\nbase.strided.gnannsumkbn( N:integer, x:Array|TypedArray, strideX:integer, \n out:Array|TypedArray, strideOut:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n an improved Kahan–Babuška algorithm.\n","base.strided.gnannsumkbn.ndarray":"\nbase.strided.gnannsumkbn.ndarray( N:integer, x:Array|TypedArray, \n strideX:integer, offsetX:integer, out:Array|TypedArray, strideOut:integer, \n offsetOut:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n an improved Kahan–Babuška algorithm and alternative indexing semantics.\n","base.strided.gnansum":"\nbase.strided.gnansum( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements, ignoring `NaN` values.\n","base.strided.gnansum.ndarray":"\nbase.strided.gnansum.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n alternative indexing semantics.\n","base.strided.gnansumkbn":"\nbase.strided.gnansumkbn( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n an improved Kahan–Babuška algorithm.\n","base.strided.gnansumkbn.ndarray":"\nbase.strided.gnansumkbn.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n an improved Kahan–Babuška algorithm and alternative indexing semantics.\n","base.strided.gnansumkbn2":"\nbase.strided.gnansumkbn2( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n a second-order iterative Kahan–Babuška algorithm.\n","base.strided.gnansumkbn2.ndarray":"\nbase.strided.gnansumkbn2.ndarray( N:integer, x:Array|TypedArray, \n stride:integer, offset:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n a second-order iterative Kahan–Babuška algorithm and alternative indexing\n semantics.\n","base.strided.gnansumors":"\nbase.strided.gnansumors( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n ordinary recursive summation.\n","base.strided.gnansumors.ndarray":"\nbase.strided.gnansumors.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n ordinary recursive summation and alternative indexing semantics.\n","base.strided.gnansumpw":"\nbase.strided.gnansumpw( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and\n pairwise summation.\n","base.strided.gnansumpw.ndarray":"\nbase.strided.gnansumpw.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of strided array elements, ignoring `NaN` values and using\n pairwise summation and alternative indexing semantics.\n","base.strided.gnrm2":"\nbase.strided.gnrm2( N:integer, x:Array|TypedArray, stride:integer )\n Computes the L2-norm of a vector.\n","base.strided.gnrm2.ndarray":"\nbase.strided.gnrm2.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the L2-norm of a vector using alternative indexing semantics.\n","base.strided.grev":"\nbase.strided.grev( N:integer, x:ArrayLikeObject, stride:integer )\n Reverses a strided array in-place.\n","base.strided.grev.ndarray":"\nbase.strided.grev.ndarray( N:integer, x:ArrayLikeObject, stride:integer, \n offset:integer )\n Reverses a strided array in-place using alternative indexing semantics.\n","base.strided.gscal":"\nbase.strided.gscal( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer )\n Multiplies a vector `x` by a constant `alpha`.\n","base.strided.gscal.ndarray":"\nbase.strided.gscal.ndarray( N:integer, alpha:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Multiplies `x` by a constant `alpha` using alternative indexing semantics.\n","base.strided.gsort2hp":"\nbase.strided.gsort2hp( N:integer, order:number, x:Array|TypedArray, \n strideX:integer, y:Array|TypedArray, strideY:integer )\n Simultaneously sorts two strided arrays based on the sort order of the first\n array using heapsort.\n","base.strided.gsort2hp.ndarray":"\nbase.strided.gsort2hp.ndarray( N:integer, order:number, x:Array|TypedArray, \n strideX:integer, offsetX:integer, y:Array|TypedArray, strideY:integer, \n offsetY:integer )\n Simultaneously sorts two strided arrays based on the sort order of the first\n array using heapsort and alternative indexing semantics.\n","base.strided.gsort2ins":"\nbase.strided.gsort2ins( N:integer, order:number, x:Array|TypedArray, \n strideX:integer, y:Array|TypedArray, strideY:integer )\n Simultaneously sorts two strided arrays based on the sort order of the first\n array using insertion sort.\n","base.strided.gsort2ins.ndarray":"\nbase.strided.gsort2ins.ndarray( N:integer, order:number, x:Array|TypedArray, \n strideX:integer, offsetX:integer, y:Array|TypedArray, strideY:integer, \n offsetY:integer )\n Simultaneously sorts two strided arrays based on the sort order of the first\n array using insertion sort and alternative indexing semantics.\n","base.strided.gsort2sh":"\nbase.strided.gsort2sh( N:integer, order:number, x:Array|TypedArray, \n strideX:integer, y:Array|TypedArray, strideY:integer )\n Simultaneously sorts two strided arrays based on the sort order of the first\n array using Shellsort.\n","base.strided.gsort2sh.ndarray":"\nbase.strided.gsort2sh.ndarray( N:integer, order:number, x:Array|TypedArray, \n strideX:integer, offsetX:integer, y:Array|TypedArray, strideY:integer, \n offsetY:integer )\n Simultaneously sorts two strided arrays based on the sort order of the first\n array using Shellsort and alternative indexing semantics.\n","base.strided.gsorthp":"\nbase.strided.gsorthp( N:integer, order:number, x:Array|TypedArray, \n stride:integer )\n Sorts a strided array using heapsort.\n","base.strided.gsorthp.ndarray":"\nbase.strided.gsorthp.ndarray( N:integer, order:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Sorts a strided array using heapsort and alternative indexing semantics.\n","base.strided.gsortins":"\nbase.strided.gsortins( N:integer, order:number, x:Array|TypedArray, \n stride:integer )\n Sorts a strided array using insertion sort.\n","base.strided.gsortins.ndarray":"\nbase.strided.gsortins.ndarray( N:integer, order:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Sorts a strided array using insertion sort and alternative indexing\n semantics.\n","base.strided.gsortsh":"\nbase.strided.gsortsh( N:integer, order:number, x:Array|TypedArray, \n stride:integer )\n Sorts a strided array using Shellsort.\n","base.strided.gsortsh.ndarray":"\nbase.strided.gsortsh.ndarray( N:integer, order:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Sorts a strided array using Shellsort and alternative indexing semantics.\n","base.strided.gsum":"\nbase.strided.gsum( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements.\n","base.strided.gsum.ndarray":"\nbase.strided.gsum.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of strided array elements using alternative indexing\n semantics.\n","base.strided.gsumkbn":"\nbase.strided.gsumkbn( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements using an improved Kahan–Babuška\n algorithm.\n","base.strided.gsumkbn.ndarray":"\nbase.strided.gsumkbn.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of strided array elements using an improved Kahan–Babuška\n algorithm and alternative indexing semantics.\n","base.strided.gsumkbn2":"\nbase.strided.gsumkbn2( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements using a second-order iterative\n Kahan–Babuška algorithm.\n","base.strided.gsumkbn2.ndarray":"\nbase.strided.gsumkbn2.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of strided array elements using a second-order iterative\n Kahan–Babuška algorithm and alternative indexing semantics.\n","base.strided.gsumors":"\nbase.strided.gsumors( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements using ordinary recursive\n summation.\n","base.strided.gsumors.ndarray":"\nbase.strided.gsumors.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of strided array elements using ordinary recursive\n summation and alternative indexing semantics.\n","base.strided.gsumpw":"\nbase.strided.gsumpw( N:integer, x:Array|TypedArray, stride:integer )\n Computes the sum of strided array elements using pairwise summation.\n","base.strided.gsumpw.ndarray":"\nbase.strided.gsumpw.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the sum of strided array elements using pairwise summation and\n alternative indexing semantics.\n","base.strided.gswap":"\nbase.strided.gswap( N:integer, x:ArrayLikeObject, strideX:integer, \n y:ArrayLikeObject, strideY:integer )\n Interchanges vectors `x` and `y`.\n","base.strided.gswap.ndarray":"\nbase.strided.gswap.ndarray( N:integer, x:ArrayLikeObject, strideX:integer, \n offsetX:integer, y:ArrayLikeObject, strideY:integer, offsetY:integer )\n Interchanges vectors `x` and `y` using alternative indexing semantics.\n","base.strided.mapBy":"\nbase.strided.mapBy( N:integer, x:Array|TypedArray|Object, sx:integer, \n y:Array|TypedArray|Object, sy:integer, fcn:Function, clbk:Function[, \n thisArg:any] )\n Applies a unary function to each element retrieved from a strided input\n array according to a callback function and assigns results to a strided\n output array.\n","base.strided.mapBy.ndarray":"\nbase.strided.mapBy.ndarray( N:integer, x:Array|TypedArray|Object, sx:integer, \n ox:integer, y:Array|TypedArray|Object, sy:integer, oy:integer, fcn:Function, \n clbk:Function[, thisArg:any] )\n Applies a unary function to each element retrieved from a strided input\n array according to a callback function and assigns results to a strided\n output array using alternative indexing semantics.\n","base.strided.mapBy2":"\nbase.strided.mapBy2( N:integer, x:Array|TypedArray|Object, sx:integer, \n y:Array|TypedArray|Object, sy:integer, z:Array|TypedArray|Object, sz:integer, \n fcn:Function, clbk:Function[, thisArg:any] )\n Applies a binary function to each pair of elements retrieved from strided\n input arrays according to a callback function and assigns results to a\n strided output array.\n","base.strided.mapBy2.ndarray":"\nbase.strided.mapBy2.ndarray( N:integer, x:Array|TypedArray|Object, sx:integer, \n ox:integer, y:Array|TypedArray|Object, sy:integer, oy:integer, \n z:Array|TypedArray|Object, sz:integer, oz:integer, fcn:Function, \n clbk:Function[, thisArg:any] )\n Applies a binary function to each pair of elements retrieved from strided\n input arrays according to a callback function and assigns results to a\n strided output array using alternative indexing semantics.\n","base.strided.max":"\nbase.strided.max( N:integer, x:Array|TypedArray, stride:integer )\n Computes the maximum value of a strided array.\n","base.strided.max.ndarray":"\nbase.strided.max.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the maximum value of a strided array using alternative indexing\n semantics.\n","base.strided.maxabs":"\nbase.strided.maxabs( N:integer, x:Array|TypedArray, stride:integer )\n Computes the maximum absolute value of a strided array.\n","base.strided.maxabs.ndarray":"\nbase.strided.maxabs.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the maximum absolute value of a strided array using alternative\n indexing semantics.\n","base.strided.maxBy":"\nbase.strided.maxBy( N:integer, x:Array|TypedArray|Object, stride:integer, \n clbk:Function[, thisArg:any] )\n Calculates the maximum value of a strided array via a callback function.\n","base.strided.maxBy.ndarray":"\nbase.strided.maxBy.ndarray( N:integer, x:Array|TypedArray|Object, \n stride:integer, offset:integer, clbk:Function[, thisArg:any] )\n Calculates the maximum value of a strided array via a callback function and\n using alternative indexing semantics.\n","base.strided.maxsorted":"\nbase.strided.maxsorted( N:integer, x:Array|TypedArray, stride:integer )\n Computes the maximum value of a sorted strided array.\n","base.strided.maxsorted.ndarray":"\nbase.strided.maxsorted.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the maximum value of a sorted strided array using alternative\n indexing semantics.\n","base.strided.mean":"\nbase.strided.mean( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array.\n","base.strided.mean.ndarray":"\nbase.strided.mean.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array using alternative indexing\n semantics.\n","base.strided.meankbn":"\nbase.strided.meankbn( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array using an improved Kahan–\n Babuška algorithm.\n","base.strided.meankbn.ndarray":"\nbase.strided.meankbn.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array using an improved Kahan–\n Babuška algorithm and alternative indexing semantics.\n","base.strided.meankbn2":"\nbase.strided.meankbn2( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array using a second-order\n iterative Kahan–Babuška algorithm.\n","base.strided.meankbn2.ndarray":"\nbase.strided.meankbn2.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array using a second-order\n iterative Kahan–Babuška algorithm and alternative indexing semantics.\n","base.strided.meanors":"\nbase.strided.meanors( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array using ordinary recursive\n summation.\n","base.strided.meanors.ndarray":"\nbase.strided.meanors.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array using ordinary recursive\n summation and alternative indexing semantics.\n","base.strided.meanpn":"\nbase.strided.meanpn( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array using a two-pass error\n correction algorithm.\n","base.strided.meanpn.ndarray":"\nbase.strided.meanpn.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array using a two-pass error\n correction algorithm and alternative indexing semantics.\n","base.strided.meanpw":"\nbase.strided.meanpw( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array using pairwise summation.\n","base.strided.meanpw.ndarray":"\nbase.strided.meanpw.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array using pairwise summation and\n alternative indexing semantics.\n","base.strided.meanwd":"\nbase.strided.meanwd( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array using Welford's algorithm.\n","base.strided.meanwd.ndarray":"\nbase.strided.meanwd.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array using Welford's algorithm\n and alternative indexing semantics.\n","base.strided.mediansorted":"\nbase.strided.mediansorted( N:integer, x:Array|TypedArray, stride:integer )\n Computes the median value of a sorted strided array.\n","base.strided.mediansorted.ndarray":"\nbase.strided.mediansorted.ndarray( N:integer, x:Array|TypedArray, \n stride:integer, offset:integer )\n Computes the median value of a sorted strided array using alternative\n indexing semantics.\n","base.strided.min":"\nbase.strided.min( N:integer, x:Array|TypedArray, stride:integer )\n Computes the minimum value of a strided array.\n","base.strided.min.ndarray":"\nbase.strided.min.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the minimum value of a strided array using alternative indexing\n semantics.\n","base.strided.minabs":"\nbase.strided.minabs( N:integer, x:Array|TypedArray, stride:integer )\n Computes the minimum absolute value of a strided array.\n","base.strided.minabs.ndarray":"\nbase.strided.minabs.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the minimum absolute value of a strided array using alternative\n indexing semantics.\n","base.strided.minBy":"\nbase.strided.minBy( N:integer, x:Array|TypedArray|Object, stride:integer, \n clbk:Function[, thisArg:any] )\n Calculates the minimum value of a strided array via a callback function.\n","base.strided.minBy.ndarray":"\nbase.strided.minBy.ndarray( N:integer, x:Array|TypedArray|Object, \n stride:integer, offset:integer, clbk:Function[, thisArg:any] )\n Calculates the minimum value of a strided array via a callback function and\n using alternative indexing semantics.\n","base.strided.minsorted":"\nbase.strided.minsorted( N:integer, x:Array|TypedArray, stride:integer )\n Computes the minimum value of a sorted strided array.\n","base.strided.minsorted.ndarray":"\nbase.strided.minsorted.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the minimum value of a sorted strided array using alternative\n indexing semantics.\n","base.strided.mskmax":"\nbase.strided.mskmax( N:integer, x:Array|TypedArray, strideX:integer, \n mask:Array|TypedArray, strideMask:integer )\n Computes the maximum value of a strided array according to a mask.\n","base.strided.mskmax.ndarray":"\nbase.strided.mskmax.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, mask:Array|TypedArray, strideMask:integer, \n offsetMask:integer )\n Computes the maximum value of a strided array according to a mask and using\n alternative indexing semantics.\n","base.strided.mskmin":"\nbase.strided.mskmin( N:integer, x:Array|TypedArray, strideX:integer, \n mask:Array|TypedArray, strideMask:integer )\n Computes the minimum value of a strided array according to a mask.\n","base.strided.mskmin.ndarray":"\nbase.strided.mskmin.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, mask:Array|TypedArray, strideMask:integer, \n offsetMask:integer )\n Computes the minimum value of a strided array according to a mask and using\n alternative indexing semantics.\n","base.strided.mskrange":"\nbase.strided.mskrange( N:integer, x:Array|TypedArray, strideX:integer, \n mask:Array|TypedArray, strideMask:integer )\n Computes the range of a strided array according to a mask.\n","base.strided.mskrange.ndarray":"\nbase.strided.mskrange.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, mask:Array|TypedArray, strideMask:integer, \n offsetMask:integer )\n Computes the range of a strided array according to a mask and using\n alternative indexing semantics.\n","base.strided.mskunary":"\nbase.strided.mskunary( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n fcn:Function )\n Applies a unary callback to elements in a strided input array according to\n elements in a strided mask array and assigns results to elements in a\n strided output array.\n","base.strided.mskunary.ndarray":"\nbase.strided.mskunary.ndarray( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n offsets:ArrayLikeObject, fcn:Function )\n Applies a unary callback to elements in a strided input array according to\n elements in a strided mask array, and assigns results to elements in a\n strided output array using alternative indexing semantics.\n","base.strided.nanmax":"\nbase.strided.nanmax( N:integer, x:Array|TypedArray, stride:integer )\n Computes the maximum value of a strided array, ignoring `NaN` values.\n","base.strided.nanmax.ndarray":"\nbase.strided.nanmax.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the maximum value of a strided array, ignoring `NaN` values and\n using alternative indexing semantics.\n","base.strided.nanmaxabs":"\nbase.strided.nanmaxabs( N:integer, x:Array|TypedArray, stride:integer )\n Computes the maximum absolute value of a strided array, ignoring `NaN`\n values.\n","base.strided.nanmaxabs.ndarray":"\nbase.strided.nanmaxabs.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the maximum absolute value of a strided array, ignoring `NaN`\n values and using alternative indexing semantics.\n","base.strided.nanmaxBy":"\nbase.strided.nanmaxBy( N:integer, x:Array|TypedArray|Object, stride:integer, \n clbk:Function[, thisArg:any] )\n Calculates the maximum value of a strided array via a callback function,\n ignoring `NaN` values.\n","base.strided.nanmaxBy.ndarray":"\nbase.strided.nanmaxBy.ndarray( N:integer, x:Array|TypedArray|Object, \n stride:integer, offset:integer, clbk:Function[, thisArg:any] )\n Calculates the maximum value of a strided array via a callback function,\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.nanmean":"\nbase.strided.nanmean( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array, ignoring `NaN` values.\n","base.strided.nanmean.ndarray":"\nbase.strided.nanmean.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array, ignoring `NaN` values and\n using alternative indexing semantics.\n","base.strided.nanmeanors":"\nbase.strided.nanmeanors( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array, ignoring `NaN` values and\n using ordinary recursive summation.\n","base.strided.nanmeanors.ndarray":"\nbase.strided.nanmeanors.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array, ignoring `NaN` values and\n using ordinary recursive summation and alternative indexing semantics.\n","base.strided.nanmeanpn":"\nbase.strided.nanmeanpn( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array, ignoring `NaN` values and\n using a two-pass error correction algorithm.\n","base.strided.nanmeanpn.ndarray":"\nbase.strided.nanmeanpn.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array, ignoring `NaN` values and\n using a two-pass error correction algorithm and alternative indexing\n semantics.\n","base.strided.nanmeanwd":"\nbase.strided.nanmeanwd( N:integer, x:Array|TypedArray, stride:integer )\n Computes the arithmetic mean of a strided array, ignoring `NaN` values and\n using Welford's algorithm.\n","base.strided.nanmeanwd.ndarray":"\nbase.strided.nanmeanwd.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a strided array, ignoring `NaN` values and\n using Welford's algorithm and alternative indexing semantics.\n","base.strided.nanmin":"\nbase.strided.nanmin( N:integer, x:Array|TypedArray, stride:integer )\n Computes the minimum value of a strided array, ignoring `NaN` values.\n","base.strided.nanmin.ndarray":"\nbase.strided.nanmin.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the minimum value of a strided array, ignoring `NaN` values and\n using alternative indexing semantics.\n","base.strided.nanminabs":"\nbase.strided.nanminabs( N:integer, x:Array|TypedArray, stride:integer )\n Computes the minimum absolute value of a strided array, ignoring `NaN`\n values.\n","base.strided.nanminabs.ndarray":"\nbase.strided.nanminabs.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the minimum absolute value of a strided array, ignoring `NaN`\n values and using alternative indexing semantics.\n","base.strided.nanminBy":"\nbase.strided.nanminBy( N:integer, x:Array|TypedArray|Object, stride:integer, \n clbk:Function[, thisArg:any] )\n Calculates the minimum value of a strided array via a callback function,\n ignoring `NaN` values.\n","base.strided.nanminBy.ndarray":"\nbase.strided.nanminBy.ndarray( N:integer, x:Array|TypedArray|Object, \n stride:integer, offset:integer, clbk:Function[, thisArg:any] )\n Calculates the minimum value of a strided array via a callback function,\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.nanmskmax":"\nbase.strided.nanmskmax( N:integer, x:Array|TypedArray, strideX:integer, \n mask:Array|TypedArray, strideMask:integer )\n Computes the maximum value of a strided array according to a mask and\n ignoring `NaN` values.\n","base.strided.nanmskmax.ndarray":"\nbase.strided.nanmskmax.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, mask:Array|TypedArray, strideMask:integer, \n offsetMask:integer )\n Computes the maximum value of a strided array according to a mask,\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.nanmskmin":"\nbase.strided.nanmskmin( N:integer, x:Array|TypedArray, strideX:integer, \n mask:Array|TypedArray, strideMask:integer )\n Computes the minimum value of a strided array according to a mask and\n ignoring `NaN` values.\n","base.strided.nanmskmin.ndarray":"\nbase.strided.nanmskmin.ndarray( N:integer, x:Array|TypedArray, strideX:integer, \n offsetX:integer, mask:Array|TypedArray, strideMask:integer, \n offsetMask:integer )\n Computes the minimum value of a strided array according to a mask, ignoring\n `NaN` values and using alternative indexing semantics.\n","base.strided.nanmskrange":"\nbase.strided.nanmskrange( N:integer, x:Array|TypedArray, strideX:integer, \n mask:Array|TypedArray, strideMask:integer )\n Computes the range of a strided array according to a mask and ignoring `NaN`\n values.\n","base.strided.nanmskrange.ndarray":"\nbase.strided.nanmskrange.ndarray( N:integer, x:Array|TypedArray, \n strideX:integer, offsetX:integer, mask:Array|TypedArray, strideMask:integer, \n offsetMask:integer )\n Computes the range of a strided array according to a mask, ignoring `NaN`\n values and using alternative indexing semantics.\n","base.strided.nanrange":"\nbase.strided.nanrange( N:integer, x:Array|TypedArray, stride:integer )\n Computes the range of a strided array, ignoring `NaN` values.\n","base.strided.nanrange.ndarray":"\nbase.strided.nanrange.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the range of a strided array, ignoring `NaN` values and using\n alternative indexing semantics.\n","base.strided.nanrangeBy":"\nbase.strided.nanrangeBy( N:integer, x:Array|TypedArray|Object, stride:integer, \n clbk:Function[, thisArg:any] )\n Calculates the range of a strided array via a callback function, ignoring\n `NaN` values.\n","base.strided.nanrangeBy.ndarray":"\nbase.strided.nanrangeBy.ndarray( N:integer, x:Array|TypedArray|Object, \n stride:integer, offset:integer, clbk:Function[, thisArg:any] )\n Calculates the range of a strided array via a callback function, ignoring\n `NaN` values and using alternative indexing semantics.\n","base.strided.nanstdev":"\nbase.strided.nanstdev( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values.\n","base.strided.nanstdev.ndarray":"\nbase.strided.nanstdev.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using alternative indexing semantics.\n","base.strided.nanstdevch":"\nbase.strided.nanstdevch( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using a one-pass trial mean algorithm.\n","base.strided.nanstdevch.ndarray":"\nbase.strided.nanstdevch.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using a one-pass trial mean algorithm and alternative indexing semantics.\n","base.strided.nanstdevpn":"\nbase.strided.nanstdevpn( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using a two-pass algorithm.\n","base.strided.nanstdevpn.ndarray":"\nbase.strided.nanstdevpn.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using a two-pass algorithm and alternative indexing semantics.\n","base.strided.nanstdevtk":"\nbase.strided.nanstdevtk( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using a one-pass textbook algorithm.\n","base.strided.nanstdevtk.ndarray":"\nbase.strided.nanstdevtk.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using a one-pass textbook algorithm and alternative indexing semantics.\n","base.strided.nanstdevwd":"\nbase.strided.nanstdevwd( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using Welford's algorithm.\n","base.strided.nanstdevwd.ndarray":"\nbase.strided.nanstdevwd.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using Welford's algorithm and alternative indexing semantics.\n","base.strided.nanstdevyc":"\nbase.strided.nanstdevyc( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using a one-pass algorithm proposed by Youngs and Cramer.\n","base.strided.nanstdevyc.ndarray":"\nbase.strided.nanstdevyc.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the standard deviation of a strided array ignoring `NaN` values and\n using a one-pass algorithm proposed by Youngs and Cramer and alternative\n indexing semantics.\n","base.strided.nanvariance":"\nbase.strided.nanvariance( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array ignoring `NaN` values.\n","base.strided.nanvariance.ndarray":"\nbase.strided.nanvariance.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array ignoring `NaN` values and using\n alternative indexing semantics.\n","base.strided.nanvariancech":"\nbase.strided.nanvariancech( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array ignoring `NaN` values and using a\n one-pass trial mean algorithm.\n","base.strided.nanvariancech.ndarray":"\nbase.strided.nanvariancech.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array ignoring `NaN` values and using a\n one-pass trial mean algorithm and alternative indexing semantics.\n","base.strided.nanvariancepn":"\nbase.strided.nanvariancepn( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array ignoring `NaN` values and using a\n two-pass algorithm.\n","base.strided.nanvariancepn.ndarray":"\nbase.strided.nanvariancepn.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array ignoring `NaN` values and using a\n two-pass algorithm and alternative indexing semantics.\n","base.strided.nanvariancetk":"\nbase.strided.nanvariancetk( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array ignoring `NaN` values and using a\n one-pass textbook algorithm.\n","base.strided.nanvariancetk.ndarray":"\nbase.strided.nanvariancetk.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array ignoring `NaN` values and using a\n one-pass textbook algorithm and alternative indexing semantics.\n","base.strided.nanvariancewd":"\nbase.strided.nanvariancewd( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array ignoring `NaN` values and using\n Welford's algorithm.\n","base.strided.nanvariancewd.ndarray":"\nbase.strided.nanvariancewd.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array ignoring `NaN` values and using\n Welford's algorithm and alternative indexing semantics.\n","base.strided.nanvarianceyc":"\nbase.strided.nanvarianceyc( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array ignoring `NaN` values and using a\n one-pass algorithm proposed by Youngs and Cramer.\n","base.strided.nanvarianceyc.ndarray":"\nbase.strided.nanvarianceyc.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array ignoring `NaN` values and using a\n one-pass algorithm proposed by Youngs and Cramer and alternative indexing\n semantics.\n","base.strided.nullary":"\nbase.strided.nullary( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n fcn:Function )\n Applies a nullary callback and assigns results to elements in a strided\n output array.\n","base.strided.nullary.ndarray":"\nbase.strided.nullary.ndarray( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n offsets:ArrayLikeObject, fcn:Function )\n Applies a nullary callback and assigns results to elements in a strided\n output array using alternative indexing semantics.\n","base.strided.quaternary":"\nbase.strided.quaternary( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n fcn:Function )\n Applies a quaternary callback to strided input array elements and assigns\n results to elements in a strided output array.\n","base.strided.quaternary.ndarray":"\nbase.strided.quaternary.ndarray( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n offsets:ArrayLikeObject, fcn:Function )\n Applies a quaternary callback to strided input array elements and assigns\n results to elements in a strided output array using alternative indexing\n semantics.\n","base.strided.quinary":"\nbase.strided.quinary( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n fcn:Function )\n Applies a quinary callback to strided input array elements and assigns\n results to elements in a strided output array.\n","base.strided.quinary.ndarray":"\nbase.strided.quinary.ndarray( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n offsets:ArrayLikeObject, fcn:Function )\n Applies a quinary callback to strided input array elements and assigns\n results to elements in a strided output array using alternative indexing\n semantics.\n","base.strided.range":"\nbase.strided.range( N:integer, x:Array|TypedArray, stride:integer )\n Computes the range of a strided array.\n","base.strided.range.ndarray":"\nbase.strided.range.ndarray( N:integer, x:Array|TypedArray, stride:integer, \n offset:integer )\n Computes the range of a strided array using alternative indexing semantics.\n","base.strided.rangeBy":"\nbase.strided.rangeBy( N:integer, x:Array|TypedArray|Object, stride:integer, \n clbk:Function[, thisArg:any] )\n Calculates the range of a strided array via a callback function.\n","base.strided.rangeBy.ndarray":"\nbase.strided.rangeBy.ndarray( N:integer, x:Array|TypedArray|Object, \n stride:integer, offset:integer, clbk:Function[, thisArg:any] )\n Calculates the range of a strided array via a callback function and using\n alternative indexing semantics.\n","base.strided.sabs":"\nbase.strided.sabs( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Computes the absolute value for each element in a single-precision floating-\n point strided array `x` and assigns the results to elements in a single-\n precision floating-point strided array `y`.\n","base.strided.sabs.ndarray":"\nbase.strided.sabs.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the absolute value for each element in a single-precision floating-\n point strided array `x` and assigns the results to elements in a single-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.sabs2":"\nbase.strided.sabs2( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Computes the squared absolute value for each element in a single-precision\n floating-point strided array `x` and assigns the results to elements in a\n single-precision floating-point strided array `y`.\n","base.strided.sabs2.ndarray":"\nbase.strided.sabs2.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the squared absolute value for each element in a single-precision\n floating-point strided array `x` and assigns the results to elements in a\n single-precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.sapx":"\nbase.strided.sapx( N:integer, alpha:number, x:Float32Array, stride:integer )\n Adds a constant to each element in a single-precision floating-point strided\n array.\n","base.strided.sapx.ndarray":"\nbase.strided.sapx.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each element in a single-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.sapxsum":"\nbase.strided.sapxsum( N:integer, alpha:number, x:Float32Array, stride:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum.\n","base.strided.sapxsum.ndarray":"\nbase.strided.sapxsum.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using alternative indexing semantics.\n","base.strided.sapxsumkbn":"\nbase.strided.sapxsumkbn( N:integer, alpha:number, x:Float32Array, \n stride:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using an improved Kahan–Babuška algorithm.\n","base.strided.sapxsumkbn.ndarray":"\nbase.strided.sapxsumkbn.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using an improved Kahan–Babuška algorithm and\n alternative indexing semantics.\n","base.strided.sapxsumkbn2":"\nbase.strided.sapxsumkbn2( N:integer, alpha:number, x:Float32Array, \n stride:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using a second-order iterative Kahan–Babuška\n algorithm.\n","base.strided.sapxsumkbn2.ndarray":"\nbase.strided.sapxsumkbn2.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using a second-order iterative Kahan–Babuška\n algorithm and alternative indexing semantics.\n","base.strided.sapxsumors":"\nbase.strided.sapxsumors( N:integer, alpha:number, x:Float32Array, \n stride:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using ordinary recursive summation.\n","base.strided.sapxsumors.ndarray":"\nbase.strided.sapxsumors.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using ordinary recursive summation and\n alternative indexing semantics.\n","base.strided.sapxsumpw":"\nbase.strided.sapxsumpw( N:integer, alpha:number, x:Float32Array, \n stride:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using pairwise summation.\n","base.strided.sapxsumpw.ndarray":"\nbase.strided.sapxsumpw.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using pairwise summation and alternative\n indexing semantics.\n","base.strided.sasum":"\nbase.strided.sasum( N:integer, x:Float32Array, stride:integer )\n Computes the sum of the absolute values.\n","base.strided.sasum.ndarray":"\nbase.strided.sasum.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of absolute values using alternative indexing semantics.\n","base.strided.sasumpw":"\nbase.strided.sasumpw( N:integer, x:Float32Array, stride:integer )\n Computes the sum of absolute values (L1 norm) of single-precision floating-\n point strided array elements using pairwise summation.\n","base.strided.sasumpw.ndarray":"\nbase.strided.sasumpw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of absolute values (L1 norm) of single-precision floating-\n point strided array elements using pairwise summation and alternative\n indexing semantics.\n","base.strided.saxpy":"\nbase.strided.saxpy( N:integer, alpha:number, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Multiplies a vector `x` by a constant `alpha` and adds the result to `y`.\n","base.strided.saxpy.ndarray":"\nbase.strided.saxpy.ndarray( N:integer, alpha:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Multiplies a vector `x` by a constant `alpha` and adds the result to `y`,\n using alternative indexing semantics.\n","base.strided.scbrt":"\nbase.strided.scbrt( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Computes the cube root of each element in a single-precision floating-point \n strided array `x` and assigns the results to elements in a single-precision \n floating-point strided array `y`.\n","base.strided.scbrt.ndarray":"\nbase.strided.scbrt.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the cube root of each element in a single-precision floating-point \n strided array `x` and assigns the results to elements in a single-precision \n floating-point strided array `y` using alternative indexing semantics.\n","base.strided.sceil":"\nbase.strided.sceil( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward positive infinity and assigns the results to elements in a single-\n precision floating-point strided array `y`.\n","base.strided.sceil.ndarray":"\nbase.strided.sceil.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward positive infinity and assigns the results to elements in a single-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.scopy":"\nbase.strided.scopy( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Copies values from `x` into `y`.\n","base.strided.scopy.ndarray":"\nbase.strided.scopy.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Copies values from `x` into `y` using alternative indexing semantics.\n","base.strided.scumax":"\nbase.strided.scumax( N:integer, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the cumulative maximum of single-precision floating-point strided\n array elements.\n","base.strided.scumax.ndarray":"\nbase.strided.scumax.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the cumulative maximum of single-precision floating-point strided\n array elements using alternative indexing semantics.\n","base.strided.scumaxabs":"\nbase.strided.scumaxabs( N:integer, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the cumulative maximum absolute value of single-precision floating-\n point strided array elements.\n","base.strided.scumaxabs.ndarray":"\nbase.strided.scumaxabs.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the cumulative maximum absolute value of single-precision floating-\n point strided array elements using alternative indexing semantics.\n","base.strided.scumin":"\nbase.strided.scumin( N:integer, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the cumulative minimum of single-precision floating-point strided\n array elements.\n","base.strided.scumin.ndarray":"\nbase.strided.scumin.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the cumulative minimum of single-precision floating-point strided\n array elements using alternative indexing semantics.\n","base.strided.scuminabs":"\nbase.strided.scuminabs( N:integer, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the cumulative minimum absolute value of single-precision floating-\n point strided array elements.\n","base.strided.scuminabs.ndarray":"\nbase.strided.scuminabs.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the cumulative minimum absolute value of single-precision floating-\n point strided array elements using alternative indexing semantics.\n","base.strided.scusum":"\nbase.strided.scusum( N:integer, sum:number, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements.\n","base.strided.scusum.ndarray":"\nbase.strided.scusum.ndarray( N:integer, sum:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements using alternative indexing semantics.\n","base.strided.scusumkbn":"\nbase.strided.scusumkbn( N:integer, sum:number, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements using an improved Kahan–Babuška algorithm.\n","base.strided.scusumkbn.ndarray":"\nbase.strided.scusumkbn.ndarray( N:integer, sum:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements using an improved Kahan–Babuška algorithm and alternative indexing\n semantics.\n","base.strided.scusumkbn2":"\nbase.strided.scusumkbn2( N:integer, sum:number, x:Float32Array, \n strideX:integer, y:Float32Array, strideY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements using a second-order iterative Kahan–Babuška algorithm.\n","base.strided.scusumkbn2.ndarray":"\nbase.strided.scusumkbn2.ndarray( N:integer, sum:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements using a second-order iterative Kahan–Babuška algorithm and\n alternative indexing semantics.\n","base.strided.scusumors":"\nbase.strided.scusumors( N:integer, sum:number, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements using ordinary recursive summation.\n","base.strided.scusumors.ndarray":"\nbase.strided.scusumors.ndarray( N:integer, sum:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements using ordinary recursive summation and alternative indexing\n semantics.\n","base.strided.scusumpw":"\nbase.strided.scusumpw( N:integer, sum:number, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements using pairwise summation.\n","base.strided.scusumpw.ndarray":"\nbase.strided.scusumpw.ndarray( N:integer, sum:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Computes the cumulative sum of single-precision floating-point strided array\n elements using pairwise summation and alternative indexing semantics.\n","base.strided.sdeg2rad":"\nbase.strided.sdeg2rad( N:integer, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Converts each element in a single-precision floating-point strided array `x`\n from degrees to radians and assigns the results to elements in a single-\n precision floating-point strided array `y`.\n","base.strided.sdeg2rad.ndarray":"\nbase.strided.sdeg2rad.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Converts each element in a single-precision floating-point strided array `x`\n from degrees to radians and assigns the results to elements in a single-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.sdot":"\nbase.strided.sdot( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Computes the dot product of two single-precision floating-point vectors.\n","base.strided.sdot.ndarray":"\nbase.strided.sdot.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the dot product of two single-precision floating-point vectors\n using alternative indexing semantics.\n","base.strided.sdsapxsum":"\nbase.strided.sdsapxsum( N:integer, alpha:number, x:Float32Array, \n stride:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using extended accumulation.\n","base.strided.sdsapxsum.ndarray":"\nbase.strided.sdsapxsum.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using extended accumulation and alternative\n indexing semantics.\n","base.strided.sdsapxsumpw":"\nbase.strided.sdsapxsumpw( N:integer, alpha:number, x:Float32Array, \n stride:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using pairwise summation with extended\n accumulation.\n","base.strided.sdsapxsumpw.ndarray":"\nbase.strided.sdsapxsumpw.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Adds a constant to each single-precision floating-point strided array\n element and computes the sum using pairwise summation with extended\n accumulation and alternative indexing semantics.\n","base.strided.sdsdot":"\nbase.strided.sdsdot( N:integer, scalar:number, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the dot product of two single-precision floating-point vectors with\n extended accumulation.\n","base.strided.sdsdot.ndarray":"\nbase.strided.sdsdot.ndarray( N:integer, scalar:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Computes the dot product of two single-precision floating-point vectors\n using alternative indexing semantics and with extended accumulation.\n","base.strided.sdsmean":"\nbase.strided.sdsmean( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using extended accumulation.\n","base.strided.sdsmean.ndarray":"\nbase.strided.sdsmean.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using extended accumulation and alternative indexing semantics.\n","base.strided.sdsmeanors":"\nbase.strided.sdsmeanors( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using ordinary recursive summation with extended accumulation.\n","base.strided.sdsmeanors.ndarray":"\nbase.strided.sdsmeanors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using ordinary recursive summation with extended accumulation and\n alternative indexing semantics.\n","base.strided.sdsnanmean":"\nbase.strided.sdsnanmean( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using extended accumulation.\n","base.strided.sdsnanmean.ndarray":"\nbase.strided.sdsnanmean.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using extended accumulation and alternative\n indexing semantics.\n","base.strided.sdsnanmeanors":"\nbase.strided.sdsnanmeanors( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using ordinary recursive summation with\n extended accumulation.\n","base.strided.sdsnanmeanors.ndarray":"\nbase.strided.sdsnanmeanors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using ordinary recursive summation with\n extended accumulation and alternative indexing semantics.\n","base.strided.sdsnansum":"\nbase.strided.sdsnansum( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using extended accumulation.\n","base.strided.sdsnansum.ndarray":"\nbase.strided.sdsnansum.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using extended accumulation and alternative\n indexing semantics.\n","base.strided.sdsnansumpw":"\nbase.strided.sdsnansumpw( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation with extended\n accumulation.\n","base.strided.sdsnansumpw.ndarray":"\nbase.strided.sdsnansumpw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation with extended\n accumulation and alternative indexing semantics.\n","base.strided.sdssum":"\nbase.strided.sdssum( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements\n using extended accumulation.\n","base.strided.sdssum.ndarray":"\nbase.strided.sdssum.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using extended accumulation and alternative indexing semantics.\n","base.strided.sdssumpw":"\nbase.strided.sdssumpw( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements\n using pairwise summation with extended accumulation.\n","base.strided.sdssumpw.ndarray":"\nbase.strided.sdssumpw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using pairwise summation with extended accumulation and alternative indexing\n semantics.\n","base.strided.sfill":"\nbase.strided.sfill( N:integer, alpha:number, x:Float32Array, stride:integer )\n Fills a single-precision floating-point strided array with a specified\n scalar value.\n","base.strided.sfill.ndarray":"\nbase.strided.sfill.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Fills a single-precision floating-point strided array with a specified\n scalar value using alternative indexing semantics.\n","base.strided.sfloor":"\nbase.strided.sfloor( N:integer, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward negative infinity and assigns the results to elements in a single-\n precision floating-point strided array `y`.\n","base.strided.sfloor.ndarray":"\nbase.strided.sfloor.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward negative infinity and assigns the results to elements in a single-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.sinv":"\nbase.strided.sinv( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Computes the multiplicative inverse for each element in a single-precision\n floating-point strided array `x` and assigns the results to elements in a\n single-precision floating-point strided array `y`.\n","base.strided.sinv.ndarray":"\nbase.strided.sinv.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the multiplicative inverse for each element in a single-precision\n floating-point strided array `x` and assigns the results to elements in a\n single-precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.smap":"\nbase.strided.smap( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer, fcn:Function )\n Applies a unary function to a single-precision floating-point strided input\n array and assigns results to a single-precision floating-point strided\n output array.\n","base.strided.smap.ndarray":"\nbase.strided.smap.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer, \n fcn:Function )\n Applies a unary function to a single-precision floating-point strided input\n array and assigns results to a single-precision floating-point strided\n output array using alternative indexing semantics.\n","base.strided.smap2":"\nbase.strided.smap2( N:integer, x:Float32Array, sx:integer, y:Float32Array, \n sy:integer, z:Float32Array, sz:integer, fcn:Function )\n Applies a binary function to single-precision floating-point strided input\n arrays and assigns results to a single-precision floating-point strided\n output array.\n","base.strided.smap2.ndarray":"\nbase.strided.smap2.ndarray( N:integer, x:Float32Array, sx:integer, ox:integer, \n y:Float32Array, sy:integer, oy:integer, z:Float32Array, sz:integer, \n oz:integer, fcn:Function )\n Applies a binary function to single-precision floating-point strided input\n arrays and assigns results to a single-precision floating-point strided\n output array using alternative indexing semantics.\n","base.strided.smax":"\nbase.strided.smax( N:integer, x:Float32Array, stride:integer )\n Computes the maximum value of a single-precision floating-point strided\n array.\n","base.strided.smax.ndarray":"\nbase.strided.smax.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the maximum value of a single-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.smaxabs":"\nbase.strided.smaxabs( N:integer, x:Float32Array, stride:integer )\n Computes the maximum absolute value of a single-precision floating-point\n strided array.\n","base.strided.smaxabs.ndarray":"\nbase.strided.smaxabs.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the maximum absolute value of a single-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.smaxabssorted":"\nbase.strided.smaxabssorted( N:integer, x:Float32Array, stride:integer )\n Computes the maximum absolute value of a sorted single-precision floating-\n point strided array.\n","base.strided.smaxabssorted.ndarray":"\nbase.strided.smaxabssorted.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the maximum absolute value of a sorted single-precision floating-\n point strided array using alternative indexing semantics.\n","base.strided.smaxsorted":"\nbase.strided.smaxsorted( N:integer, x:Float32Array, stride:integer )\n Computes the maximum value of a sorted single-precision floating-point\n strided array.\n","base.strided.smaxsorted.ndarray":"\nbase.strided.smaxsorted.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the maximum value of a sorted single-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.smean":"\nbase.strided.smean( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array.\n","base.strided.smean.ndarray":"\nbase.strided.smean.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.smeankbn":"\nbase.strided.smeankbn( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using an improved Kahan–Babuška algorithm.\n","base.strided.smeankbn.ndarray":"\nbase.strided.smeankbn.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using an improved Kahan–Babuška algorithm and alternative indexing\n semantics.\n","base.strided.smeankbn2":"\nbase.strided.smeankbn2( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a second-order iterative Kahan–Babuška algorithm.\n","base.strided.smeankbn2.ndarray":"\nbase.strided.smeankbn2.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a second-order iterative Kahan–Babuška algorithm and alternative\n indexing semantics.\n","base.strided.smeanli":"\nbase.strided.smeanli( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a one-pass trial mean algorithm.\n","base.strided.smeanli.ndarray":"\nbase.strided.smeanli.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a one-pass trial mean algorithm and alternative indexing\n semantics.\n","base.strided.smeanlipw":"\nbase.strided.smeanlipw( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a one-pass trial mean algorithm with pairwise summation.\n","base.strided.smeanlipw.ndarray":"\nbase.strided.smeanlipw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a one-pass trial mean algorithm with pairwise summation and\n alternative indexing semantics.\n","base.strided.smeanors":"\nbase.strided.smeanors( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using ordinary recursive summation.\n","base.strided.smeanors.ndarray":"\nbase.strided.smeanors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using ordinary recursive summation and alternative indexing semantics.\n","base.strided.smeanpn":"\nbase.strided.smeanpn( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a two-pass error correction algorithm.\n","base.strided.smeanpn.ndarray":"\nbase.strided.smeanpn.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using a two-pass error correction algorithm and alternative indexing\n semantics.\n","base.strided.smeanpw":"\nbase.strided.smeanpw( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using pairwise summation.\n","base.strided.smeanpw.ndarray":"\nbase.strided.smeanpw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using pairwise summation and alternative indexing semantics.\n","base.strided.smeanwd":"\nbase.strided.smeanwd( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using Welford's algorithm.\n","base.strided.smeanwd.ndarray":"\nbase.strided.smeanwd.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array using Welford's algorithm and alternative indexing semantics.\n","base.strided.smediansorted":"\nbase.strided.smediansorted( N:integer, x:Float32Array, stride:integer )\n Computes the median value of a sorted single-precision floating-point\n strided array.\n","base.strided.smediansorted.ndarray":"\nbase.strided.smediansorted.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the median value of a sorted single-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.smidrange":"\nbase.strided.smidrange( N:integer, x:Float32Array, stride:integer )\n Computes the mid-range of a single-precision floating-point strided array.\n","base.strided.smidrange.ndarray":"\nbase.strided.smidrange.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the mid-range of a single-precision floating-point strided array\n using alternative indexing semantics.\n","base.strided.smin":"\nbase.strided.smin( N:integer, x:Float32Array, stride:integer )\n Computes the minimum value of a single-precision floating-point strided\n array.\n","base.strided.smin.ndarray":"\nbase.strided.smin.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the minimum value of a single-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.sminabs":"\nbase.strided.sminabs( N:integer, x:Float32Array, stride:integer )\n Computes the minimum absolute value of a single-precision floating-point\n strided array.\n","base.strided.sminabs.ndarray":"\nbase.strided.sminabs.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the minimum absolute value of a single-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.sminsorted":"\nbase.strided.sminsorted( N:integer, x:Float32Array, stride:integer )\n Computes the minimum value of a sorted single-precision floating-point\n strided array.\n","base.strided.sminsorted.ndarray":"\nbase.strided.sminsorted.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the minimum value of a sorted single-precision floating-point\n strided array using alternative indexing semantics.\n","base.strided.smskabs":"\nbase.strided.smskabs( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Computes the absolute value for each element in a single-precision floating-\n point strided array `x` according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`.\n","base.strided.smskabs.ndarray":"\nbase.strided.smskabs.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Computes the absolute value for each element in a single-precision floating-\n point strided array `x` according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.smskabs2":"\nbase.strided.smskabs2( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Computes the squared absolute value for each element in a single-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a single-precision floating-point\n strided array `y`.\n","base.strided.smskabs2.ndarray":"\nbase.strided.smskabs2.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Computes the squared absolute value for each element in a single-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a single-precision floating-point\n strided array `y` using alternative indexing semantics.\n","base.strided.smskcbrt":"\nbase.strided.smskcbrt( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Computes the cube root for each element in a single-precision floating-point\n strided array `x` according to a strided mask array and assigns the results\n to elements in a single-precision floating-point strided array `y`.\n","base.strided.smskcbrt.ndarray":"\nbase.strided.smskcbrt.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Computes the cube root for each element in a single-precision floating-point\n strided array `x` according to a strided mask array and assigns the results\n to elements in a single-precision floating-point strided array `y` using\n alternative indexing semantics.\n","base.strided.smskceil":"\nbase.strided.smskceil( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward positive infinity according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`.\n","base.strided.smskceil.ndarray":"\nbase.strided.smskceil.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward positive infinity according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.smskdeg2rad":"\nbase.strided.smskdeg2rad( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Converts each element in a single-precision floating-point strided array `x`\n from degrees to radians according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`.\n","base.strided.smskdeg2rad.ndarray":"\nbase.strided.smskdeg2rad.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Converts each element in a single-precision floating-point strided array `x`\n from degrees to radians according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.smskfloor":"\nbase.strided.smskfloor( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward negative infinity according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`.\n","base.strided.smskfloor.ndarray":"\nbase.strided.smskfloor.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward negative infinity according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.smskinv":"\nbase.strided.smskinv( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Computes the multiplicative inverse for each element in a single-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a single-precision floating-point strided\n array `y`.\n","base.strided.smskinv.ndarray":"\nbase.strided.smskinv.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Computes the multiplicative inverse for each element in a single-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a single-precision floating-point strided\n array `y` using alternative indexing semantics.\n","base.strided.smskmap":"\nbase.strided.smskmap( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer, fcn:Function )\n Applies a unary function to a single-precision floating-point strided input\n array according to a strided mask array and assigns results to a single-\n precision floating-point strided output array.\n","base.strided.smskmap.ndarray":"\nbase.strided.smskmap.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Uint8Array, sm:integer, om:integer, y:Float32Array, sy:integer, \n oy:integer, fcn:Function )\n Applies a unary function to a single-precision floating-point strided input\n array according to a strided mask array and assigns results to a single-\n precision floating-point strided output array using alternative indexing\n semantics.\n","base.strided.smskmap2":"\nbase.strided.smskmap2( N:integer, x:Float32Array, sx:integer, y:Float32Array, \n sy:integer, m:Uint8Array, sm:integer, z:Float32Array, sz:integer, \n fcn:Function )\n Applies a binary function to single-precision floating-point strided input\n arrays according to a strided mask array and assigns results to a single-\n precision floating-point strided output array.\n","base.strided.smskmap2.ndarray":"\nbase.strided.smskmap2.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, y:Float32Array, sy:integer, oy:integer, m:Uint8Array, sm:integer, \n om:integer, z:Float32Array, sz:integer, oz:integer, fcn:Function )\n Applies a binary function to single-precision floating-point strided input\n arrays according to a strided mask array and assigns results to a single-\n precision floating-point strided output array using alternative indexing\n semantics.\n","base.strided.smskmax":"\nbase.strided.smskmax( N:integer, x:Float32Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the maximum value of a single-precision floating-point strided\n array according to a mask.\n","base.strided.smskmax.ndarray":"\nbase.strided.smskmax.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the maximum value of a single-precision floating-point strided\n array according to a mask and using alternative indexing semantics.\n","base.strided.smskmin":"\nbase.strided.smskmin( N:integer, x:Float32Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the minimum value of a single-precision floating-point strided\n array according to a mask.\n","base.strided.smskmin.ndarray":"\nbase.strided.smskmin.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the minimum value of a single-precision floating-point strided\n array according to a mask and using alternative indexing semantics.\n","base.strided.smskramp":"\nbase.strided.smskramp( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Evaluates the ramp function for each element in a single-precision floating-\n point strided array `x` according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`.\n","base.strided.smskramp.ndarray":"\nbase.strided.smskramp.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Evaluates the ramp function for each element in a single-precision floating-\n point strided array `x` according to a strided mask array and assigns the\n results to elements in a single-precision floating-point strided array `y`\n using alternative indexing semantics.\n","base.strided.smskrange":"\nbase.strided.smskrange( N:integer, x:Float32Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the range of a single-precision floating-point strided array\n according to a mask.\n","base.strided.smskrange.ndarray":"\nbase.strided.smskrange.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the range of a single-precision floating-point strided array\n according to a mask and using alternative indexing semantics.\n","base.strided.smskrsqrt":"\nbase.strided.smskrsqrt( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Computes the reciprocal square root for each element in a single-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a single-precision floating-point strided\n array `y`.\n","base.strided.smskrsqrt.ndarray":"\nbase.strided.smskrsqrt.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Computes the reciprocal square root for each element in a single-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a single-precision floating-point strided\n array `y` using alternative indexing semantics.\n","base.strided.smsksqrt":"\nbase.strided.smsksqrt( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Computes the principal square root for each element in a single-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a single-precision floating-point strided\n array `y`.\n","base.strided.smsksqrt.ndarray":"\nbase.strided.smsksqrt.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Computes the principal square root for each element in a single-precision\n floating-point strided array `x` according to a strided mask array and\n assigns the results to elements in a single-precision floating-point strided\n array `y` using alternative indexing semantics.\n","base.strided.smsktrunc":"\nbase.strided.smsktrunc( N:integer, x:Float32Array, sx:integer, m:Uint8Array, \n sm:integer, y:Float32Array, sy:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward zero according to a strided mask array and assigns the results to\n elements in a single-precision floating-point strided array `y`.\n","base.strided.smsktrunc.ndarray":"\nbase.strided.smsktrunc.ndarray( N:integer, x:Float32Array, sx:integer, \n ox:integer, m:Float32Array, sm:integer, om:integer, y:Float32Array, \n sy:integer, oy:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward zero according to a strided mask array and assigns the results to\n elements in a single-precision floating-point strided array `y` using\n alternative indexing semantics.\n","base.strided.snanmax":"\nbase.strided.snanmax( N:integer, x:Float32Array, stride:integer )\n Computes the maximum value of a single-precision floating-point strided\n array, ignoring `NaN` values.\n","base.strided.snanmax.ndarray":"\nbase.strided.snanmax.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the maximum value of a single-precision floating-point strided\n array, ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.snanmaxabs":"\nbase.strided.snanmaxabs( N:integer, x:Float32Array, stride:integer )\n Computes the maximum absolute value of a single-precision floating-point\n strided array, ignoring `NaN` values.\n","base.strided.snanmaxabs.ndarray":"\nbase.strided.snanmaxabs.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the maximum absolute value of a single-precision floating-point\n strided array, ignoring `NaN` values and using alternative indexing\n semantics.\n","base.strided.snanmean":"\nbase.strided.snanmean( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values.\n","base.strided.snanmean.ndarray":"\nbase.strided.snanmean.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.snanmeanors":"\nbase.strided.snanmeanors( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using ordinary recursive summation.\n","base.strided.snanmeanors.ndarray":"\nbase.strided.snanmeanors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using ordinary recursive summation and\n alternative indexing semantics.\n","base.strided.snanmeanpn":"\nbase.strided.snanmeanpn( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using a two-pass error correction\n algorithm.\n","base.strided.snanmeanpn.ndarray":"\nbase.strided.snanmeanpn.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using a two-pass error correction algorithm\n and alternative indexing semantics.\n","base.strided.snanmeanwd":"\nbase.strided.snanmeanwd( N:integer, x:Float32Array, stride:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using Welford's algorithm.\n","base.strided.snanmeanwd.ndarray":"\nbase.strided.snanmeanwd.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the arithmetic mean of a single-precision floating-point strided\n array, ignoring `NaN` values and using Welford's algorithm and alternative\n indexing semantics.\n","base.strided.snanmin":"\nbase.strided.snanmin( N:integer, x:Float32Array, stride:integer )\n Computes the minimum value of a single-precision floating-point strided\n array, ignoring `NaN` values.\n","base.strided.snanmin.ndarray":"\nbase.strided.snanmin.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the minimum value of a single-precision floating-point strided\n array, ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.snanminabs":"\nbase.strided.snanminabs( N:integer, x:Float32Array, stride:integer )\n Computes the minimum absolute value of a single-precision floating-point\n strided array, ignoring `NaN` values.\n","base.strided.snanminabs.ndarray":"\nbase.strided.snanminabs.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the minimum absolute value of a single-precision floating-point\n strided array, ignoring `NaN` values and using alternative indexing\n semantics.\n","base.strided.snanmskmax":"\nbase.strided.snanmskmax( N:integer, x:Float32Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the maximum value of a single-precision floating-point strided\n array according to a mask, ignoring `NaN` values.\n","base.strided.snanmskmax.ndarray":"\nbase.strided.snanmskmax.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the maximum value of a single-precision floating-point strided\n array according to a mask, ignoring `NaN` values and using alternative\n indexing semantics.\n","base.strided.snanmskmin":"\nbase.strided.snanmskmin( N:integer, x:Float32Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the minimum value of a single-precision floating-point strided\n array according to a mask, ignoring `NaN` values.\n","base.strided.snanmskmin.ndarray":"\nbase.strided.snanmskmin.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the minimum value of a single-precision floating-point strided\n array according to a mask, ignoring `NaN` values and using alternative\n indexing semantics.\n","base.strided.snanmskrange":"\nbase.strided.snanmskrange( N:integer, x:Float32Array, strideX:integer, \n mask:Uint8Array, strideMask:integer )\n Computes the range of a single-precision floating-point strided array\n according to a mask, ignoring `NaN` values.\n","base.strided.snanmskrange.ndarray":"\nbase.strided.snanmskrange.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, mask:Uint8Array, strideMask:integer, offsetMask:integer )\n Computes the range of a single-precision floating-point strided array\n according to a mask, ignoring `NaN` values and using alternative indexing\n semantics.\n","base.strided.snanrange":"\nbase.strided.snanrange( N:integer, x:Float32Array, stride:integer )\n Computes the range of a single-precision floating-point strided array,\n ignoring `NaN` values.\n","base.strided.snanrange.ndarray":"\nbase.strided.snanrange.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the range of a single-precision floating-point strided array,\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.snanstdev":"\nbase.strided.snanstdev( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values.\n","base.strided.snanstdev.ndarray":"\nbase.strided.snanstdev.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and alternative indexing semantics.\n","base.strided.snanstdevch":"\nbase.strided.snanstdevch( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using a one-pass trial mean algorithm.\n","base.strided.snanstdevch.ndarray":"\nbase.strided.snanstdevch.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using a one-pass trial mean algorithm and\n alternative indexing semantics.\n","base.strided.snanstdevpn":"\nbase.strided.snanstdevpn( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using a two-pass algorithm.\n","base.strided.snanstdevpn.ndarray":"\nbase.strided.snanstdevpn.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using a two-pass algorithm and alternative\n indexing semantics.\n","base.strided.snanstdevtk":"\nbase.strided.snanstdevtk( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using a one-pass textbook algorithm.\n","base.strided.snanstdevtk.ndarray":"\nbase.strided.snanstdevtk.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using a one-pass textbook algorithm and\n alternative indexing semantics.\n","base.strided.snanstdevwd":"\nbase.strided.snanstdevwd( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using Welford's algorithm.\n","base.strided.snanstdevwd.ndarray":"\nbase.strided.snanstdevwd.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using Welford's algorithm and alternative\n indexing semantics.\n","base.strided.snanstdevyc":"\nbase.strided.snanstdevyc( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using a one-pass algorithm proposed by\n Youngs and Cramer.\n","base.strided.snanstdevyc.ndarray":"\nbase.strided.snanstdevyc.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array ignoring `NaN` values and using a one-pass algorithm proposed by\n Youngs and Cramer and alternative indexing semantics.\n","base.strided.snansum":"\nbase.strided.snansum( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values.\n","base.strided.snansum.ndarray":"\nbase.strided.snansum.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.snansumkbn":"\nbase.strided.snansumkbn( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using an improved Kahan–Babuška algorithm.\n","base.strided.snansumkbn.ndarray":"\nbase.strided.snansumkbn.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using an improved Kahan–Babuška algorithm and\n alternative indexing semantics.\n","base.strided.snansumkbn2":"\nbase.strided.snansumkbn2( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using a second-order iterative Kahan–Babuška\n algorithm.\n","base.strided.snansumkbn2.ndarray":"\nbase.strided.snansumkbn2.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using a second-order iterative Kahan–Babuška\n algorithm and alternative indexing semantics.\n","base.strided.snansumors":"\nbase.strided.snansumors( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation.\n","base.strided.snansumors.ndarray":"\nbase.strided.snansumors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation and alternative\n indexing semantics.\n","base.strided.snansumpw":"\nbase.strided.snansumpw( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation.\n","base.strided.snansumpw.ndarray":"\nbase.strided.snansumpw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation and alternative indexing\n semantics.\n","base.strided.snanvariance":"\nbase.strided.snanvariance( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values.\n","base.strided.snanvariance.ndarray":"\nbase.strided.snanvariance.ndarray( N:integer, correction:number, \n x:Float32Array, stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using alternative indexing semantics.\n","base.strided.snanvariancech":"\nbase.strided.snanvariancech( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using a one-pass trial mean algorithm.\n","base.strided.snanvariancech.ndarray":"\nbase.strided.snanvariancech.ndarray( N:integer, correction:number, \n x:Float32Array, stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using a one-pass trial mean algorithm and\n alternative indexing semantics.\n","base.strided.snanvariancepn":"\nbase.strided.snanvariancepn( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using a two-pass algorithm.\n","base.strided.snanvariancepn.ndarray":"\nbase.strided.snanvariancepn.ndarray( N:integer, correction:number, \n x:Float32Array, stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using a two-pass algorithm and alternative\n indexing semantics.\n","base.strided.snanvariancetk":"\nbase.strided.snanvariancetk( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using a one-pass textbook algorithm.\n","base.strided.snanvariancetk.ndarray":"\nbase.strided.snanvariancetk.ndarray( N:integer, correction:number, \n x:Float32Array, stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using a one-pass textbook algorithm and\n alternative indexing semantics.\n","base.strided.snanvariancewd":"\nbase.strided.snanvariancewd( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using Welford's algorithm.\n","base.strided.snanvariancewd.ndarray":"\nbase.strided.snanvariancewd.ndarray( N:integer, correction:number, \n x:Float32Array, stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using Welford's algorithm and alternative indexing\n semantics.\n","base.strided.snanvarianceyc":"\nbase.strided.snanvarianceyc( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and\n Cramer.\n","base.strided.snanvarianceyc.ndarray":"\nbase.strided.snanvarianceyc.ndarray( N:integer, correction:number, \n x:Float32Array, stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and\n Cramer and alternative indexing semantics.\n","base.strided.snrm2":"\nbase.strided.snrm2( N:integer, x:Float32Array, stride:integer )\n Computes the L2-norm of a single-precision floating-point vector.\n","base.strided.snrm2.ndarray":"\nbase.strided.snrm2.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the L2-norm of a single-precision floating-point vector using\n alternative indexing semantics.\n","base.strided.sramp":"\nbase.strided.sramp( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Evaluates the ramp function for each element in a single-precision floating-\n point strided array `x` and assigns the results to elements in a single-\n precision floating-point strided array `y`.\n","base.strided.sramp.ndarray":"\nbase.strided.sramp.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Evaluates the ramp function for each element in a single-precision floating-\n point strided array `x` and assigns the results to elements in a single-\n precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.srange":"\nbase.strided.srange( N:integer, x:Float32Array, stride:integer )\n Computes the range of a single-precision floating-point strided array.\n","base.strided.srange.ndarray":"\nbase.strided.srange.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the range of a single-precision floating-point strided array using\n alternative indexing semantics.\n","base.strided.srev":"\nbase.strided.srev( N:integer, x:Float32Array, stride:integer )\n Reverses a single-precision floating-point strided array in-place.\n","base.strided.srev.ndarray":"\nbase.strided.srev.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Reverses a single-precision floating-point strided array in-place using\n alternative indexing semantics.\n","base.strided.srsqrt":"\nbase.strided.srsqrt( N:integer, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Computes the reciprocal square root for each element in a single-precision\n floating-point strided array `x` and assigns the results to elements in a\n single-precision floating-point strided array `y`.\n","base.strided.srsqrt.ndarray":"\nbase.strided.srsqrt.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the reciprocal square root for each element in a single-precision\n floating-point strided array `x` and assigns the results to elements in a\n single-precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.sscal":"\nbase.strided.sscal( N:integer, alpha:number, x:Float32Array, stride:integer )\n Multiplies a single-precision floating-point vector `x` by a constant\n `alpha`.\n","base.strided.sscal.ndarray":"\nbase.strided.sscal.ndarray( N:integer, alpha:number, x:Float32Array, \n stride:integer, offset:integer )\n Multiplies a single-precision floating-point vector `x` by a constant\n `alpha` using alternative indexing semantics.\n","base.strided.ssort2hp":"\nbase.strided.ssort2hp( N:integer, order:number, x:Float32Array, \n strideX:integer, y:Float32Array, strideY:integer )\n Simultaneously sorts two single-precision floating-point strided arrays\n based on the sort order of the first array using heapsort.\n","base.strided.ssort2hp.ndarray":"\nbase.strided.ssort2hp.ndarray( N:integer, order:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Simultaneously sorts two single-precision floating-point strided arrays\n based on the sort order of the first array using heapsort and alternative\n indexing semantics.\n","base.strided.ssort2ins":"\nbase.strided.ssort2ins( N:integer, order:number, x:Float32Array, \n strideX:integer, y:Float32Array, strideY:integer )\n Simultaneously sorts two single-precision floating-point strided arrays\n based on the sort order of the first array using insertion sort.\n","base.strided.ssort2ins.ndarray":"\nbase.strided.ssort2ins.ndarray( N:integer, order:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Simultaneously sorts two single-precision floating-point strided arrays\n based on the sort order of the first array using insertion sort and\n alternative indexing semantics.\n","base.strided.ssort2sh":"\nbase.strided.ssort2sh( N:integer, order:number, x:Float32Array, \n strideX:integer, y:Float32Array, strideY:integer )\n Simultaneously sorts two single-precision floating-point strided arrays\n based on the sort order of the first array using Shellsort.\n","base.strided.ssort2sh.ndarray":"\nbase.strided.ssort2sh.ndarray( N:integer, order:number, x:Float32Array, \n strideX:integer, offsetX:integer, y:Float32Array, strideY:integer, \n offsetY:integer )\n Simultaneously sorts two single-precision floating-point strided arrays\n based on the sort order of the first array using Shellsort and alternative\n indexing semantics.\n","base.strided.ssorthp":"\nbase.strided.ssorthp( N:integer, order:number, x:Float32Array, stride:integer )\n Sorts a single-precision floating-point strided array using heapsort.\n","base.strided.ssorthp.ndarray":"\nbase.strided.ssorthp.ndarray( N:integer, order:number, x:Float32Array, \n stride:integer, offset:integer )\n Sorts a single-precision floating-point strided array using heapsort and\n alternative indexing semantics.\n","base.strided.ssortins":"\nbase.strided.ssortins( N:integer, order:number, x:Float32Array, stride:integer )\n Sorts a single-precision floating-point strided array using insertion sort.\n","base.strided.ssortins.ndarray":"\nbase.strided.ssortins.ndarray( N:integer, order:number, x:Float32Array, \n stride:integer, offset:integer )\n Sorts a single-precision floating-point strided array using insertion sort\n and alternative indexing semantics.\n","base.strided.ssortsh":"\nbase.strided.ssortsh( N:integer, order:number, x:Float32Array, stride:integer )\n Sorts a single-precision floating-point strided array using Shellsort.\n","base.strided.ssortsh.ndarray":"\nbase.strided.ssortsh.ndarray( N:integer, order:number, x:Float32Array, \n stride:integer, offset:integer )\n Sorts a single-precision floating-point strided array using Shellsort and\n alternative indexing semantics.\n","base.strided.ssqrt":"\nbase.strided.ssqrt( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Computes the principal square root for each element in a single-precision\n floating-point strided array `x` and assigns the results to elements in a\n single-precision floating-point strided array `y`.\n","base.strided.ssqrt.ndarray":"\nbase.strided.ssqrt.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Computes the principal square root for each element in a single-precision\n floating-point strided array `x` and assigns the results to elements in a\n single-precision floating-point strided array `y` using alternative indexing\n semantics.\n","base.strided.sstdev":"\nbase.strided.sstdev( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array.\n","base.strided.sstdev.ndarray":"\nbase.strided.sstdev.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using alternative indexing semantics.\n","base.strided.sstdevch":"\nbase.strided.sstdevch( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using a one-pass trial mean algorithm.\n","base.strided.sstdevch.ndarray":"\nbase.strided.sstdevch.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using a one-pass trial mean algorithm and alternative indexing\n semantics.\n","base.strided.sstdevpn":"\nbase.strided.sstdevpn( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using a two-pass algorithm.\n","base.strided.sstdevpn.ndarray":"\nbase.strided.sstdevpn.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using a two-pass algorithm and alternative indexing semantics.\n","base.strided.sstdevtk":"\nbase.strided.sstdevtk( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using a one-pass textbook algorithm.\n","base.strided.sstdevtk.ndarray":"\nbase.strided.sstdevtk.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using a one-pass textbook algorithm and alternative indexing\n semantics.\n","base.strided.sstdevwd":"\nbase.strided.sstdevwd( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using Welford's algorithm.\n","base.strided.sstdevwd.ndarray":"\nbase.strided.sstdevwd.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using Welford's algorithm and alternative indexing semantics.\n","base.strided.sstdevyc":"\nbase.strided.sstdevyc( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using a one-pass algorithm proposed by Youngs and Cramer.\n","base.strided.sstdevyc.ndarray":"\nbase.strided.sstdevyc.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the standard deviation of a single-precision floating-point strided\n array using a one-pass algorithm proposed by Youngs and Cramer and\n alternative indexing semantics.\n","base.strided.ssum":"\nbase.strided.ssum( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements.\n","base.strided.ssum.ndarray":"\nbase.strided.ssum.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using alternative indexing semantics.\n","base.strided.ssumkbn":"\nbase.strided.ssumkbn( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements\n using an improved Kahan–Babuška algorithm.\n","base.strided.ssumkbn.ndarray":"\nbase.strided.ssumkbn.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using an improved Kahan–Babuška algorithm and alternative indexing\n semantics.\n","base.strided.ssumkbn2":"\nbase.strided.ssumkbn2( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements\n using a second-order iterative Kahan–Babuška algorithm.\n","base.strided.ssumkbn2.ndarray":"\nbase.strided.ssumkbn2.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using a second-order iterative Kahan–Babuška algorithm and alternative\n indexing semantics.\n","base.strided.ssumors":"\nbase.strided.ssumors( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements\n using ordinary recursive summation.\n","base.strided.ssumors.ndarray":"\nbase.strided.ssumors.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using ordinary recursive summation and alternative indexing semantics.\n","base.strided.ssumpw":"\nbase.strided.ssumpw( N:integer, x:Float32Array, stride:integer )\n Computes the sum of single-precision floating-point strided array elements\n using pairwise summation.\n","base.strided.ssumpw.ndarray":"\nbase.strided.ssumpw.ndarray( N:integer, x:Float32Array, stride:integer, \n offset:integer )\n Computes the sum of single-precision floating-point strided array elements\n using pairwise summation and alternative indexing semantics.\n","base.strided.sswap":"\nbase.strided.sswap( N:integer, x:Float32Array, strideX:integer, y:Float32Array, \n strideY:integer )\n Interchanges two single-precision floating-point vectors.\n","base.strided.sswap.ndarray":"\nbase.strided.sswap.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Interchanges two single-precision floating-point vectors using alternative\n indexing semantics.\n","base.strided.stdev":"\nbase.strided.stdev( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array.\n","base.strided.stdev.ndarray":"\nbase.strided.stdev.ndarray( N:integer, correction:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Computes the standard deviation of a strided array using alternative\n indexing semantics.\n","base.strided.stdevch":"\nbase.strided.stdevch( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array using a one-pass trial\n mean algorithm.\n","base.strided.stdevch.ndarray":"\nbase.strided.stdevch.ndarray( N:integer, correction:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Computes the standard deviation of a strided array using a one-pass trial\n mean algorithm and alternative indexing semantics.\n","base.strided.stdevpn":"\nbase.strided.stdevpn( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array using a two-pass\n algorithm.\n","base.strided.stdevpn.ndarray":"\nbase.strided.stdevpn.ndarray( N:integer, correction:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Computes the standard deviation of a strided array using a two-pass\n algorithm and alternative indexing semantics.\n","base.strided.stdevtk":"\nbase.strided.stdevtk( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array using a one-pass textbook\n algorithm.\n","base.strided.stdevtk.ndarray":"\nbase.strided.stdevtk.ndarray( N:integer, correction:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Computes the standard deviation of a strided array using a one-pass textbook\n algorithm and alternative indexing semantics.\n","base.strided.stdevwd":"\nbase.strided.stdevwd( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array using Welford's\n algorithm.\n","base.strided.stdevwd.ndarray":"\nbase.strided.stdevwd.ndarray( N:integer, correction:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Computes the standard deviation of a strided array using Welford's algorithm\n and alternative indexing semantics.\n","base.strided.stdevyc":"\nbase.strided.stdevyc( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the standard deviation of a strided array using a one-pass\n algorithm proposed by Youngs and Cramer.\n","base.strided.stdevyc.ndarray":"\nbase.strided.stdevyc.ndarray( N:integer, correction:number, x:Array|TypedArray, \n stride:integer, offset:integer )\n Computes the standard deviation of a strided array using a one-pass\n algorithm proposed by Youngs and Cramer and alternative indexing semantics.\n","base.strided.strunc":"\nbase.strided.strunc( N:integer, x:Float32Array, strideX:integer, \n y:Float32Array, strideY:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward zero and assigns the results to elements in a single-precision\n floating-point strided array `y`.\n","base.strided.strunc.ndarray":"\nbase.strided.strunc.ndarray( N:integer, x:Float32Array, strideX:integer, \n offsetX:integer, y:Float32Array, strideY:integer, offsetY:integer )\n Rounds each element in a single-precision floating-point strided array `x`\n toward zero and assigns the results to elements in a single-precision\n floating-point strided array `y` using alternative indexing semantics.\n","base.strided.svariance":"\nbase.strided.svariance( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array.\n","base.strided.svariance.ndarray":"\nbase.strided.svariance.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n using alternative indexing semantics.\n","base.strided.svariancech":"\nbase.strided.svariancech( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n using a one-pass trial mean algorithm.\n","base.strided.svariancech.ndarray":"\nbase.strided.svariancech.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n using a one-pass trial mean algorithm and alternative indexing semantics.\n","base.strided.svariancepn":"\nbase.strided.svariancepn( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n using a two-pass algorithm.\n","base.strided.svariancepn.ndarray":"\nbase.strided.svariancepn.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n using a two-pass algorithm and alternative indexing semantics.\n","base.strided.svariancetk":"\nbase.strided.svariancetk( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n using a one-pass textbook algorithm.\n","base.strided.svariancetk.ndarray":"\nbase.strided.svariancetk.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n using a one-pass textbook algorithm and alternative indexing semantics.\n","base.strided.svariancewd":"\nbase.strided.svariancewd( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n using Welford's algorithm.\n","base.strided.svariancewd.ndarray":"\nbase.strided.svariancewd.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n using Welford's algorithm and alternative indexing semantics.\n","base.strided.svarianceyc":"\nbase.strided.svarianceyc( N:integer, correction:number, x:Float32Array, \n stride:integer )\n Computes the variance of a single-precision floating-point strided array\n using a one-pass algorithm proposed by Youngs and Cramer.\n","base.strided.svarianceyc.ndarray":"\nbase.strided.svarianceyc.ndarray( N:integer, correction:number, x:Float32Array, \n stride:integer, offset:integer )\n Computes the variance of a single-precision floating-point strided array\n using a one-pass algorithm proposed by Youngs and Cramer and alternative\n indexing semantics.\n","base.strided.ternary":"\nbase.strided.ternary( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n fcn:Function )\n Applies a ternary callback to strided input array elements and assigns\n results to elements in a strided output array.\n","base.strided.ternary.ndarray":"\nbase.strided.ternary.ndarray( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n offsets:ArrayLikeObject, fcn:Function )\n Applies a ternary callback to strided input array elements and assigns\n results to elements in a strided output array using alternative indexing\n semantics.\n","base.strided.unary":"\nbase.strided.unary( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n fcn:Function )\n Applies a unary callback to elements in a strided input array and assigns\n results to elements in a strided output array.\n","base.strided.unary.ndarray":"\nbase.strided.unary.ndarray( arrays:ArrayLikeObject, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n offsets:ArrayLikeObject, fcn:Function )\n Applies a unary callback to elements in a strided input array and assigns\n results to elements in a strided output array using alternative indexing\n semantics.\n","base.strided.variance":"\nbase.strided.variance( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array.\n","base.strided.variance.ndarray":"\nbase.strided.variance.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array using alternative indexing\n semantics.\n","base.strided.variancech":"\nbase.strided.variancech( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array using a one-pass trial mean\n algorithm.\n","base.strided.variancech.ndarray":"\nbase.strided.variancech.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array using a one-pass trial mean\n algorithm and alternative indexing semantics.\n","base.strided.variancepn":"\nbase.strided.variancepn( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array using a two-pass algorithm.\n","base.strided.variancepn.ndarray":"\nbase.strided.variancepn.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array using a two-pass algorithm and\n alternative indexing semantics.\n","base.strided.variancetk":"\nbase.strided.variancetk( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array using a one-pass textbook\n algorithm.\n","base.strided.variancetk.ndarray":"\nbase.strided.variancetk.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array using a one-pass textbook algorithm\n and alternative indexing semantics.\n","base.strided.variancewd":"\nbase.strided.variancewd( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array using Welford's algorithm.\n","base.strided.variancewd.ndarray":"\nbase.strided.variancewd.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array using Welford's algorithm and\n alternative indexing semantics.\n","base.strided.varianceyc":"\nbase.strided.varianceyc( N:integer, correction:number, x:Array|TypedArray, \n stride:integer )\n Computes the variance of a strided array using a one-pass algorithm proposed\n by Youngs and Cramer.\n","base.strided.varianceyc.ndarray":"\nbase.strided.varianceyc.ndarray( N:integer, correction:number, \n x:Array|TypedArray, stride:integer, offset:integer )\n Computes the variance of a strided array using a one-pass algorithm proposed\n by Youngs and Cramer and alternative indexing semantics.\n","base.strided.zmap":"\nbase.strided.zmap( N:integer, x:Complex128Array, strideX:integer, \n y:Complex128Array, strideY:integer, fcn:Function )\n Applies a unary function to a double-precision complex floating-point\n strided input array and assigns results to a double-precision complex\n floating-point strided output array.\n","base.strided.zmap.ndarray":"\nbase.strided.zmap.ndarray( N:integer, x:Complex128Array, strideX:integer, \n offsetX:integer, y:Complex128Array, strideY:integer, offsetY:integer, \n fcn:Function )\n Applies a unary function to a double-precision complex floating-point\n strided input array and assigns results to a double-precision complex\n floating-point strided output array using alternative indexing semantics.\n","base.sub":"\nbase.sub( x:number, y:number )\n Subtracts two double-precision floating-point numbers `x` and `y`.\n","base.subf":"\nbase.subf( x:number, y:number )\n Subtracts two single-precision floating-point numbers `x` and `y`.\n","base.sumSeries":"\nbase.sumSeries( generator:Function[, options:Object] )\n Sum the elements of the series given by the supplied function.\n","base.tan":"\nbase.tan( x:number )\n Computes the tangent of a number.\n","base.tanh":"\nbase.tanh( x:number )\n Computes the hyperbolic tangent of a number.\n","base.toBinaryString":"\nbase.toBinaryString( x:number )\n Returns a string giving the literal bit representation of a double-precision\n floating-point number.\n","base.toBinaryStringf":"\nbase.toBinaryStringf( x:float )\n Returns a string giving the literal bit representation of a single-precision\n floating-point number.\n","base.toBinaryStringUint8":"\nbase.toBinaryStringUint8( x:integer )\n Returns a string giving the literal bit representation of an unsigned 8-bit\n integer.\n","base.toBinaryStringUint16":"\nbase.toBinaryStringUint16( x:integer )\n Returns a string giving the literal bit representation of an unsigned 16-bit\n integer.\n","base.toBinaryStringUint32":"\nbase.toBinaryStringUint32( x:integer )\n Returns a string giving the literal bit representation of an unsigned 32-bit\n integer.\n","base.toWordf":"\nbase.toWordf( x:float )\n Returns an unsigned 32-bit integer corresponding to the IEEE 754 binary\n representation of a single-precision floating-point number.\n","base.toWords":"\nbase.toWords( [out:Array|TypedArray|Object,] x:number )\n Splits a double-precision floating-point number into a higher order word\n (unsigned 32-bit integer) and a lower order word (unsigned 32-bit integer).\n","base.transpose":"\nbase.transpose( x:ndarray )\n Transposes a matrix (or a stack of matrices).\n","base.tribonacci":"\nbase.tribonacci( n:integer )\n Computes the nth Tribonacci number.\n","base.trigamma":"\nbase.trigamma( x:number )\n Evaluates the trigamma function.\n","base.trunc":"\nbase.trunc( x:number )\n Rounds a double-precision floating-point number toward zero.\n","base.trunc2":"\nbase.trunc2( x:number )\n Rounds a numeric value to the nearest power of two toward zero.\n","base.trunc10":"\nbase.trunc10( x:number )\n Rounds a numeric value to the nearest power of ten toward zero.\n","base.truncb":"\nbase.truncb( x:number, n:integer, b:integer )\n Rounds a numeric value to the nearest multiple of `b^n` toward zero.\n","base.truncf":"\nbase.truncf( x:number )\n Rounds a single-precision floating-point number toward zero.\n","base.truncn":"\nbase.truncn( x:number, n:integer )\n Rounds a numeric value to the nearest multiple of `10^n` toward zero.\n","base.truncsd":"\nbase.truncsd( x:number, n:integer[, b:integer] )\n Rounds a numeric value to the nearest number toward zero with `n`\n significant figures.\n","base.umul":"\nbase.umul( a:integer, b:integer )\n Performs C-like multiplication of two unsigned 32-bit integers.\n","base.umuldw":"\nbase.umuldw( [out:ArrayLikeObject,] a:integer, b:integer )\n Multiplies two unsigned 32-bit integers and returns an array of two unsigned\n 32-bit integers which represents the unsigned 64-bit integer product.\n","base.uint32ToInt32":"\nbase.uint32ToInt32( x:integer )\n Converts an unsigned 32-bit integer to a signed 32-bit integer.\n","base.vercos":"\nbase.vercos( x:number )\n Computes the versed cosine.\n","base.versin":"\nbase.versin( x:number )\n Computes the versed sine.\n","base.wrap":"\nbase.wrap( v:number, min:number, max:number )\n Wraps a value on the half-open interval `[min,max)`.\n","base.xlog1py":"\nbase.xlog1py( x:number, y:number )\n Computes `x * ln(y+1)` so that the result is `0` if `x = 0`.\n","base.xlogy":"\nbase.xlogy( x:number, y:number )\n Computes `x * ln(y)` so that the result is `0` if `x = 0`.\n","base.zeta":"\nbase.zeta( s:number )\n Evaluates the Riemann zeta function as a function of a real variable `s`.\n","BERNDT_CPS_WAGES_1985":"\nBERNDT_CPS_WAGES_1985()\n Returns a random sample of 534 workers from the Current Population Survey\n (CPS) from 1985, including their wages and and other characteristics.\n","bifurcate":"\nbifurcate( collection:Array|TypedArray|Object, [options:Object,] \n filter:Array|TypedArray|Object )\n Splits values into two groups.\n","bifurcateBy":"\nbifurcateBy( collection:Array|TypedArray|Object, [options:Object,] \n predicate:Function )\n Splits values into two groups according to a predicate function.\n","bifurcateByAsync":"\nbifurcateByAsync( collection:Array|TypedArray|Object, [options:Object,] \n predicate:Function, done:Function )\n Splits values into two groups according to a predicate function.\n","bifurcateByAsync.factory":"\nbifurcateByAsync.factory( [options:Object,] predicate:Function )\n Returns a function which splits values into two groups according to an\n predicate function.\n","bifurcateIn":"\nbifurcateIn( obj:Object|Array|TypedArray, [options:Object,] predicate:Function )\n Splits values into two groups according to a predicate function.\n","bifurcateOwn":"\nbifurcateOwn( obj:Object|Array|TypedArray, [options:Object,] \n predicate:Function )\n Splits values into two groups according to a predicate function.\n","BigInt":"\nBigInt( value:integer|string )\n Returns a BigInt.\n","binomialTest":"\nbinomialTest( x:(number|Array[, n:Array][, options:Object] )\n Computes an exact test for the success probability in a Bernoulli\n experiment.\n","Boolean":"\nBoolean( value:any )\n Returns a boolean.\n","Boolean.prototype.toString":"\nBoolean.prototype.toString()\n Returns a string representing the `Boolean` object.\n","Boolean.prototype.valueOf":"\nBoolean.prototype.valueOf()\n Returns the primitive value of a `Boolean` object.\n","Buffer":"\nBuffer\n\nBuffer( size:integer )\n Allocates a buffer having a specified number of bytes.\n\nBuffer( buffer:Buffer )\n Copies buffer data to a new Buffer instance.\n\nBuffer( array:Array )\n Allocates a buffer using an array of octets.\n\nBuffer( str:string[, encoding:string] )\n Allocates a buffer containing a provided string.\n","buffer2json":"\nbuffer2json( buffer:Buffer )\n Returns a JSON representation of a buffer.\n","BYTE_ORDER":"\nBYTE_ORDER\n Platform byte order.\n","camelcase":"\ncamelcase( str:string )\n Converts a string to camel case.\n","capitalize":"\ncapitalize( str:string )\n Capitalizes the first character in a string.\n","capitalizeKeys":"\ncapitalizeKeys( obj:Object )\n Converts the first letter of each object key to uppercase.\n","CATALAN":"\nCATALAN\n Catalan's constant.\n","CBRT_EPS":"\nCBRT_EPS\n Cube root of double-precision floating-point epsilon.\n","CDC_NCHS_US_BIRTHS_1969_1988":"\nCDC_NCHS_US_BIRTHS_1969_1988()\n Returns US birth data from 1969 to 1988, as provided by the Center for\n Disease Control and Prevention's National Center for Health Statistics.\n","CDC_NCHS_US_BIRTHS_1994_2003":"\nCDC_NCHS_US_BIRTHS_1994_2003()\n Returns US birth data from 1994 to 2003, as provided by the Center for\n Disease Control and Prevention's National Center for Health Statistics.\n","CDC_NCHS_US_INFANT_MORTALITY_BW_1915_2013":"\nCDC_NCHS_US_INFANT_MORTALITY_BW_1915_2013()\n Returns US infant mortality data, by race, from 1915 to 2013, as provided by\n the Center for Disease Control and Prevention's National Center for Health\n Statistics.\n","chdir":"\nchdir( path:string )\n Changes the current working directory.\n","chi2gof":"\nchi2gof( x:ndarray|Array|TypedArray, y:ndarray|Array|TypedArray|string[, \n ...args:number][, options:Object] )\n Performs a chi-square goodness-of-fit test.\n","chi2test":"\nchi2test( x:(MatrixLike|Array[, options:Object] )\n Performs a chi-square independence test.\n","circarray2iterator":"\ncircarray2iterator( src:ArrayLikeObject[, options:Object][, mapFcn:Function[, \n thisArg:any]] )\n Returns an iterator which repeatedly iterates over the elements of an array-\n like object.\n","circularArrayStream":"\ncircularArrayStream( src:ArrayLikeObject[, options:Object] )\n Creates a readable stream from an array-like object which repeatedly\n iterates over the provided value's elements.\n","circularArrayStream.factory":"\ncircularArrayStream.factory( [options:Object] )\n Returns a function for creating readable streams from array-like objects\n which repeatedly iterate over the elements of provided values.\n","circularArrayStream.objectMode":"\ncircularArrayStream.objectMode( src:ArrayLikeObject[, options:Object] )\n Returns an \"objectMode\" readable stream from an array-like object which\n repeatedly iterates over a provided value's elements.\n","CircularBuffer":"\nCircularBuffer( buffer:integer|ArrayLike )\n Circular buffer constructor.\n","CircularBuffer.prototype.clear":"\nCircularBuffer.prototype.clear()\n Clears a buffer.\n","CircularBuffer.prototype.count":"\nCircularBuffer.prototype.count\n Read-only property returning the number of elements currently in the buffer.\n","CircularBuffer.prototype.full":"\nCircularBuffer.prototype.full\n Read-only property returning a boolean indicating whether a circular buffer\n is full.\n","CircularBuffer.prototype.iterator":"\nCircularBuffer.prototype.iterator( [niters:integer] )\n Returns an iterator for iterating over a circular buffer.\n","CircularBuffer.prototype.length":"\nCircularBuffer.prototype.length\n Read-only property returning the buffer length (i.e., capacity).\n","CircularBuffer.prototype.push":"\nCircularBuffer.prototype.push( value:any )\n Adds a value to a circular buffer.\n","CircularBuffer.prototype.toArray":"\nCircularBuffer.prototype.toArray()\n Returns an array of circular buffer values.\n","CircularBuffer.prototype.toJSON":"\nCircularBuffer.prototype.toJSON()\n Serializes a circular buffer as JSON.\n","close":"\nclose( fd:integer, clbk:Function )\n Asynchronously closes a file descriptor, so that the file descriptor no\n longer refers to any file and may be reused.\n","close.sync":"\nclose.sync( fd:integer )\n Synchronously closes a file descriptor.\n","CMUDICT":"\nCMUDICT( [options:Object] )\n Returns datasets from the Carnegie Mellon Pronouncing Dictionary (CMUdict).\n","codePointAt":"\ncodePointAt( str:string, idx:integer[, backward:boolean] )\n Returns a Unicode code point from a string at a specified position.\n","commonKeys":"\ncommonKeys( obj1:any, obj2:any[, ...obj:any] )\n Returns the common own property names of two or more objects.\n","commonKeysIn":"\ncommonKeysIn( obj1:any, obj2:any[, ...obj:any] )\n Returns the common own and inherited property names of two or more objects.\n","complex":"\ncomplex( real:number, imag:number[, dtype:string] )\n Creates a complex number.\n","Complex64":"\nComplex64( real:number, imag:number )\n 64-bit complex number constructor.\n","COMPLEX64_NUM_BYTES":"\nCOMPLEX64_NUM_BYTES\n Size (in bytes) of a 64-bit complex number.\n","Complex128":"\nComplex128( real:number, imag:number )\n 128-bit complex number constructor.\n","COMPLEX128_NUM_BYTES":"\nCOMPLEX128_NUM_BYTES\n Size (in bytes) of a 128-bit complex number.\n","complexarray":"\ncomplexarray( [dtype:string] )\n Creates a complex typed array.\n\ncomplexarray( length:integer[, dtype:string] )\n Returns a complex number typed array having a specified length.\n\ncomplexarray( complexarray:ComplexArray[, dtype:string] )\n Creates a complex number typed array from another complex number typed\n array.\n\ncomplexarray( obj:Object[, dtype:string] )\n Creates a complex number typed array from an array-like object or iterable.\n\ncomplexarray( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]][, \n dtype:string] )\n Returns a complex number typed array view of an ArrayBuffer.\n","complexarrayCtors":"\ncomplexarrayCtors( dtype:string )\n Returns a complex typed array constructor.\n","complexarrayDataTypes":"\ncomplexarrayDataTypes()\n Returns a list of complex typed array data types.\n","complexCtors":"\ncomplexCtors( dtype:string )\n Returns a complex number constructor.\n","complexDataType":"\ncomplexDataType( value:any )\n Returns the data type of a complex number object.\n","complexDataTypes":"\ncomplexDataTypes()\n Returns a list of complex number data types.\n","complexPromotionRules":"\ncomplexPromotionRules( [dtype1:string, dtype2:string] )\n Returns the complex number data type with the smallest size and closest\n \"kind\" to which data types can be safely cast.\n","compose":"\ncompose( ...f:Function )\n Function composition.\n","composeAsync":"\ncomposeAsync( ...f:Function )\n Function composition.\n","configdir":"\nconfigdir( [p:string] )\n Returns a directory for user-specific configuration files.\n","conj":"\nconj( z:Complex128 )\n Returns the complex conjugate of a double-precision complex floating-point\n number.\n","conjf":"\nconjf( z:Complex64 )\n Returns the complex conjugate of a single-precision complex floating-point\n number.\n","constantcase":"\nconstantcase( str:string )\n Converts a string to constant case.\n","constantFunction":"\nconstantFunction( val:any )\n Creates a function which always returns the same value.\n","constantStream":"\nconstantStream( value:string|Buffer|Uint8Array|any[, options:Object] )\n Returns a readable stream which always streams the same value.\n","constantStream.factory":"\nconstantStream.factory( [value:string|Buffer|Uint8Array|any, ][options:Object] )\n Returns a function for creating readable streams which always stream the\n same value.\n","constantStream.objectMode":"\nconstantStream.objectMode( value:any[, options:Object] )\n Returns an \"objectMode\" readable stream which always streams the same value.\n","constructorName":"\nconstructorName( val:any )\n Determines the name of a value's constructor.\n","contains":"\ncontains( val:ArrayLike, searchValue:any[, position:integer] )\n Tests if an array-like value contains a search value.\n","convertArray":"\nconvertArray( arr:ArrayLikeObject, dtype:string )\n Converts an input array to an array of a different data type.\n","convertArraySame":"\nconvertArraySame( x:ArrayLikeObject, y:Array|TypedArray )\n Converts an input array to the same data type as a second input array.\n","convertPath":"\nconvertPath( from:string, to:string )\n Converts between POSIX and Windows paths.\n","copy":"\ncopy( value:any[, level:integer] )\n Copy or deep clone a value to an arbitrary depth.\n","copyBuffer":"\ncopyBuffer( buffer:Buffer )\n Copies buffer data to a new Buffer instance.\n","countBy":"\ncountBy( collection:Array|TypedArray|Object, [options:Object,] \n indicator:Function )\n Groups values according to an indicator function and returns group counts.\n","countByAsync":"\ncountByAsync( collection:Array|TypedArray|Object, [options:Object,] \n indicator:Function, done:Function )\n Groups values according to an indicator function and returns group counts.\n","countByAsync.factory":"\ncountByAsync.factory( [options:Object,] indicator:Function )\n Returns a function which groups values according to an indicator function\n and returns group counts.\n","currentYear":"\ncurrentYear()\n Returns the current year.\n","curry":"\ncurry( fcn:Function[, arity:integer][, thisArg:any] )\n Transforms a function into a sequence of functions each accepting a single\n argument.\n","curryRight":"\ncurryRight( fcn:Function[, arity:integer][, thisArg:any] )\n Transforms a function into a sequence of functions each accepting a single\n argument.\n","cwd":"\ncwd()\n Returns the current working directory.\n","DALE_CHALL_NEW":"\nDALE_CHALL_NEW()\n Returns a list of familiar English words.\n","datasets":"\ndatasets( name:string[, options:Object] )\n Returns a dataset.\n","DataView":"\nDataView( buffer:ArrayBuffer|SharedArrayBuffer[, byteOffset:integer[, \n byteLength:integer]] )\n Returns a data view representing a provided array buffer.\n","DataView.prototype.buffer":"\nDataView.prototype.buffer\n Read-only property which returns the underyling array buffer.\n","DataView.prototype.byteLength":"\nDataView.prototype.byteLength\n Read-only property which returns the length (in bytes) of the view.\n","DataView.prototype.byteOffset":"\nDataView.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the view to the\n start of the underlying array buffer.\n","datespace":"\ndatespace( start:number, stop:number[, length:integer][ , options:Object] )\n Generates an array of linearly spaced dates.\n","dayOfQuarter":"\ndayOfQuarter( [month:string|integer|Date[, day:integer, year:integer]] )\n Returns the day of the quarter.\n","dayOfYear":"\ndayOfYear( [month:string|integer|Date[, day:integer, year:integer]] )\n Returns the day of the year.\n","daysInMonth":"\ndaysInMonth( [month:string|integer|Date[, year:integer]] )\n Returns the number of days in a month.\n","daysInYear":"\ndaysInYear( [value:integer|Date] )\n Returns the number of days in a year according to the Gregorian calendar.\n","ddot":"\nddot( x:ndarray, y:ndarray )\n Computes the dot product of two double-precision floating-point vectors.\n","debugSinkStream":"\ndebugSinkStream( [options:Object,] [clbk:Function] )\n Returns a writable stream for debugging stream pipelines.\n","debugSinkStream.factory":"\ndebugSinkStream.factory( [options:Object] )\n Returns a function for creating writable streams for debugging stream\n pipelines.\n","debugSinkStream.objectMode":"\ndebugSinkStream.objectMode( [options:Object,] [clbk:Function] )\n Returns an \"objectMode\" writable stream for debugging stream pipelines.\n","debugStream":"\ndebugStream( [options:Object,] [clbk:Function] )\n Returns a transform stream for debugging stream pipelines.\n","debugStream.factory":"\ndebugStream.factory( [options:Object] )\n Returns a function for creating transform streams for debugging stream\n pipelines.\n","debugStream.objectMode":"\ndebugStream.objectMode( [options:Object,] [clbk:Function] )\n Returns an \"objectMode\" transform stream for debugging stream pipelines.\n","decorateAfter":"\ndecorateAfter( fcn:Function, arity:integer, after:Function[, thisArg:any] )\n Decorates a provided function such that the function's return value is\n provided as an argument to another function.\n","decorateAfter.factory":"\ndecorateAfter.factory( fcn:Function, arity:integer, after:Function[, \n thisArg:any] )\n Uses code generation to decorate a provided function such that the\n function's return value is provided as an argument to another function.\n","deepEqual":"\ndeepEqual( a:any, b:any )\n Tests for deep equality between two values.\n","deepGet":"\ndeepGet( obj:ObjectLike, path:string|Array[, options:Object] )\n Returns a nested property value.\n","deepGet.factory":"\ndeepGet.factory( path:string|Array[, options:Object] )\n Creates a reusable deep get function.\n","deepHasOwnProp":"\ndeepHasOwnProp( value:any, path:string|Array[, options:Object] )\n Returns a boolean indicating whether an object contains a nested key path.\n","deepHasOwnProp.factory":"\ndeepHasOwnProp.factory( path:string|Array[, options:Object] )\n Returns a function which tests whether an object contains a nested key path.\n","deepHasProp":"\ndeepHasProp( value:any, path:string|Array[, options:Object] )\n Returns a boolean indicating whether an object contains a nested key path,\n either own or inherited.\n","deepHasProp.factory":"\ndeepHasProp.factory( path:string|Array[, options:Object] )\n Returns a function which tests whether an object contains a nested key path,\n either own or inherited.\n","deepPluck":"\ndeepPluck( arr:Array, path:string|Array[, options:Object] )\n Extracts a nested property value from each element of an object array.\n","deepSet":"\ndeepSet( obj:ObjectLike, path:string|Array, value:any[, options:Object] )\n Sets a nested property value.\n","deepSet.factory":"\ndeepSet.factory( path:string|Array[, options:Object] )\n Creates a reusable deep set function.\n","defineMemoizedProperty":"\ndefineMemoizedProperty( obj:Object, prop:string|symbol, descriptor:Object )\n Defines a memoized object property.\n","defineProperties":"\ndefineProperties( obj:Object, properties:Object )\n Defines (and/or modifies) object properties.\n","defineProperty":"\ndefineProperty( obj:Object, prop:string|symbol, descriptor:Object )\n Defines (or modifies) an object property.\n","dirname":"\ndirname( path:string )\n Returns a directory name.\n","DoublyLinkedList":"\nDoublyLinkedList()\n Doubly linked list constructor.\n","doUntil":"\ndoUntil( fcn:Function, predicate:Function[, thisArg:any] )\n Invokes a function until a test condition is true.\n","doUntilAsync":"\ndoUntilAsync( fcn:Function, predicate:Function, done:Function[, thisArg:any] )\n Invokes a function until a test condition is true.\n","doUntilEach":"\ndoUntilEach( collection:Array|TypedArray|Object, fcn:Function, \n predicate:Function[, thisArg:any] )\n Until a test condition is true, invokes a function for each element in a\n collection.\n","doUntilEachRight":"\ndoUntilEachRight( collection:Array|TypedArray|Object, fcn:Function, \n predicate:Function[, thisArg:any] )\n Until a test condition is true, invokes a function for each element in a\n collection, iterating from right to left.\n","doWhile":"\ndoWhile( fcn:Function, predicate:Function[, thisArg:any] )\n Invokes a function while a test condition is true.\n","doWhileAsync":"\ndoWhileAsync( fcn:Function, predicate:Function, done:Function[, thisArg:any] )\n Invokes a function while a test condition is true.\n","doWhileEach":"\ndoWhileEach( collection:Array|TypedArray|Object, fcn:Function, \n predicate:Function[, thisArg:any] )\n While a test condition is true, invokes a function for each element in a\n collection.\n","doWhileEachRight":"\ndoWhileEachRight( collection:Array|TypedArray|Object, fcn:Function, \n predicate:Function[, thisArg:any] )\n While a test condition is true, invokes a function for each element in a\n collection, iterating from right to left.\n","dswap":"\ndswap( x:ndarray, y:ndarray )\n Interchanges two double-precision floating-point vectors.\n","E":"\nE\n Euler's number.\n","EMOJI":"\nEMOJI()\n Returns an emoji database.\n","EMOJI_CODE_PICTO":"\nEMOJI_CODE_PICTO()\n Returns an object mapping emoji codes to pictographs.\n","EMOJI_PICTO_CODE":"\nEMOJI_PICTO_CODE()\n Returns an object mapping emoji pictographs to codes.\n","emptyStream":"\nemptyStream( [options:Object] )\n Returns an \"empty\" readable stream.\n","emptyStream.factory":"\nemptyStream.factory( [options:Object] )\n Returns a function for creating empty readable streams.\n","emptyStream.objectMode":"\nemptyStream.objectMode()\n Returns an \"objectMode\" empty readable stream.\n","endsWith":"\nendsWith( str:string, search:string[, len:integer] )\n Tests if a string ends with the characters of another string.\n","enumerableProperties":"\nenumerableProperties( value:any )\n Returns an array of an object's own enumerable property names and symbols.\n","enumerablePropertiesIn":"\nenumerablePropertiesIn( value:any )\n Returns an array of an object's own and inherited enumerable property names\n and symbols.\n","enumerablePropertySymbols":"\nenumerablePropertySymbols( value:any )\n Returns an array of an object's own enumerable symbol properties.\n","enumerablePropertySymbolsIn":"\nenumerablePropertySymbolsIn( value:any )\n Returns an array of an object's own and inherited enumerable symbol\n properties.\n","ENV":"\nENV\n An object containing the user environment.\n","EPS":"\nEPS\n Difference between one and the smallest value greater than one that can be\n represented as a double-precision floating-point number.\n","error2json":"\nerror2json( error:Error )\n Returns a JSON representation of an error object.\n","EULERGAMMA":"\nEULERGAMMA\n The Euler-Mascheroni constant.\n","every":"\nevery( collection:Array|TypedArray|Object )\n Tests whether all elements in a collection are truthy.\n","everyBy":"\neveryBy( collection:Array|TypedArray|Object, predicate:Function[, \n thisArg:any ] )\n Tests whether all elements in a collection pass a test implemented by a\n predicate function.\n","everyByAsync":"\neveryByAsync( collection:Array|TypedArray|Object, [options:Object,] \n predicate:Function, done:Function )\n Tests whether all elements in a collection pass a test implemented by a\n predicate function.\n","everyByAsync.factory":"\neveryByAsync.factory( [options:Object,] predicate:Function )\n Returns a function which tests whether all elements in a collection pass a\n test implemented by a predicate function.\n","everyByRight":"\neveryByRight( collection:Array|TypedArray|Object, predicate:Function[, \n thisArg:any ] )\n Tests whether all elements in a collection pass a test implemented by a\n predicate function, iterating from right to left.\n","everyByRightAsync":"\neveryByRightAsync( collection:Array|TypedArray|Object, [options:Object,] \n predicate:Function, done:Function )\n Tests whether all elements in a collection pass a test implemented by a\n predicate function, iterating from right to left.\n","everyByRightAsync.factory":"\neveryByRightAsync.factory( [options:Object,] predicate:Function )\n Returns a function which tests whether all elements in a collection pass a\n test implemented by a predicate function, iterating from right to left.\n","evil":"\nevil( str:string )\n Alias for `eval` global.\n","EXEC_PATH":"\nEXEC_PATH\n Absolute pathname of the executable which started the current Node.js\n process.\n","exists":"\nexists( path:string|Buffer, clbk:Function )\n Asynchronously tests whether a path exists on the filesystem.\n","exists.sync":"\nexists.sync( path:string|Buffer )\n Synchronously tests whether a path exists on the filesystem.\n","expandAcronyms":"\nexpandAcronyms( str:string )\n Expands acronyms in a string.\n","expandContractions":"\nexpandContractions( str:string )\n Expands all contractions to their formal equivalents.\n","extname":"\nextname( filename:string )\n Returns a filename extension.\n","fastmath.abs":"\nfastmath.abs( x:number )\n Computes an absolute value.\n","fastmath.acosh":"\nfastmath.acosh( x:number )\n Computes the hyperbolic arccosine of a number.\n","fastmath.ampbm":"\nfastmath.ampbm( x:number, y:number )\n Computes the hypotenuse using the alpha max plus beta min algorithm.\n","fastmath.ampbm.factory":"\nfastmath.ampbm.factory( alpha:number, beta:number, [nonnegative:boolean[, \n ints:boolean]] )\n Returns a function to compute a hypotenuse using the alpha max plus beta min\n algorithm.\n","fastmath.asinh":"\nfastmath.asinh( x:number )\n Computes the hyperbolic arcsine of a number.\n","fastmath.atanh":"\nfastmath.atanh( x:number )\n Computes the hyperbolic arctangent of a number.\n","fastmath.hypot":"\nfastmath.hypot( x:number, y:number )\n Computes the hypotenuse.\n","fastmath.log2Uint32":"\nfastmath.log2Uint32( x:uinteger )\n Returns an approximate binary logarithm (base two) of an unsigned 32-bit\n integer `x`.\n","fastmath.max":"\nfastmath.max( x:number, y:number )\n Returns the maximum value.\n","fastmath.min":"\nfastmath.min( x:number, y:number )\n Returns the minimum value.\n","fastmath.powint":"\nfastmath.powint( x:number, y:integer )\n Evaluates the exponential function given a signed 32-bit integer exponent.\n","fastmath.sqrtUint32":"\nfastmath.sqrtUint32( x:uinteger )\n Returns an approximate square root of an unsigned 32-bit integer `x`.\n","FEMALE_FIRST_NAMES_EN":"\nFEMALE_FIRST_NAMES_EN()\n Returns a list of common female first names in English speaking countries.\n","FIFO":"\nFIFO()\n First-in-first-out (FIFO) queue constructor.\n","filledarray":"\nfilledarray( [dtype:string] )\n Creates a filled array.\n\nfilledarray( value:any, length:integer[, dtype:string] )\n Returns a filled array having a specified length.\n\nfilledarray( value:any, array:ArrayLikeObject[, dtype:string] )\n Creates a filled array from another array (or array-like object).\n\nfilledarray( value:any, iterable:Iterable[, dtype:string] )\n Creates a filled array from an iterable.\n\nfilledarray( value:any, buffer:ArrayBuffer[, byteOffset:integer[, \n length:integer]][, dtype:string] )\n Returns a filled typed array view of an ArrayBuffer.\n","filledarrayBy":"\nfilledarrayBy( [dtype:string] )\n Creates a filled array.\n\nfilledarrayBy( length:integer[, dtype:string], clbk:Function[, thisArg:any] )\n Returns a filled array according to a provided callback function and having\n a specified length.\n\nfilledarrayBy( array:ArrayLikeObject[, dtype:string], clbk:Function[, \n thisArg:any] )\n Creates a filled array from another array (or array-like object) according\n to a provided callback function.\n\nfilledarrayBy( iterable:Iterable[, dtype:string], clbk:Function[, thisArg:any] )\n Creates a filled array from an iterable according to a provided callback\n function.\n\nfilledarrayBy( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]][, \n dtype:string], clbk:Function[, thisArg:any] )\n Returns a filled typed array view of an ArrayBuffer according to a provided\n callback function.\n","filterArguments":"\nfilterArguments( fcn:Function, predicate:Function[, thisArg:any] )\n Returns a function that applies arguments to a provided function according\n to a predicate function.\n","find":"\nfind( arr:Array|TypedArray|string, [options:Object,] clbk:Function )\n Finds elements in an array-like object that satisfy a test condition.\n","FIVETHIRTYEIGHT_FFQ":"\nFIVETHIRTYEIGHT_FFQ()\n Returns FiveThirtyEight reader responses to a food frequency questionnaire\n (FFQ).\n","flattenArray":"\nflattenArray( arr:ArrayLikeObject[, options:Object] )\n Flattens an array.\n","flattenArray.factory":"\nflattenArray.factory( dims:ArrayLike[, options:Object] )\n Returns a function for flattening arrays having specified dimensions.\n","flattenObject":"\nflattenObject( obj:ObjectLike[, options:Object] )\n Flattens an object.\n","flattenObject.factory":"\nflattenObject.factory( [options:Object] )\n Returns a function to flatten an object.\n","flignerTest":"\nflignerTest( ...x:Array[, options:Object] )\n Computes the Fligner-Killeen test for equal variances.\n","FLOAT_WORD_ORDER":"\nFLOAT_WORD_ORDER\n Platform float word order.\n","FLOAT16_CBRT_EPS":"\nFLOAT16_CBRT_EPS\n Cube root of half-precision floating-point epsilon.\n","FLOAT16_EPS":"\nFLOAT16_EPS\n Difference between one and the smallest value greater than one that can be\n represented as a half-precision floating-point number.\n","FLOAT16_EXPONENT_BIAS":"\nFLOAT16_EXPONENT_BIAS\n The bias of a half-precision floating-point number's exponent.\n","FLOAT16_MAX":"\nFLOAT16_MAX\n Maximum half-precision floating-point number.\n","FLOAT16_MAX_SAFE_INTEGER":"\nFLOAT16_MAX_SAFE_INTEGER\n Maximum safe half-precision floating-point integer.\n","FLOAT16_MIN_SAFE_INTEGER":"\nFLOAT16_MIN_SAFE_INTEGER\n Minimum safe half-precision floating-point integer.\n","FLOAT16_NINF":"\nFLOAT16_NINF\n Half-precision floating-point negative infinity.\n","FLOAT16_NUM_BYTES":"\nFLOAT16_NUM_BYTES\n Size (in bytes) of a half-precision floating-point number.\n","FLOAT16_PINF":"\nFLOAT16_PINF\n Half-precision floating-point positive infinity.\n","FLOAT16_PRECISION":"\nFLOAT16_PRECISION\n Effective number of bits in the significand of a half-precision floating-\n point number.\n","FLOAT16_SMALLEST_NORMAL":"\nFLOAT16_SMALLEST_NORMAL\n Smallest positive normalized half-precision floating-point number.\n","FLOAT16_SMALLEST_SUBNORMAL":"\nFLOAT16_SMALLEST_SUBNORMAL\n Smallest positive denormalized half-precision floating-point number.\n","FLOAT16_SQRT_EPS":"\nFLOAT16_SQRT_EPS\n Square root of half-precision floating-point epsilon.\n","FLOAT32_CBRT_EPS":"\nFLOAT32_CBRT_EPS\n Cube root of single-precision floating-point epsilon.\n","FLOAT32_EPS":"\nFLOAT32_EPS\n Difference between one and the smallest value greater than one that can be\n represented as a single-precision floating-point number.\n","FLOAT32_EXPONENT_BIAS":"\nFLOAT32_EXPONENT_BIAS\n The bias of a single-precision floating-point number's exponent.\n","FLOAT32_MAX":"\nFLOAT32_MAX\n Maximum single-precision floating-point number.\n","FLOAT32_MAX_SAFE_INTEGER":"\nFLOAT32_MAX_SAFE_INTEGER\n Maximum safe single-precision floating-point integer.\n","FLOAT32_MIN_SAFE_INTEGER":"\nFLOAT32_MIN_SAFE_INTEGER\n Minimum safe single-precision floating-point integer.\n","FLOAT32_NINF":"\nFLOAT32_NINF\n Single-precision floating-point negative infinity.\n","FLOAT32_NUM_BYTES":"\nFLOAT32_NUM_BYTES\n Size (in bytes) of a single-precision floating-point number.\n","FLOAT32_PINF":"\nFLOAT32_PINF\n Single-precision floating-point positive infinity.\n","FLOAT32_PRECISION":"\nFLOAT32_PRECISION\n Effective number of bits in the significand of a single-precision floating-\n point number.\n","FLOAT32_SMALLEST_NORMAL":"\nFLOAT32_SMALLEST_NORMAL\n Smallest positive normalized single-precision floating-point number.\n","FLOAT32_SMALLEST_SUBNORMAL":"\nFLOAT32_SMALLEST_SUBNORMAL\n Smallest positive denormalized single-precision floating-point number.\n","FLOAT32_SQRT_EPS":"\nFLOAT32_SQRT_EPS\n Square root of single-precision floating-point epsilon.\n","Float32Array":"\nFloat32Array()\n A typed array constructor which returns a typed array representing an array\n of single-precision floating-point numbers in the platform byte order.\n\nFloat32Array( length:integer )\n Returns a typed array having a specified length.\n\nFloat32Array( typedarray:TypedArray )\n Creates a typed array from another typed array.\n\nFloat32Array( obj:Object )\n Creates a typed array from an array-like object or iterable.\n\nFloat32Array( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Returns a typed array view of an ArrayBuffer.\n","Float32Array.from":"\nFloat32Array.from( src:ArrayLike|Iterable[, map:Function[, thisArg:Any]] )\n Creates a new typed array from an array-like object or an iterable.\n","Float32Array.of":"\nFloat32Array.of( element0:number[, element1:number[, ...elementN:number]] )\n Creates a new typed array from a variable number of arguments.\n","Float32Array.BYTES_PER_ELEMENT":"\nFloat32Array.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Float32Array.name":"\nFloat32Array.name\n Typed array constructor name.\n","Float32Array.prototype.buffer":"\nFloat32Array.prototype.buffer\n Read-only property which returns the ArrayBuffer referenced by the typed\n array.\n","Float32Array.prototype.byteLength":"\nFloat32Array.prototype.byteLength\n Read-only property which returns the length (in bytes) of the typed array.\n","Float32Array.prototype.byteOffset":"\nFloat32Array.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the typed array\n from the start of its ArrayBuffer.\n","Float32Array.prototype.BYTES_PER_ELEMENT":"\nFloat32Array.prototype.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Float32Array.prototype.length":"\nFloat32Array.prototype.length\n Read-only property which returns the number of view elements.\n","Float32Array.prototype.copyWithin":"\nFloat32Array.prototype.copyWithin( target:integer, start:integer[, \n end:integer] )\n Copies a sequence of elements within the array starting at `start` and\n ending at `end` (non-inclusive) to the position starting at `target`.\n","Float32Array.prototype.entries":"\nFloat32Array.prototype.entries()\n Returns an iterator for iterating over array key-value pairs.\n","Float32Array.prototype.every":"\nFloat32Array.prototype.every( predicate:Function[, thisArg:Any] )\n Tests whether all array elements pass a test implemented by a predicate\n function.\n","Float32Array.prototype.fill":"\nFloat32Array.prototype.fill( value:number[, start:integer[, end:integer]] )\n Fills an array from a start index to an end index (non-inclusive) with a\n provided value.\n","Float32Array.prototype.filter":"\nFloat32Array.prototype.filter( predicate:Function[, thisArg:Any] )\n Creates a new array which includes those elements for which a predicate\n function returns a truthy value.\n","Float32Array.prototype.find":"\nFloat32Array.prototype.find( predicate:Function[, thisArg:Any] )\n Returns the first array element for which a provided predicate function\n returns a truthy value.\n","Float32Array.prototype.findIndex":"\nFloat32Array.prototype.findIndex( predicate:Function[, thisArg:Any] )\n Returns the index of the first array element for which a provided predicate\n function returns a truthy value.\n","Float32Array.prototype.forEach":"\nFloat32Array.prototype.forEach( fcn:Function[, thisArg:Any] )\n Invokes a callback for each array element.\n","Float32Array.prototype.includes":"\nFloat32Array.prototype.includes( searchElement:number[, fromIndex:integer] )\n Returns a boolean indicating whether an array includes a search element.\n","Float32Array.prototype.indexOf":"\nFloat32Array.prototype.indexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the first array element strictly equal to a search\n element.\n","Float32Array.prototype.join":"\nFloat32Array.prototype.join( [separator:string] )\n Serializes an array by joining all array elements as a string.\n","Float32Array.prototype.keys":"\nFloat32Array.prototype.keys()\n Returns an iterator for iterating over array keys.\n","Float32Array.prototype.lastIndexOf":"\nFloat32Array.prototype.lastIndexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the last array element strictly equal to a search\n element.\n","Float32Array.prototype.map":"\nFloat32Array.prototype.map( fcn:Function[, thisArg:Any] )\n Maps each array element to an element in a new typed array.\n","Float32Array.prototype.reduce":"\nFloat32Array.prototype.reduce( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","Float32Array.prototype.reduceRight":"\nFloat32Array.prototype.reduceRight( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result, iterating from right to left.\n","Float32Array.prototype.reverse":"\nFloat32Array.prototype.reverse()\n Reverses an array *in-place*.\n","Float32Array.prototype.set":"\nFloat32Array.prototype.set( arr:ArrayLike[, offset:integer] )\n Sets array elements.\n","Float32Array.prototype.slice":"\nFloat32Array.prototype.slice( [begin:integer[, end:integer]] )\n Copies array elements to a new array with the same underlying data type as\n the host array.\n","Float32Array.prototype.some":"\nFloat32Array.prototype.some( predicate:Function[, thisArg:Any] )\n Tests whether at least one array element passes a test implemented by a\n predicate function.\n","Float32Array.prototype.sort":"\nFloat32Array.prototype.sort( [compareFunction:Function] )\n Sorts an array *in-place*.\n","Float32Array.prototype.subarray":"\nFloat32Array.prototype.subarray( [begin:integer[, end:integer]] )\n Creates a new typed array over the same underlying ArrayBuffer and with the\n same underlying data type as the host array.\n","Float32Array.prototype.toLocaleString":"\nFloat32Array.prototype.toLocaleString( [locales:string|Array[, \n options:Object]] )\n Serializes an array as a locale-specific string.\n","Float32Array.prototype.toString":"\nFloat32Array.prototype.toString()\n Serializes an array as a string.\n","Float32Array.prototype.values":"\nFloat32Array.prototype.values()\n Returns an iterator for iterating over array elements.\n","FLOAT64_EXPONENT_BIAS":"\nFLOAT64_EXPONENT_BIAS\n The bias of a double-precision floating-point number's exponent.\n","FLOAT64_HIGH_WORD_EXPONENT_MASK":"\nFLOAT64_HIGH_WORD_EXPONENT_MASK\n High word mask for the exponent of a double-precision floating-point number.\n","FLOAT64_HIGH_WORD_SIGNIFICAND_MASK":"\nFLOAT64_HIGH_WORD_SIGNIFICAND_MASK\n High word mask for the significand of a double-precision floating-point\n number.\n","FLOAT64_MAX":"\nFLOAT64_MAX\n Maximum double-precision floating-point number.\n","FLOAT64_MAX_BASE2_EXPONENT":"\nFLOAT64_MAX_BASE2_EXPONENT\n The maximum biased base 2 exponent for a double-precision floating-point\n number.\n","FLOAT64_MAX_BASE2_EXPONENT_SUBNORMAL":"\nFLOAT64_MAX_BASE2_EXPONENT_SUBNORMAL\n The maximum biased base 2 exponent for a subnormal double-precision\n floating-point number.\n","FLOAT64_MAX_BASE10_EXPONENT":"\nFLOAT64_MAX_BASE10_EXPONENT\n The maximum base 10 exponent for a double-precision floating-point number.\n","FLOAT64_MAX_BASE10_EXPONENT_SUBNORMAL":"\nFLOAT64_MAX_BASE10_EXPONENT_SUBNORMAL\n The maximum base 10 exponent for a subnormal double-precision floating-point\n number.\n","FLOAT64_MAX_LN":"\nFLOAT64_MAX_LN\n Natural logarithm of the maximum double-precision floating-point number.\n","FLOAT64_MAX_SAFE_FIBONACCI":"\nFLOAT64_MAX_SAFE_FIBONACCI\n Maximum safe Fibonacci number when stored in double-precision floating-point\n format.\n","FLOAT64_MAX_SAFE_INTEGER":"\nFLOAT64_MAX_SAFE_INTEGER\n Maximum safe double-precision floating-point integer.\n","FLOAT64_MAX_SAFE_LUCAS":"\nFLOAT64_MAX_SAFE_LUCAS\n Maximum safe Lucas number when stored in double-precision floating-point\n format.\n","FLOAT64_MAX_SAFE_NTH_FIBONACCI":"\nFLOAT64_MAX_SAFE_NTH_FIBONACCI\n Maximum safe nth Fibonacci number when stored in double-precision floating-\n point format.\n","FLOAT64_MAX_SAFE_NTH_LUCAS":"\nFLOAT64_MAX_SAFE_NTH_LUCAS\n Maximum safe nth Lucas number when stored in double-precision floating-point\n format.\n","FLOAT64_MIN_BASE2_EXPONENT":"\nFLOAT64_MIN_BASE2_EXPONENT\n The minimum biased base 2 exponent for a normalized double-precision\n floating-point number.\n","FLOAT64_MIN_BASE2_EXPONENT_SUBNORMAL":"\nFLOAT64_MIN_BASE2_EXPONENT_SUBNORMAL\n The minimum biased base 2 exponent for a subnormal double-precision\n floating-point number.\n","FLOAT64_MIN_BASE10_EXPONENT":"\nFLOAT64_MIN_BASE10_EXPONENT\n The minimum base 10 exponent for a normalized double-precision floating-\n point number.\n","FLOAT64_MIN_BASE10_EXPONENT_SUBNORMAL":"\nFLOAT64_MIN_BASE10_EXPONENT_SUBNORMAL\n The minimum base 10 exponent for a subnormal double-precision floating-\n point number.\n","FLOAT64_MIN_LN":"\nFLOAT64_MIN_LN\n Natural logarithm of the smallest normalized double-precision floating-point\n number.\n","FLOAT64_MIN_SAFE_INTEGER":"\nFLOAT64_MIN_SAFE_INTEGER\n Minimum safe double-precision floating-point integer.\n","FLOAT64_NUM_BYTES":"\nFLOAT64_NUM_BYTES\n Size (in bytes) of a double-precision floating-point number.\n","FLOAT64_PRECISION":"\nFLOAT64_PRECISION\n Effective number of bits in the significand of a double-precision floating-\n point number.\n","FLOAT64_SMALLEST_NORMAL":"\nFLOAT64_SMALLEST_NORMAL\n Smallest positive normalized double-precision floating-point number.\n","FLOAT64_SMALLEST_SUBNORMAL":"\nFLOAT64_SMALLEST_SUBNORMAL\n Smallest positive denormalized double-precision floating-point number.\n","Float64Array":"\nFloat64Array()\n A typed array constructor which returns a typed array representing an array\n of double-precision floating-point numbers in the platform byte order.\n\nFloat64Array( length:integer )\n Returns a typed array having a specified length.\n\nFloat64Array( typedarray:TypedArray )\n Creates a typed array from another typed array.\n\nFloat64Array( obj:Object )\n Creates a typed array from an array-like object or iterable.\n\nFloat64Array( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Returns a typed array view of an ArrayBuffer.\n","Float64Array.from":"\nFloat64Array.from( src:ArrayLike|Iterable[, map:Function[, thisArg:Any]] )\n Creates a new typed array from an array-like object or an iterable.\n","Float64Array.of":"\nFloat64Array.of( element0:number[, element1:number[, ...elementN:number]] )\n Creates a new typed array from a variable number of arguments.\n","Float64Array.BYTES_PER_ELEMENT":"\nFloat64Array.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Float64Array.name":"\nFloat64Array.name\n Typed array constructor name.\n","Float64Array.prototype.buffer":"\nFloat64Array.prototype.buffer\n Read-only property which returns the ArrayBuffer referenced by the typed\n array.\n","Float64Array.prototype.byteLength":"\nFloat64Array.prototype.byteLength\n Read-only property which returns the length (in bytes) of the typed array.\n","Float64Array.prototype.byteOffset":"\nFloat64Array.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the typed array\n from the start of its ArrayBuffer.\n","Float64Array.prototype.BYTES_PER_ELEMENT":"\nFloat64Array.prototype.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Float64Array.prototype.length":"\nFloat64Array.prototype.length\n Read-only property which returns the number of view elements.\n","Float64Array.prototype.copyWithin":"\nFloat64Array.prototype.copyWithin( target:integer, start:integer[, \n end:integer] )\n Copies a sequence of elements within the array starting at `start` and\n ending at `end` (non-inclusive) to the position starting at `target`.\n","Float64Array.prototype.entries":"\nFloat64Array.prototype.entries()\n Returns an iterator for iterating over array key-value pairs.\n","Float64Array.prototype.every":"\nFloat64Array.prototype.every( predicate:Function[, thisArg:Any] )\n Tests whether all array elements pass a test implemented by a predicate\n function.\n","Float64Array.prototype.fill":"\nFloat64Array.prototype.fill( value:number[, start:integer[, end:integer]] )\n Fills an array from a start index to an end index (non-inclusive) with a\n provided value.\n","Float64Array.prototype.filter":"\nFloat64Array.prototype.filter( predicate:Function[, thisArg:Any] )\n Creates a new array which includes those elements for which a predicate\n function returns a truthy value.\n","Float64Array.prototype.find":"\nFloat64Array.prototype.find( predicate:Function[, thisArg:Any] )\n Returns the first array element for which a provided predicate function\n returns a truthy value.\n","Float64Array.prototype.findIndex":"\nFloat64Array.prototype.findIndex( predicate:Function[, thisArg:Any] )\n Returns the index of the first array element for which a provided predicate\n function returns a truthy value.\n","Float64Array.prototype.forEach":"\nFloat64Array.prototype.forEach( fcn:Function[, thisArg:Any] )\n Invokes a callback for each array element.\n","Float64Array.prototype.includes":"\nFloat64Array.prototype.includes( searchElement:number[, fromIndex:integer] )\n Returns a boolean indicating whether an array includes a search element.\n","Float64Array.prototype.indexOf":"\nFloat64Array.prototype.indexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the first array element strictly equal to a search\n element.\n","Float64Array.prototype.join":"\nFloat64Array.prototype.join( [separator:string] )\n Serializes an array by joining all array elements as a string.\n","Float64Array.prototype.keys":"\nFloat64Array.prototype.keys()\n Returns an iterator for iterating over array keys.\n","Float64Array.prototype.lastIndexOf":"\nFloat64Array.prototype.lastIndexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the last array element strictly equal to a search\n element.\n","Float64Array.prototype.map":"\nFloat64Array.prototype.map( fcn:Function[, thisArg:Any] )\n Maps each array element to an element in a new typed array.\n","Float64Array.prototype.reduce":"\nFloat64Array.prototype.reduce( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","Float64Array.prototype.reduceRight":"\nFloat64Array.prototype.reduceRight( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result, iterating from right to left.\n","Float64Array.prototype.reverse":"\nFloat64Array.prototype.reverse()\n Reverses an array *in-place*.\n","Float64Array.prototype.set":"\nFloat64Array.prototype.set( arr:ArrayLike[, offset:integer] )\n Sets array elements.\n","Float64Array.prototype.slice":"\nFloat64Array.prototype.slice( [begin:integer[, end:integer]] )\n Copies array elements to a new array with the same underlying data type as\n the host array.\n","Float64Array.prototype.some":"\nFloat64Array.prototype.some( predicate:Function[, thisArg:Any] )\n Tests whether at least one array element passes a test implemented by a\n predicate function.\n","Float64Array.prototype.sort":"\nFloat64Array.prototype.sort( [compareFunction:Function] )\n Sorts an array *in-place*.\n","Float64Array.prototype.subarray":"\nFloat64Array.prototype.subarray( [begin:integer[, end:integer]] )\n Creates a new typed array over the same underlying ArrayBuffer and with the\n same underlying data type as the host array.\n","Float64Array.prototype.toLocaleString":"\nFloat64Array.prototype.toLocaleString( [locales:string|Array[, \n options:Object]] )\n Serializes an array as a locale-specific string.\n","Float64Array.prototype.toString":"\nFloat64Array.prototype.toString()\n Serializes an array as a string.\n","Float64Array.prototype.values":"\nFloat64Array.prototype.values()\n Returns an iterator for iterating over array elements.\n","forEach":"\nforEach( collection:Array|TypedArray|Object, fcn:Function[, thisArg:any] )\n Invokes a function for each element in a collection.\n","forEachAsync":"\nforEachAsync( collection:Array|TypedArray|Object, [options:Object,] \n fcn:Function, done:Function )\n Invokes a function once for each element in a collection.\n","forEachAsync.factory":"\nforEachAsync.factory( [options:Object,] fcn:Function )\n Returns a function which invokes a function once for each element in a\n collection.\n","forEachRight":"\nforEachRight( collection:Array|TypedArray|Object, fcn:Function[, thisArg:any] )\n Invokes a function for each element in a collection, iterating from right to\n left.\n","forEachRightAsync":"\nforEachRightAsync( collection:Array|TypedArray|Object, [options:Object,] \n fcn:Function, done:Function )\n Invokes a function once for each element in a collection, iterating from\n right to left.\n","forEachRightAsync.factory":"\nforEachRightAsync.factory( [options:Object,] fcn:Function )\n Returns a function which invokes a function once for each element in a\n collection, iterating from right to left.\n","forIn":"\nforIn( obj:Object, fcn:Function[, thisArg:any] )\n Invokes a function for each own and inherited enumerable property of an\n object.\n","forOwn":"\nforOwn( obj:Object, fcn:Function[, thisArg:any] )\n Invokes a function for each own enumerable property of an object.\n","FOURTH_PI":"\nFOURTH_PI\n One fourth times the mathematical constant `π`.\n","FOURTH_ROOT_EPS":"\nFOURTH_ROOT_EPS\n Fourth root of double-precision floating-point epsilon.\n","FRB_SF_WAGE_RIGIDITY":"\nFRB_SF_WAGE_RIGIDITY()\n Returns wage rates for U.S. workers that have not changed jobs within the\n year.\n","fromCodePoint":"\nfromCodePoint( ...pt:integer )\n Creates a string from a sequence of Unicode code points.\n","Function":"\nFunction( [...argNames:any,] body:string )\n Returns a Function object.\n","Function.prototype.apply":"\nFunction.prototype.apply( thisArg:any, args:Array )\n Calls a function with a given `this` value and arguments provided as an\n array (or array-like object).\n","Function.prototype.call":"\nFunction.prototype.call( thisArg:any, ...args:any )\n Calls a function with a given `this` value and arguments provided\n individually.\n","Function.prototype.bind":"\nFunction.prototype.bind( thisArg:any, ...args:any )\n Creates a new function which, when called, has its `this` keyword set to the\n provided value, with a given sequence of arguments preceding any provided\n when the new function is called.\n","Function.prototype.toString":"\nFunction.prototype.toString()\n Returns a string representation of the function.\n","Function.prototype.length":"\nFunction.prototype.length\n The number of arguments expected by the function.\n","Function.prototype.name":"\nFunction.prototype.name\n The name of the function.\n","Function.prototype.prototype":"\nFunction.prototype.prototype\n The prototype of the function.\n","function2string":"\nfunction2string( fcn:Function )\n Returns a string representing the source code of a provided function.\n","functionName":"\nfunctionName( fcn:Function )\n Returns the name of a function.\n","functionSequence":"\nfunctionSequence( ...fcn:Function )\n Returns a pipeline function.\n","functionSequenceAsync":"\nfunctionSequenceAsync( ...fcn:Function )\n Returns a pipeline function.\n","GAMMA_LANCZOS_G":"\nGAMMA_LANCZOS_G\n Arbitrary constant `g` to be used in Lanczos approximation functions.\n","gdot":"\ngdot( x:ndarray|ArrayLikeObject, y:ndarray|ArrayLikeObject )\n Computes the dot product of two vectors.\n","getegid":"\ngetegid()\n Returns the effective numeric group identity of the calling process.\n","geteuid":"\ngeteuid()\n Returns the effective numeric user identity of the calling process.\n","getgid":"\ngetgid()\n Returns the numeric group identity of the calling process.\n","getGlobal":"\ngetGlobal( [codegen:boolean] )\n Returns the global object.\n","getPrototypeOf":"\ngetPrototypeOf( value:any )\n Returns the prototype of a provided object.\n","getuid":"\ngetuid()\n Returns the numeric user identity of the calling process.\n","GLAISHER":"\nGLAISHER\n Glaisher-Kinkelin constant.\n","graphemeClusters2iterator":"\ngraphemeClusters2iterator( src:string[, mapFcn:Function[, thisArg:any]] )\n Returns an iterator which iterates over each grapheme cluster in a string.\n","group":"\ngroup( collection:Array|TypedArray|Object, [options:Object,] \n groups:Array|TypedArray|Object )\n Groups values as arrays associated with distinct keys.\n","groupBy":"\ngroupBy( collection:Array|TypedArray|Object, [options:Object,] \n indicator:Function )\n Groups values according to an indicator function.\n","groupByAsync":"\ngroupByAsync( collection:Array|TypedArray|Object, [options:Object,] \n indicator:Function, done:Function )\n Groups values according to an indicator function.\n","groupByAsync.factory":"\ngroupByAsync.factory( [options:Object,] indicator:Function )\n Returns a function which groups values according to an indicator function.\n","groupIn":"\ngroupIn( obj:Object|Array|TypedArray, [options:Object,] indicator:Function )\n Group values according to an indicator function.\n","groupOwn":"\ngroupOwn( obj:Object|Array|TypedArray, [options:Object,] indicator:Function )\n Group values according to an indicator function.\n","gswap":"\ngswap( x:ndarray|ArrayLikeObject, y:ndarray|ArrayLikeObject )\n Interchanges two vectors.\n","HALF_LN2":"\nHALF_LN2\n One half times the natural logarithm of `2`.\n","HALF_PI":"\nHALF_PI\n One half times the mathematical constant `π`.\n","HARRISON_BOSTON_HOUSE_PRICES":"\nHARRISON_BOSTON_HOUSE_PRICES()\n Returns a dataset derived from information collected by the US Census\n Service concerning housing in Boston, Massachusetts (1978).\n","HARRISON_BOSTON_HOUSE_PRICES_CORRECTED":"\nHARRISON_BOSTON_HOUSE_PRICES_CORRECTED()\n Returns a (corrected) dataset derived from information collected by the US\n Census Service concerning housing in Boston, Massachusetts (1978).\n","hasArrayBufferSupport":"\nhasArrayBufferSupport()\n Tests for native `ArrayBuffer` support.\n","hasAsyncAwaitSupport":"\nhasAsyncAwaitSupport()\n Tests for native `async`/`await` support.\n","hasAsyncIteratorSymbolSupport":"\nhasAsyncIteratorSymbolSupport()\n Tests for native `Symbol.asyncIterator` support.\n","hasBigInt64ArraySupport":"\nhasBigInt64ArraySupport()\n Tests for native `BigInt64Array` support.\n","hasBigIntSupport":"\nhasBigIntSupport()\n Tests for native `BigInt` support.\n","hasBigUint64ArraySupport":"\nhasBigUint64ArraySupport()\n Tests for native `BigUint64Array` support.\n","hasClassSupport":"\nhasClassSupport()\n Tests for native `class` support.\n","hasDefinePropertiesSupport":"\nhasDefinePropertiesSupport()\n Tests for `Object.defineProperties` support.\n","hasDefinePropertySupport":"\nhasDefinePropertySupport()\n Tests for `Object.defineProperty` support.\n","hasFloat32ArraySupport":"\nhasFloat32ArraySupport()\n Tests for native `Float32Array` support.\n","hasFloat64ArraySupport":"\nhasFloat64ArraySupport()\n Tests for native `Float64Array` support.\n","hasFunctionNameSupport":"\nhasFunctionNameSupport()\n Tests for native function `name` support.\n","hasGeneratorSupport":"\nhasGeneratorSupport()\n Tests whether an environment supports native generator functions.\n","hasGlobalThisSupport":"\nhasGlobalThisSupport()\n Tests for `globalThis` support.\n","hasInt8ArraySupport":"\nhasInt8ArraySupport()\n Tests for native `Int8Array` support.\n","hasInt16ArraySupport":"\nhasInt16ArraySupport()\n Tests for native `Int16Array` support.\n","hasInt32ArraySupport":"\nhasInt32ArraySupport()\n Tests for native `Int32Array` support.\n","hasIteratorSymbolSupport":"\nhasIteratorSymbolSupport()\n Tests for native `Symbol.iterator` support.\n","hasMapSupport":"\nhasMapSupport()\n Tests for native `Map` support.\n","hasNodeBufferSupport":"\nhasNodeBufferSupport()\n Tests for native `Buffer` support.\n","hasOwnProp":"\nhasOwnProp( value:any, property:any )\n Tests if an object has a specified property.\n","hasProp":"\nhasProp( value:any, property:any )\n Tests if an object has a specified property, either own or inherited.\n","hasProxySupport":"\nhasProxySupport()\n Tests whether an environment has native `Proxy` support.\n","hasSetSupport":"\nhasSetSupport()\n Tests for native `Set` support.\n","hasSharedArrayBufferSupport":"\nhasSharedArrayBufferSupport()\n Tests for native `SharedArrayBuffer` support.\n","hasSymbolSupport":"\nhasSymbolSupport()\n Tests for native `Symbol` support.\n","hasToStringTagSupport":"\nhasToStringTagSupport()\n Tests for native `toStringTag` support.\n","hasUint8ArraySupport":"\nhasUint8ArraySupport()\n Tests for native `Uint8Array` support.\n","hasUint8ClampedArraySupport":"\nhasUint8ClampedArraySupport()\n Tests for native `Uint8ClampedArray` support.\n","hasUint16ArraySupport":"\nhasUint16ArraySupport()\n Tests for native `Uint16Array` support.\n","hasUint32ArraySupport":"\nhasUint32ArraySupport()\n Tests for native `Uint32Array` support.\n","hasUTF16SurrogatePairAt":"\nhasUTF16SurrogatePairAt( str:string, pos:integer )\n Tests if a position in a string marks the start of a UTF-16 surrogate pair.\n","hasWeakMapSupport":"\nhasWeakMapSupport()\n Tests for native `WeakMap` support.\n","hasWeakSetSupport":"\nhasWeakSetSupport()\n Tests for native `WeakSet` support.\n","hasWebAssemblySupport":"\nhasWebAssemblySupport()\n Tests for native WebAssembly support.\n","HERNDON_VENUS_SEMIDIAMETERS":"\nHERNDON_VENUS_SEMIDIAMETERS()\n Returns fifteen observations of the vertical semidiameter of Venus, made by\n Lieutenant Herndon, with the meridian circle at Washington, in the year\n 1846.\n","homedir":"\nhomedir()\n Returns the current user's home directory.\n","HOURS_IN_DAY":"\nHOURS_IN_DAY\n Number of hours in a day.\n","HOURS_IN_WEEK":"\nHOURS_IN_WEEK\n Number of hours in a week.\n","hoursInMonth":"\nhoursInMonth( [month:string|Date|integer[, year:integer]] )\n Returns the number of hours in a month.\n","hoursInYear":"\nhoursInYear( [value:integer|Date] )\n Returns the number of hours in a year according to the Gregorian calendar.\n","httpServer":"\nhttpServer( [options:Object,] [requestListener:Function] )\n Returns a function to create an HTTP server.\n","identity":"\nidentity( x:any )\n Identity function.\n","ifelse":"\nifelse( bool:boolean, x:any, y:any )\n If a condition is truthy, returns `x`; otherwise, returns `y`.\n","ifelseAsync":"\nifelseAsync( predicate:Function, x:any, y:any, done:Function )\n If a predicate function returns a truthy value, returns `x`; otherwise,\n returns `y`.\n","ifthen":"\nifthen( bool:boolean, x:Function, y:Function )\n If a condition is truthy, invoke `x`; otherwise, invoke `y`.\n","ifthenAsync":"\nifthenAsync( predicate:Function, x:Function, y:Function, done:Function )\n If a predicate function returns a truthy value, invokes `x`; otherwise,\n invokes `y`.\n","imag":"\nimag( z:Complex128 )\n Returns the imaginary component of a double-precision complex floating-point\n number.\n","imagf":"\nimagf( z:Complex64 )\n Returns the imaginary component of a single-precision complex floating-point\n number.\n","IMG_ACANTHUS_MOLLIS":"\nIMG_ACANTHUS_MOLLIS()\n Returns a `Buffer` containing image data of Karl Blossfeldt's gelatin silver\n print *Acanthus mollis*.\n","IMG_AIRPLANE_FROM_ABOVE":"\nIMG_AIRPLANE_FROM_ABOVE()\n Returns a `Buffer` containing image data of Fédèle Azari's gelatin silver\n print of an airplane, viewed from above looking down.\n","IMG_ALLIUM_OREOPHILUM":"\nIMG_ALLIUM_OREOPHILUM()\n Returns a `Buffer` containing image data of Karl Blossfeldt's gelatin silver\n print *Allium ostrowskianum*.\n","IMG_BLACK_CANYON":"\nIMG_BLACK_CANYON()\n Returns a `Buffer` containing image data of Timothy H. O'Sullivan's albumen\n silver print *Black Cañon, Colorado River, From Camp 8, Looking Above*.\n","IMG_DUST_BOWL_HOME":"\nIMG_DUST_BOWL_HOME()\n Returns a `Buffer` containing image data of Dorothea Lange's gelatin silver\n print of an abandoned Dust Bowl home.\n","IMG_FRENCH_ALPINE_LANDSCAPE":"\nIMG_FRENCH_ALPINE_LANDSCAPE()\n Returns a `Buffer` containing image data of Adolphe Braun's carbon print of\n a French alpine landscape.\n","IMG_LOCOMOTION_HOUSE_CAT":"\nIMG_LOCOMOTION_HOUSE_CAT()\n Returns a `Buffer` containing image data of Eadweard J. Muybridge's\n collotype of a house cat (24 views).\n","IMG_LOCOMOTION_NUDE_MALE":"\nIMG_LOCOMOTION_NUDE_MALE()\n Returns a `Buffer` containing image data of Eadweard J. Muybridge's\n collotype of a nude male moving in place (48 views).\n","IMG_MARCH_PASTORAL":"\nIMG_MARCH_PASTORAL()\n Returns a `Buffer` containing image data of Peter Henry Emerson's\n photogravure of sheep in a pastoral setting.\n","IMG_NAGASAKI_BOATS":"\nIMG_NAGASAKI_BOATS()\n Returns a `Buffer` containing image data of Felice Beato's albumen silver\n print of boats in a river in Nagasaki.\n","incrapcorr":"\nincrapcorr( [mx:number, my:number] )\n Returns an accumulator function which incrementally computes the absolute\n value of the sample Pearson product-moment correlation coefficient.\n","incrBinaryClassification":"\nincrBinaryClassification( N:integer[, options:Object] )\n Returns an accumulator function which incrementally performs binary\n classification using stochastic gradient descent (SGD).\n","incrcount":"\nincrcount()\n Returns an accumulator function which incrementally updates a count.\n","incrcovariance":"\nincrcovariance( [mx:number, my:number] )\n Returns an accumulator function which incrementally computes an unbiased\n sample covariance.\n","incrcovmat":"\nincrcovmat( out:integer|ndarray[, means:ndarray] )\n Returns an accumulator function which incrementally computes an unbiased\n sample covariance matrix.\n","incrcv":"\nincrcv( [mean:number] )\n Returns an accumulator function which incrementally computes the coefficient\n of variation (CV).\n","increwmean":"\nincrewmean( α:number )\n Returns an accumulator function which incrementally computes an\n exponentially weighted mean, where α is a smoothing factor between 0 and 1.\n","increwstdev":"\nincrewstdev( α:number )\n Returns an accumulator function which incrementally computes an\n exponentially weighted standard deviation, where α is a smoothing factor\n between 0 and 1.\n","increwvariance":"\nincrewvariance( α:number )\n Returns an accumulator function which incrementally computes an\n exponentially weighted variance, where α is a smoothing factor between 0 and\n 1.\n","incrgmean":"\nincrgmean()\n Returns an accumulator function which incrementally computes a geometric\n mean.\n","incrgrubbs":"\nincrgrubbs( [options:Object] )\n Returns an accumulator function which incrementally performs Grubbs' test\n for detecting outliers.\n","incrhmean":"\nincrhmean()\n Returns an accumulator function which incrementally computes a harmonic\n mean.\n","incrkmeans":"\nincrkmeans( k:integer|ndarray[, ndims:integer][, options:Object] )\n Returns an accumulator function which incrementally partitions data into `k`\n clusters.\n","incrkurtosis":"\nincrkurtosis()\n Returns an accumulator function which incrementally computes a corrected\n sample excess kurtosis.\n","incrmaape":"\nincrmaape()\n Returns an accumulator function which incrementally computes the mean\n arctangent absolute percentage error (MAAPE).\n","incrmae":"\nincrmae()\n Returns an accumulator function which incrementally computes the mean\n absolute error (MAE).\n","incrmapcorr":"\nincrmapcorr( W:integer[, mx:number, my:number] )\n Returns an accumulator function which incrementally computes a moving\n sample absolute Pearson product-moment correlation coefficient.\n","incrmape":"\nincrmape()\n Returns an accumulator function which incrementally computes the mean\n absolute percentage error (MAPE).\n","incrmax":"\nincrmax()\n Returns an accumulator function which incrementally computes a maximum\n value.\n","incrmaxabs":"\nincrmaxabs()\n Returns an accumulator function which incrementally computes a maximum\n absolute value.\n","incrmcovariance":"\nincrmcovariance( W:integer[, mx:number, my:number] )\n Returns an accumulator function which incrementally computes a moving\n unbiased sample covariance.\n","incrmcv":"\nincrmcv( W:integer[, mean:number] )\n Returns an accumulator function which incrementally computes a moving\n coefficient of variation (CV).\n","incrmda":"\nincrmda()\n Returns an accumulator function which incrementally computes the mean\n directional accuracy (MDA).\n","incrme":"\nincrme()\n Returns an accumulator function which incrementally computes the mean error\n (ME).\n","incrmean":"\nincrmean()\n Returns an accumulator function which incrementally computes an arithmetic\n mean.\n","incrmeanabs":"\nincrmeanabs()\n Returns an accumulator function which incrementally computes an arithmetic\n mean of absolute values.\n","incrmeanabs2":"\nincrmeanabs2()\n Returns an accumulator function which incrementally computes an arithmetic\n mean of squared absolute values.\n","incrmeanstdev":"\nincrmeanstdev( [out:Array|TypedArray] )\n Returns an accumulator function which incrementally computes an arithmetic\n mean and corrected sample standard deviation.\n","incrmeanvar":"\nincrmeanvar( [out:Array|TypedArray] )\n Returns an accumulator function which incrementally computes an arithmetic\n mean and unbiased sample variance.\n","incrmgmean":"\nincrmgmean( W:integer )\n Returns an accumulator function which incrementally computes a moving\n geometric mean.\n","incrmgrubbs":"\nincrmgrubbs( W:integer[, options:Object] )\n Returns an accumulator function which incrementally performs a moving\n Grubbs' test for detecting outliers.\n","incrmhmean":"\nincrmhmean( W:integer )\n Returns an accumulator function which incrementally computes a moving\n harmonic mean.\n","incrmidrange":"\nincrmidrange()\n Returns an accumulator function which incrementally computes a mid-range.\n","incrmin":"\nincrmin()\n Returns an accumulator function which incrementally computes a minimum\n value.\n","incrminabs":"\nincrminabs()\n Returns an accumulator function which incrementally computes a minimum\n absolute value.\n","incrminmax":"\nincrminmax( [out:Array|TypedArray] )\n Returns an accumulator function which incrementally computes a minimum and\n maximum.\n","incrminmaxabs":"\nincrminmaxabs( [out:Array|TypedArray] )\n Returns an accumulator function which incrementally computes a minimum and\n maximum absolute value.\n","incrmmaape":"\nincrmmaape( W:integer )\n Returns an accumulator function which incrementally computes a moving\n mean arctangent absolute percentage error (MAAPE).\n","incrmmae":"\nincrmmae( W:integer )\n Returns an accumulator function which incrementally computes a moving\n mean absolute error (MAE).\n","incrmmape":"\nincrmmape( W:integer )\n Returns an accumulator function which incrementally computes a moving\n mean absolute percentage error (MAPE).\n","incrmmax":"\nincrmmax( W:integer )\n Returns an accumulator function which incrementally computes a moving\n maximum value.\n","incrmmaxabs":"\nincrmmaxabs( W:integer )\n Returns an accumulator function which incrementally computes a moving\n maximum absolute value.\n","incrmmda":"\nincrmmda( W:integer )\n Returns an accumulator function which incrementally computes a moving\n mean directional accuracy (MDA).\n","incrmme":"\nincrmme( W:integer )\n Returns an accumulator function which incrementally computes a moving\n mean error (ME).\n","incrmmean":"\nincrmmean( W:integer )\n Returns an accumulator function which incrementally computes a moving\n arithmetic mean.\n","incrmmeanabs":"\nincrmmeanabs( W:integer )\n Returns an accumulator function which incrementally computes a moving\n arithmetic mean of absolute values.\n","incrmmeanabs2":"\nincrmmeanabs2( W:integer )\n Returns an accumulator function which incrementally computes a moving\n arithmetic mean of squared absolute values.\n","incrmmeanstdev":"\nincrmmeanstdev( [out:Array|TypedArray,] W:integer )\n Returns an accumulator function which incrementally computes a moving\n arithmetic mean and corrected sample standard deviation.\n","incrmmeanvar":"\nincrmmeanvar( [out:Array|TypedArray,] W:integer )\n Returns an accumulator function which incrementally computes a moving\n arithmetic mean and unbiased sample variance.\n","incrmmidrange":"\nincrmmidrange( W:integer )\n Returns an accumulator function which incrementally computes a moving mid-\n range.\n","incrmmin":"\nincrmmin( W:integer )\n Returns an accumulator function which incrementally computes a moving\n minimum value.\n","incrmminabs":"\nincrmminabs( W:integer )\n Returns an accumulator function which incrementally computes a moving\n minimum absolute value.\n","incrmminmax":"\nincrmminmax( [out:Array|TypedArray,] W:integer )\n Returns an accumulator function which incrementally computes a moving\n minimum and maximum.\n","incrmminmaxabs":"\nincrmminmaxabs( [out:Array|TypedArray,] W:integer )\n Returns an accumulator function which incrementally computes moving minimum\n and maximum absolute values.\n","incrmmpe":"\nincrmmpe( W:integer )\n Returns an accumulator function which incrementally computes a moving\n mean percentage error (MPE).\n","incrmmse":"\nincrmmse( W:integer )\n Returns an accumulator function which incrementally computes a moving mean\n squared error (MSE).\n","incrmpcorr":"\nincrmpcorr( W:integer[, mx:number, my:number] )\n Returns an accumulator function which incrementally computes a moving\n sample Pearson product-moment correlation coefficient.\n","incrmpcorr2":"\nincrmpcorr2( W:integer[, mx:number, my:number] )\n Returns an accumulator function which incrementally computes a moving\n squared sample Pearson product-moment correlation coefficient.\n","incrmpcorrdist":"\nincrmpcorrdist( W:integer[, mx:number, my:number] )\n Returns an accumulator function which incrementally computes a moving\n sample Pearson product-moment correlation distance.\n","incrmpe":"\nincrmpe()\n Returns an accumulator function which incrementally computes the mean\n percentage error (MPE).\n","incrmprod":"\nincrmprod( W:integer )\n Returns an accumulator function which incrementally computes a moving\n product.\n","incrmrange":"\nincrmrange( W:integer )\n Returns an accumulator function which incrementally computes a moving range.\n","incrmrmse":"\nincrmrmse( W:integer )\n Returns an accumulator function which incrementally computes a moving root\n mean squared error (RMSE).\n","incrmrss":"\nincrmrss( W:integer )\n Returns an accumulator function which incrementally computes a moving\n residual sum of squares (RSS).\n","incrmse":"\nincrmse()\n Returns an accumulator function which incrementally computes the mean\n squared error (MSE).\n","incrmstdev":"\nincrmstdev( W:integer[, mean:number] )\n Returns an accumulator function which incrementally computes a moving\n corrected sample standard deviation.\n","incrmsum":"\nincrmsum( W:integer )\n Returns an accumulator function which incrementally computes a moving sum.\n","incrmsumabs":"\nincrmsumabs( W:integer )\n Returns an accumulator function which incrementally computes a moving sum of\n absolute values.\n","incrmsumabs2":"\nincrmsumabs2( W:integer )\n Returns an accumulator function which incrementally computes a moving sum of\n squared absolute values.\n","incrmsummary":"\nincrmsummary( W:integer )\n Returns an accumulator function which incrementally computes a moving\n statistical summary.\n","incrmsumprod":"\nincrmsumprod( W:integer )\n Returns an accumulator function which incrementally computes a moving sum of\n products.\n","incrmvariance":"\nincrmvariance( W:integer[, mean:number] )\n Returns an accumulator function which incrementally computes a moving\n unbiased sample variance.\n","incrmvmr":"\nincrmvmr( W:integer[, mean:number] )\n Returns an accumulator function which incrementally computes a moving\n variance-to-mean (VMR).\n","incrnancount":"\nincrnancount()\n Returns an accumulator function which incrementally updates a count,\n ignoring `NaN` values.\n","incrnansum":"\nincrnansum()\n Returns an accumulator function which incrementally computes a sum, ignoring\n `NaN` values.\n","incrnansumabs":"\nincrnansumabs()\n Returns an accumulator function which incrementally computes a sum of\n absolute values, ignoring NaN values.\n","incrnansumabs2":"\nincrnansumabs2()\n Returns an accumulator function which incrementally computes a sum of\n squared absolute values, ignoring NaN values.\n","incrpcorr":"\nincrpcorr( [mx:number, my:number] )\n Returns an accumulator function which incrementally computes a sample\n Pearson product-moment correlation coefficient.\n","incrpcorr2":"\nincrpcorr2( [mx:number, my:number] )\n Returns an accumulator function which incrementally computes the squared\n sample Pearson product-moment correlation coefficient.\n","incrpcorrdist":"\nincrpcorrdist( [mx:number, my:number] )\n Returns an accumulator function which incrementally computes a sample\n Pearson product-moment correlation distance.\n","incrpcorrdistmat":"\nincrpcorrdistmat( out:integer|ndarray[, means:ndarray] )\n Returns an accumulator function which incrementally computes a sample\n Pearson product-moment correlation distance matrix.\n","incrpcorrmat":"\nincrpcorrmat( out:integer|ndarray[, means:ndarray] )\n Returns an accumulator function which incrementally computes a sample\n Pearson product-moment correlation matrix.\n","incrprod":"\nincrprod()\n Returns an accumulator function which incrementally computes a product.\n","incrrange":"\nincrrange()\n Returns an accumulator function which incrementally computes a range.\n","incrrmse":"\nincrrmse()\n Returns an accumulator function which incrementally computes the root mean\n squared error (RMSE).\n","incrrss":"\nincrrss()\n Returns an accumulator function which incrementally computes the residual\n sum of squares (RSS).\n","incrskewness":"\nincrskewness()\n Returns an accumulator function which incrementally computes a corrected\n sample skewness.\n","incrspace":"\nincrspace( start:number, stop:number[, increment:number] )\n Generates a linearly spaced numeric array using a provided increment.\n","incrstdev":"\nincrstdev( [mean:number] )\n Returns an accumulator function which incrementally computes a corrected\n sample standard deviation.\n","incrsum":"\nincrsum()\n Returns an accumulator function which incrementally computes a sum.\n","incrsumabs":"\nincrsumabs()\n Returns an accumulator function which incrementally computes a sum of\n absolute values.\n","incrsumabs2":"\nincrsumabs2()\n Returns an accumulator function which incrementally computes a sum of\n squared absolute values.\n","incrsummary":"\nincrsummary()\n Returns an accumulator function which incrementally computes a statistical\n summary.\n","incrsumprod":"\nincrsumprod()\n Returns an accumulator function which incrementally computes a sum of\n products.\n","incrvariance":"\nincrvariance( [mean:number] )\n Returns an accumulator function which incrementally computes an unbiased\n sample variance.\n","incrvmr":"\nincrvmr( [mean:number] )\n Returns an accumulator function which incrementally computes a variance-to-\n mean ratio (VMR).\n","incrwmean":"\nincrwmean()\n Returns an accumulator function which incrementally computes a weighted\n arithmetic mean.\n","ind2sub":"\nind2sub( shape:ArrayLike, idx:integer[, options:Object] )\n Converts a linear index to an array of subscripts.\n","ind2sub.assign":"\nind2sub.assign( shape:ArrayLike, idx:integer[, options:Object], \n out:Array|TypedArray|Object )\n Converts a linear index to an array of subscripts and assigns results to a\n provided output array.\n","indexOf":"\nindexOf( arr:ArrayLike, searchElement:any[, fromIndex:integer] )\n Returns the first index at which a given element can be found.\n","inherit":"\ninherit( ctor:Object|Function, superCtor:Object|Function )\n Prototypical inheritance by replacing the prototype of one constructor with\n the prototype of another constructor.\n","inheritedEnumerableProperties":"\ninheritedEnumerableProperties( value:any[, level:integer] )\n Returns an array of an object's inherited enumerable property names and\n symbols.\n","inheritedEnumerablePropertySymbols":"\ninheritedEnumerablePropertySymbols( value:any[, level:integer] )\n Returns an array of an object's inherited enumerable symbol properties.\n","inheritedKeys":"\ninheritedKeys( value:any[, level:integer] )\n Returns an array of an object's inherited enumerable property names.\n","inheritedNonEnumerableProperties":"\ninheritedNonEnumerableProperties( value:any[, level:integer] )\n Returns an array of an object's inherited non-enumerable property names and\n symbols.\n","inheritedNonEnumerablePropertyNames":"\ninheritedNonEnumerablePropertyNames( value:any[, level:integer] )\n Returns an array of an object's inherited non-enumerable property names.\n","inheritedNonEnumerablePropertySymbols":"\ninheritedNonEnumerablePropertySymbols( value:any[, level:integer] )\n Returns an array of an object's inherited non-enumerable symbol properties.\n","inheritedProperties":"\ninheritedProperties( value:any[, level:integer] )\n Returns an array of an object's inherited property names and symbols.\n","inheritedPropertyDescriptor":"\ninheritedPropertyDescriptor( value:any, property:string|symbol[, \n level:integer] )\n Returns a property descriptor for an object's inherited property.\n","inheritedPropertyDescriptors":"\ninheritedPropertyDescriptors( value:any[, level:integer] )\n Returns an object's inherited property descriptors.\n","inheritedPropertyNames":"\ninheritedPropertyNames( value:any[, level:integer] )\n Returns an array of an object's inherited enumerable and non-enumerable\n property names.\n","inheritedPropertySymbols":"\ninheritedPropertySymbols( value:any[, level:integer] )\n Returns an array of an object's inherited symbol properties.\n","inheritedWritableProperties":"\ninheritedWritableProperties( value:any[, level:integer] )\n Returns an array of an object's inherited writable property names and\n symbols.\n","inheritedWritablePropertyNames":"\ninheritedWritablePropertyNames( value:any[, level:integer] )\n Returns an array of an object's inherited writable property names.\n","inheritedWritablePropertySymbols":"\ninheritedWritablePropertySymbols( value:any[, level:integer] )\n Returns an array of an object's inherited writable symbol properties.\n","inmap":"\ninmap( collection:Array|TypedArray|Object, fcn:Function[, thisArg:any] )\n Invokes a function for each element in a collection and updates the\n collection in-place.\n","inmapAsync":"\ninmapAsync( collection:Array|TypedArray|Object, [options:Object,] fcn:Function, \n done:Function )\n Invokes a function once for each element in a collection and updates a\n collection in-place.\n","inmapAsync.factory":"\ninmapAsync.factory( [options:Object,] fcn:Function )\n Returns a function which invokes a function once for each element in a\n collection and updates a collection in-place.\n","inmapRight":"\ninmapRight( collection:Array|TypedArray|Object, fcn:Function[, thisArg:any] )\n Invokes a function for each element in a collection and updates the\n collection in-place, iterating from right to left.\n","inmapRightAsync":"\ninmapRightAsync( collection:Array|TypedArray|Object, [options:Object,] \n fcn:Function, done:Function )\n Invokes a function once for each element in a collection and updates a\n collection in-place, iterating from right to left.\n","inmapRightAsync.factory":"\ninmapRightAsync.factory( [options:Object,] fcn:Function )\n Returns a function which invokes a function once for each element in a\n collection and updates a collection in-place, iterating from right to left.\n","inspectSinkStream":"\ninspectSinkStream( [options:Object,] clbk:Function )\n Returns a writable stream for inspecting stream data.\n","inspectSinkStream.factory":"\ninspectSinkStream.factory( [options:Object] )\n Returns a function for creating writable streams for inspecting stream data.\n","inspectSinkStream.objectMode":"\ninspectSinkStream.objectMode( [options:Object,] clbk:Function )\n Returns an \"objectMode\" writable stream for inspecting stream data.\n","inspectStream":"\ninspectStream( [options:Object,] clbk:Function )\n Returns a transform stream for inspecting stream data.\n","inspectStream.factory":"\ninspectStream.factory( [options:Object] )\n Returns a function for creating transform streams for inspecting stream\n data.\n","inspectStream.objectMode":"\ninspectStream.objectMode( [options:Object,] clbk:Function )\n Returns an \"objectMode\" transform stream for inspecting stream data.\n","instanceOf":"\ninstanceOf( value:any, constructor:Function )\n Tests whether a value has in its prototype chain a specified constructor as\n a prototype property.\n","INT8_MAX":"\nINT8_MAX\n Maximum signed 8-bit integer.\n","INT8_MIN":"\nINT8_MIN\n Minimum signed 8-bit integer.\n","INT8_NUM_BYTES":"\nINT8_NUM_BYTES\n Size (in bytes) of an 8-bit signed integer.\n","Int8Array":"\nInt8Array()\n A typed array constructor which returns a typed array representing an array\n of twos-complement 8-bit signed integers in the platform byte order.\n\nInt8Array( length:integer )\n Returns a typed array having a specified length.\n\nInt8Array( typedarray:TypedArray )\n Creates a typed array from another typed array.\n\nInt8Array( obj:Object )\n Creates a typed array from an array-like object or iterable.\n\nInt8Array( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Returns a typed array view of an ArrayBuffer.\n","Int8Array.from":"\nInt8Array.from( src:ArrayLike|Iterable[, map:Function[, thisArg:Any]] )\n Creates a new typed array from an array-like object or an iterable.\n","Int8Array.of":"\nInt8Array.of( element0:number[, element1:number[, ...elementN:number]] )\n Creates a new typed array from a variable number of arguments.\n","Int8Array.BYTES_PER_ELEMENT":"\nInt8Array.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Int8Array.name":"\nInt8Array.name\n Typed array constructor name.\n","Int8Array.prototype.buffer":"\nInt8Array.prototype.buffer\n Read-only property which returns the ArrayBuffer referenced by the typed\n array.\n","Int8Array.prototype.byteLength":"\nInt8Array.prototype.byteLength\n Read-only property which returns the length (in bytes) of the typed array.\n","Int8Array.prototype.byteOffset":"\nInt8Array.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the typed array\n from the start of its ArrayBuffer.\n","Int8Array.prototype.BYTES_PER_ELEMENT":"\nInt8Array.prototype.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Int8Array.prototype.length":"\nInt8Array.prototype.length\n Read-only property which returns the number of view elements.\n","Int8Array.prototype.copyWithin":"\nInt8Array.prototype.copyWithin( target:integer, start:integer[, end:integer] )\n Copies a sequence of elements within the array starting at `start` and\n ending at `end` (non-inclusive) to the position starting at `target`.\n","Int8Array.prototype.entries":"\nInt8Array.prototype.entries()\n Returns an iterator for iterating over array key-value pairs.\n","Int8Array.prototype.every":"\nInt8Array.prototype.every( predicate:Function[, thisArg:Any] )\n Tests whether all array elements pass a test implemented by a predicate\n function.\n","Int8Array.prototype.fill":"\nInt8Array.prototype.fill( value:number[, start:integer[, end:integer]] )\n Fills an array from a start index to an end index (non-inclusive) with a\n provided value.\n","Int8Array.prototype.filter":"\nInt8Array.prototype.filter( predicate:Function[, thisArg:Any] )\n Creates a new array which includes those elements for which a predicate\n function returns a truthy value.\n","Int8Array.prototype.find":"\nInt8Array.prototype.find( predicate:Function[, thisArg:Any] )\n Returns the first array element for which a provided predicate function\n returns a truthy value.\n","Int8Array.prototype.findIndex":"\nInt8Array.prototype.findIndex( predicate:Function[, thisArg:Any] )\n Returns the index of the first array element for which a provided predicate\n function returns a truthy value.\n","Int8Array.prototype.forEach":"\nInt8Array.prototype.forEach( fcn:Function[, thisArg:Any] )\n Invokes a callback for each array element.\n","Int8Array.prototype.includes":"\nInt8Array.prototype.includes( searchElement:number[, fromIndex:integer] )\n Returns a boolean indicating whether an array includes a search element.\n","Int8Array.prototype.indexOf":"\nInt8Array.prototype.indexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the first array element strictly equal to a search\n element.\n","Int8Array.prototype.join":"\nInt8Array.prototype.join( [separator:string] )\n Serializes an array by joining all array elements as a string.\n","Int8Array.prototype.keys":"\nInt8Array.prototype.keys()\n Returns an iterator for iterating over array keys.\n","Int8Array.prototype.lastIndexOf":"\nInt8Array.prototype.lastIndexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the last array element strictly equal to a search\n element.\n","Int8Array.prototype.map":"\nInt8Array.prototype.map( fcn:Function[, thisArg:Any] )\n Maps each array element to an element in a new typed array.\n","Int8Array.prototype.reduce":"\nInt8Array.prototype.reduce( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","Int8Array.prototype.reduceRight":"\nInt8Array.prototype.reduceRight( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result, iterating from right to left.\n","Int8Array.prototype.reverse":"\nInt8Array.prototype.reverse()\n Reverses an array *in-place*.\n","Int8Array.prototype.set":"\nInt8Array.prototype.set( arr:ArrayLike[, offset:integer] )\n Sets array elements.\n","Int8Array.prototype.slice":"\nInt8Array.prototype.slice( [begin:integer[, end:integer]] )\n Copies array elements to a new array with the same underlying data type as\n the host array.\n","Int8Array.prototype.some":"\nInt8Array.prototype.some( predicate:Function[, thisArg:Any] )\n Tests whether at least one array element passes a test implemented by a\n predicate function.\n","Int8Array.prototype.sort":"\nInt8Array.prototype.sort( [compareFunction:Function] )\n Sorts an array *in-place*.\n","Int8Array.prototype.subarray":"\nInt8Array.prototype.subarray( [begin:integer[, end:integer]] )\n Creates a new typed array over the same underlying ArrayBuffer and with the\n same underlying data type as the host array.\n","Int8Array.prototype.toLocaleString":"\nInt8Array.prototype.toLocaleString( [locales:string|Array[, options:Object]] )\n Serializes an array as a locale-specific string.\n","Int8Array.prototype.toString":"\nInt8Array.prototype.toString()\n Serializes an array as a string.\n","Int8Array.prototype.values":"\nInt8Array.prototype.values()\n Returns an iterator for iterating over array elements.\n","INT16_MAX":"\nINT16_MAX\n Maximum signed 16-bit integer.\n","INT16_MIN":"\nINT16_MIN\n Minimum signed 16-bit integer.\n","INT16_NUM_BYTES":"\nINT16_NUM_BYTES\n Size (in bytes) of a 16-bit signed integer.\n","Int16Array":"\nInt16Array()\n A typed array constructor which returns a typed array representing an array\n of twos-complement 16-bit signed integers in the platform byte order.\n\nInt16Array( length:integer )\n Returns a typed array having a specified length.\n\nInt16Array( typedarray:TypedArray )\n Creates a typed array from another typed array.\n\nInt16Array( obj:Object )\n Creates a typed array from an array-like object or iterable.\n\nInt16Array( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Returns a typed array view of an ArrayBuffer.\n","Int16Array.from":"\nInt16Array.from( src:ArrayLike|Iterable[, map:Function[, thisArg:Any]] )\n Creates a new typed array from an array-like object or an iterable.\n","Int16Array.of":"\nInt16Array.of( element0:number[, element1:number[, ...elementN:number]] )\n Creates a new typed array from a variable number of arguments.\n","Int16Array.BYTES_PER_ELEMENT":"\nInt16Array.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Int16Array.name":"\nInt16Array.name\n Typed array constructor name.\n","Int16Array.prototype.buffer":"\nInt16Array.prototype.buffer\n Read-only property which returns the ArrayBuffer referenced by the typed\n array.\n","Int16Array.prototype.byteLength":"\nInt16Array.prototype.byteLength\n Read-only property which returns the length (in bytes) of the typed array.\n","Int16Array.prototype.byteOffset":"\nInt16Array.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the typed array\n from the start of its ArrayBuffer.\n","Int16Array.prototype.BYTES_PER_ELEMENT":"\nInt16Array.prototype.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Int16Array.prototype.length":"\nInt16Array.prototype.length\n Read-only property which returns the number of view elements.\n","Int16Array.prototype.copyWithin":"\nInt16Array.prototype.copyWithin( target:integer, start:integer[, end:integer] )\n Copies a sequence of elements within the array starting at `start` and\n ending at `end` (non-inclusive) to the position starting at `target`.\n","Int16Array.prototype.entries":"\nInt16Array.prototype.entries()\n Returns an iterator for iterating over array key-value pairs.\n","Int16Array.prototype.every":"\nInt16Array.prototype.every( predicate:Function[, thisArg:Any] )\n Tests whether all array elements pass a test implemented by a predicate\n function.\n","Int16Array.prototype.fill":"\nInt16Array.prototype.fill( value:number[, start:integer[, end:integer]] )\n Fills an array from a start index to an end index (non-inclusive) with a\n provided value.\n","Int16Array.prototype.filter":"\nInt16Array.prototype.filter( predicate:Function[, thisArg:Any] )\n Creates a new array which includes those elements for which a predicate\n function returns a truthy value.\n","Int16Array.prototype.find":"\nInt16Array.prototype.find( predicate:Function[, thisArg:Any] )\n Returns the first array element for which a provided predicate function\n returns a truthy value.\n","Int16Array.prototype.findIndex":"\nInt16Array.prototype.findIndex( predicate:Function[, thisArg:Any] )\n Returns the index of the first array element for which a provided predicate\n function returns a truthy value.\n","Int16Array.prototype.forEach":"\nInt16Array.prototype.forEach( fcn:Function[, thisArg:Any] )\n Invokes a callback for each array element.\n","Int16Array.prototype.includes":"\nInt16Array.prototype.includes( searchElement:number[, fromIndex:integer] )\n Returns a boolean indicating whether an array includes a search element.\n","Int16Array.prototype.indexOf":"\nInt16Array.prototype.indexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the first array element strictly equal to a search\n element.\n","Int16Array.prototype.join":"\nInt16Array.prototype.join( [separator:string] )\n Serializes an array by joining all array elements as a string.\n","Int16Array.prototype.keys":"\nInt16Array.prototype.keys()\n Returns an iterator for iterating over array keys.\n","Int16Array.prototype.lastIndexOf":"\nInt16Array.prototype.lastIndexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the last array element strictly equal to a search\n element.\n","Int16Array.prototype.map":"\nInt16Array.prototype.map( fcn:Function[, thisArg:Any] )\n Maps each array element to an element in a new typed array.\n","Int16Array.prototype.reduce":"\nInt16Array.prototype.reduce( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","Int16Array.prototype.reduceRight":"\nInt16Array.prototype.reduceRight( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result, iterating from right to left.\n","Int16Array.prototype.reverse":"\nInt16Array.prototype.reverse()\n Reverses an array *in-place*.\n","Int16Array.prototype.set":"\nInt16Array.prototype.set( arr:ArrayLike[, offset:integer] )\n Sets array elements.\n","Int16Array.prototype.slice":"\nInt16Array.prototype.slice( [begin:integer[, end:integer]] )\n Copies array elements to a new array with the same underlying data type as\n the host array.\n","Int16Array.prototype.some":"\nInt16Array.prototype.some( predicate:Function[, thisArg:Any] )\n Tests whether at least one array element passes a test implemented by a\n predicate function.\n","Int16Array.prototype.sort":"\nInt16Array.prototype.sort( [compareFunction:Function] )\n Sorts an array *in-place*.\n","Int16Array.prototype.subarray":"\nInt16Array.prototype.subarray( [begin:integer[, end:integer]] )\n Creates a new typed array over the same underlying ArrayBuffer and with the\n same underlying data type as the host array.\n","Int16Array.prototype.toLocaleString":"\nInt16Array.prototype.toLocaleString( [locales:string|Array[, options:Object]] )\n Serializes an array as a locale-specific string.\n","Int16Array.prototype.toString":"\nInt16Array.prototype.toString()\n Serializes an array as a string.\n","Int16Array.prototype.values":"\nInt16Array.prototype.values()\n Returns an iterator for iterating over array elements.\n","INT32_MAX":"\nINT32_MAX\n Maximum signed 32-bit integer.\n","INT32_MIN":"\nINT32_MIN\n Minimum signed 32-bit integer.\n","INT32_NUM_BYTES":"\nINT32_NUM_BYTES\n Size (in bytes) of a 32-bit signed integer.\n","Int32Array":"\nInt32Array()\n A typed array constructor which returns a typed array representing an array\n of twos-complement 32-bit signed integers in the platform byte order.\n\nInt32Array( length:integer )\n Returns a typed array having a specified length.\n\nInt32Array( typedarray:TypedArray )\n Creates a typed array from another typed array.\n\nInt32Array( obj:Object )\n Creates a typed array from an array-like object or iterable.\n\nInt32Array( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Returns a typed array view of an ArrayBuffer.\n","Int32Array.from":"\nInt32Array.from( src:ArrayLike|Iterable[, map:Function[, thisArg:Any]] )\n Creates a new typed array from an array-like object or an iterable.\n","Int32Array.of":"\nInt32Array.of( element0:number[, element1:number[, ...elementN:number]] )\n Creates a new typed array from a variable number of arguments.\n","Int32Array.BYTES_PER_ELEMENT":"\nInt32Array.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Int32Array.name":"\nInt32Array.name\n Typed array constructor name.\n","Int32Array.prototype.buffer":"\nInt32Array.prototype.buffer\n Read-only property which returns the ArrayBuffer referenced by the typed\n array.\n","Int32Array.prototype.byteLength":"\nInt32Array.prototype.byteLength\n Read-only property which returns the length (in bytes) of the typed array.\n","Int32Array.prototype.byteOffset":"\nInt32Array.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the typed array\n from the start of its ArrayBuffer.\n","Int32Array.prototype.BYTES_PER_ELEMENT":"\nInt32Array.prototype.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Int32Array.prototype.length":"\nInt32Array.prototype.length\n Read-only property which returns the number of view elements.\n","Int32Array.prototype.copyWithin":"\nInt32Array.prototype.copyWithin( target:integer, start:integer[, end:integer] )\n Copies a sequence of elements within the array starting at `start` and\n ending at `end` (non-inclusive) to the position starting at `target`.\n","Int32Array.prototype.entries":"\nInt32Array.prototype.entries()\n Returns an iterator for iterating over array key-value pairs.\n","Int32Array.prototype.every":"\nInt32Array.prototype.every( predicate:Function[, thisArg:Any] )\n Tests whether all array elements pass a test implemented by a predicate\n function.\n","Int32Array.prototype.fill":"\nInt32Array.prototype.fill( value:number[, start:integer[, end:integer]] )\n Fills an array from a start index to an end index (non-inclusive) with a\n provided value.\n","Int32Array.prototype.filter":"\nInt32Array.prototype.filter( predicate:Function[, thisArg:Any] )\n Creates a new array which includes those elements for which a predicate\n function returns a truthy value.\n","Int32Array.prototype.find":"\nInt32Array.prototype.find( predicate:Function[, thisArg:Any] )\n Returns the first array element for which a provided predicate function\n returns a truthy value.\n","Int32Array.prototype.findIndex":"\nInt32Array.prototype.findIndex( predicate:Function[, thisArg:Any] )\n Returns the index of the first array element for which a provided predicate\n function returns a truthy value.\n","Int32Array.prototype.forEach":"\nInt32Array.prototype.forEach( fcn:Function[, thisArg:Any] )\n Invokes a callback for each array element.\n","Int32Array.prototype.includes":"\nInt32Array.prototype.includes( searchElement:number[, fromIndex:integer] )\n Returns a boolean indicating whether an array includes a search element.\n","Int32Array.prototype.indexOf":"\nInt32Array.prototype.indexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the first array element strictly equal to a search\n element.\n","Int32Array.prototype.join":"\nInt32Array.prototype.join( [separator:string] )\n Serializes an array by joining all array elements as a string.\n","Int32Array.prototype.keys":"\nInt32Array.prototype.keys()\n Returns an iterator for iterating over array keys.\n","Int32Array.prototype.lastIndexOf":"\nInt32Array.prototype.lastIndexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the last array element strictly equal to a search\n element.\n","Int32Array.prototype.map":"\nInt32Array.prototype.map( fcn:Function[, thisArg:Any] )\n Maps each array element to an element in a new typed array.\n","Int32Array.prototype.reduce":"\nInt32Array.prototype.reduce( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","Int32Array.prototype.reduceRight":"\nInt32Array.prototype.reduceRight( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result, iterating from right to left.\n","Int32Array.prototype.reverse":"\nInt32Array.prototype.reverse()\n Reverses an array *in-place*.\n","Int32Array.prototype.set":"\nInt32Array.prototype.set( arr:ArrayLike[, offset:integer] )\n Sets array elements.\n","Int32Array.prototype.slice":"\nInt32Array.prototype.slice( [begin:integer[, end:integer]] )\n Copies array elements to a new array with the same underlying data type as\n the host array.\n","Int32Array.prototype.some":"\nInt32Array.prototype.some( predicate:Function[, thisArg:Any] )\n Tests whether at least one array element passes a test implemented by a\n predicate function.\n","Int32Array.prototype.sort":"\nInt32Array.prototype.sort( [compareFunction:Function] )\n Sorts an array *in-place*.\n","Int32Array.prototype.subarray":"\nInt32Array.prototype.subarray( [begin:integer[, end:integer]] )\n Creates a new typed array over the same underlying ArrayBuffer and with the\n same underlying data type as the host array.\n","Int32Array.prototype.toLocaleString":"\nInt32Array.prototype.toLocaleString( [locales:string|Array[, options:Object]] )\n Serializes an array as a locale-specific string.\n","Int32Array.prototype.toString":"\nInt32Array.prototype.toString()\n Serializes an array as a string.\n","Int32Array.prototype.values":"\nInt32Array.prototype.values()\n Returns an iterator for iterating over array elements.\n","IS_BIG_ENDIAN":"\nIS_BIG_ENDIAN\n Boolean indicating if the environment is big endian.\n","IS_BROWSER":"\nIS_BROWSER\n Boolean indicating if the runtime is a web browser.\n","IS_DARWIN":"\nIS_DARWIN\n Boolean indicating if the current process is running on Darwin.\n","IS_ELECTRON":"\nIS_ELECTRON\n Boolean indicating if the runtime is Electron.\n","IS_ELECTRON_MAIN":"\nIS_ELECTRON_MAIN\n Boolean indicating if the runtime is the main Electron process.\n","IS_ELECTRON_RENDERER":"\nIS_ELECTRON_RENDERER\n Boolean indicating if the runtime is the Electron renderer process.\n","IS_LITTLE_ENDIAN":"\nIS_LITTLE_ENDIAN\n Boolean indicating if the environment is little endian.\n","IS_NODE":"\nIS_NODE\n Boolean indicating if the runtime is Node.js.\n","IS_WEB_WORKER":"\nIS_WEB_WORKER\n Boolean indicating if the runtime is a web worker.\n","IS_WINDOWS":"\nIS_WINDOWS\n Boolean indicating if the current process is running on Windows.\n","isAbsolutePath":"\nisAbsolutePath( value:any )\n Tests if a value is an absolute path.\n","isAbsolutePath.posix":"\nisAbsolutePath.posix( value:any )\n Tests if a value is a POSIX absolute path.\n","isAbsolutePath.win32":"\nisAbsolutePath.win32( value:any )\n Tests if a value is a Windows absolute path.\n","isAccessorProperty":"\nisAccessorProperty( value:any, property:any )\n Tests if an object's own property has an accessor descriptor.\n","isAccessorPropertyIn":"\nisAccessorPropertyIn( value:any, property:any )\n Tests if an object's own or inherited property has an accessor descriptor.\n","isAlphagram":"\nisAlphagram( value:any )\n Tests if a value is an alphagram (i.e., a sequence of characters arranged in\n alphabetical order).\n","isAlphaNumeric":"\nisAlphaNumeric( str:string )\n Tests whether a string contains only alphanumeric characters.\n","isAnagram":"\nisAnagram( str:string, value:any )\n Tests if a value is an anagram.\n","isArguments":"\nisArguments( value:any )\n Tests if a value is an arguments object.\n","isArray":"\nisArray( value:any )\n Tests if a value is an array.\n","isArrayArray":"\nisArrayArray( value:any )\n Tests if a value is an array of arrays.\n","isArrayBuffer":"\nisArrayBuffer( value:any )\n Tests if a value is an ArrayBuffer.\n","isArrayBufferView":"\nisArrayBufferView( value:any )\n Tests if a value is a `ArrayBuffer` view.\n","isArrayLength":"\nisArrayLength( value:any )\n Tests if a value is a valid array length.\n","isArrayLike":"\nisArrayLike( value:any )\n Tests if a value is array-like.\n","isArrayLikeObject":"\nisArrayLikeObject( value:any )\n Tests if a value is an array-like object.\n","isASCII":"\nisASCII( str:string )\n Tests whether a character belongs to the ASCII character set and whether\n this is true for all characters in a provided string.\n","isBetween":"\nisBetween( value:any, a:any, b:any[, left:string, right:string] )\n Tests if a value is between two values.\n","isBetweenArray":"\nisBetweenArray( value:any, a:any, b:any[, left:string, right:string] )\n Tests if a value is an array-like object where every element is between two\n values.\n","isBigInt":"\nisBigInt( value:any )\n Tests if a value is a BigInt.\n","isBigUint64Array":"\nisBigUint64Array( value:any )\n Tests if a value is a BigUint64Array.\n","isBinaryString":"\nisBinaryString( value:any )\n Tests if a value is a binary string.\n","isBlankString":"\nisBlankString( value:any )\n Tests if a value is a blank string (i.e., an empty string or a string\n consisting only of whitespace characters).\n","isBoolean":"\nisBoolean( value:any )\n Tests if a value is a boolean.\n","isBoolean.isPrimitive":"\nisBoolean.isPrimitive( value:any )\n Tests if a value is a boolean primitive.\n","isBoolean.isObject":"\nisBoolean.isObject( value:any )\n Tests if a value is a boolean object.\n","isBooleanArray":"\nisBooleanArray( value:any )\n Tests if a value is an array-like object of booleans.\n","isBooleanArray.primitives":"\nisBooleanArray.primitives( value:any )\n Tests if a value is an array-like object containing only boolean primitives.\n","isBooleanArray.objects":"\nisBooleanArray.objects( value:any )\n Tests if a value is an array-like object containing only Boolean objects.\n","isBoxedPrimitive":"\nisBoxedPrimitive( value:any )\n Tests if a value is a JavaScript boxed primitive.\n","isBuffer":"\nisBuffer( value:any )\n Tests if a value is a Buffer instance.\n","isCapitalized":"\nisCapitalized( value:any )\n Tests if a value is a string having an uppercase first character.\n","isCentrosymmetricMatrix":"\nisCentrosymmetricMatrix( value:any )\n Tests if a value is a matrix which is symmetric about its center.\n","isCircular":"\nisCircular( value:any )\n Tests if an object-like value contains a circular reference.\n","isCircularArray":"\nisCircularArray( value:any )\n Tests if a value is an array containing a circular reference.\n","isCircularPlainObject":"\nisCircularPlainObject( value:any )\n Tests if a value is a plain object containing a circular reference.\n","isClass":"\nisClass( value:any )\n Tests if a value is a class.\n","isCollection":"\nisCollection( value:any )\n Tests if a value is a collection.\n","isComplex":"\nisComplex( value:any )\n Tests if a value is a 64-bit or 128-bit complex number.\n","isComplex64":"\nisComplex64( value:any )\n Tests if a value is a 64-bit complex number.\n","isComplex64Array":"\nisComplex64Array( value:any )\n Tests if a value is a Complex64Array.\n","isComplex128":"\nisComplex128( value:any )\n Tests if a value is a 128-bit complex number.\n","isComplex128Array":"\nisComplex128Array( value:any )\n Tests if a value is a Complex128Array.\n","isComplexLike":"\nisComplexLike( value:any )\n Tests if a value is a complex number-like object.\n","isComplexTypedArray":"\nisComplexTypedArray( value:any )\n Tests if a value is a complex typed array.\n","isComplexTypedArrayLike":"\nisComplexTypedArrayLike( value:any )\n Tests if a value is complex-typed-array-like.\n","isComposite":"\nisComposite( value:any )\n Tests if a value is a composite number.\n","isComposite.isPrimitive":"\nisComposite.isPrimitive( value:any )\n Tests if a value is a number primitive which is a composite number.\n","isComposite.isObject":"\nisComposite.isObject( value:any )\n Tests if a value is a number object having a value which is a composite\n number.\n","isConfigurableProperty":"\nisConfigurableProperty( value:any, property:any )\n Tests if an object's own property is configurable.\n","isConfigurablePropertyIn":"\nisConfigurablePropertyIn( value:any, property:any )\n Tests if an object's own or inherited property is configurable.\n","isCubeNumber":"\nisCubeNumber( value:any )\n Tests if a value is a cube number.\n","isCubeNumber.isPrimitive":"\nisCubeNumber.isPrimitive( value:any )\n Tests if a value is a number primitive which is a cube number.\n","isCubeNumber.isObject":"\nisCubeNumber.isObject( value:any )\n Tests if a value is a number object having a value which is a cube number.\n","isDataProperty":"\nisDataProperty( value:any, property:any )\n Tests if an object's own property has a data descriptor.\n","isDataPropertyIn":"\nisDataPropertyIn( value:any, property:any )\n Tests if an object's own or inherited property has a data descriptor.\n","isDataView":"\nisDataView( value:any )\n Tests if a value is a DataView.\n","isDateObject":"\nisDateObject( value:any )\n Tests if a value is a Date object.\n","isDateObjectArray":"\nisDateObjectArray( value:any )\n Tests if a value is an array-like object containing only Date objects.\n","isDigitString":"\nisDigitString( str:string )\n Tests whether a string contains only numeric digits.\n","isEmailAddress":"\nisEmailAddress( value:any )\n Tests if a value is an email address.\n","isEmptyArray":"\nisEmptyArray( value:any )\n Tests if a value is an empty array.\n","isEmptyArrayLikeObject":"\nisEmptyArrayLikeObject( value:any )\n Tests if a value is an empty array-like object.\n","isEmptyCollection":"\nisEmptyCollection( value:any )\n Tests if a value is an empty collection.\n","isEmptyObject":"\nisEmptyObject( value:any )\n Tests if a value is an empty object.\n","isEmptyString":"\nisEmptyString( value:any )\n Tests if a value is an empty string.\n","isEmptyString.isPrimitive":"\nisEmptyString.isPrimitive( value:any )\n Tests if a value is an empty string primitive.\n","isEmptyString.isObject":"\nisEmptyString.isObject( value:any )\n Tests if a value is an empty `String` object.\n","isEnumerableProperty":"\nisEnumerableProperty( value:any, property:any )\n Tests if an object's own property is enumerable.\n","isEnumerablePropertyIn":"\nisEnumerablePropertyIn( value:any, property:any )\n Tests if an object's own or inherited property is enumerable.\n","isError":"\nisError( value:any )\n Tests if a value is an Error object.\n","isEvalError":"\nisEvalError( value:any )\n Tests if a value is an EvalError object.\n","isEven":"\nisEven( value:any )\n Tests if a value is an even number.\n","isEven.isPrimitive":"\nisEven.isPrimitive( value:any )\n Tests if a value is a number primitive that is an even number.\n","isEven.isObject":"\nisEven.isObject( value:any )\n Tests if a value is a number object that is an even number.\n","isFalsy":"\nisFalsy( value:any )\n Tests if a value is a value which translates to `false` when evaluated in a\n boolean context.\n","isFalsyArray":"\nisFalsyArray( value:any )\n Tests if a value is an array-like object containing only falsy values.\n","isFinite":"\nisFinite( value:any )\n Tests if a value is a finite number.\n","isFinite.isPrimitive":"\nisFinite.isPrimitive( value:any )\n Tests if a value is a number primitive having a finite value.\n","isFinite.isObject":"\nisFinite.isObject( value:any )\n Tests if a value is a number object having a finite value.\n","isFiniteArray":"\nisFiniteArray( value:any )\n Tests if a value is an array-like object of finite numbers.\n","isFiniteArray.primitives":"\nisFiniteArray.primitives( value:any )\n Tests if a value is an array-like object containing only primitive finite\n numbers.\n","isFiniteArray.objects":"\nisFiniteArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having finite values.\n","isFloat32Array":"\nisFloat32Array( value:any )\n Tests if a value is a Float32Array.\n","isFloat32MatrixLike":"\nisFloat32MatrixLike( value:any )\n Tests if a value is a 2-dimensional ndarray-like object containing single-\n precision floating-point numbers.\n","isFloat32ndarrayLike":"\nisFloat32ndarrayLike( value:any )\n Tests if a value is an ndarray-like object containing single-precision\n floating-point numbers.\n","isFloat32VectorLike":"\nisFloat32VectorLike( value:any )\n Tests if a value is a 1-dimensional ndarray-like object containing single-\n precision floating-point numbers.\n","isFloat64Array":"\nisFloat64Array( value:any )\n Tests if a value is a Float64Array.\n","isFloat64MatrixLike":"\nisFloat64MatrixLike( value:any )\n Tests if a value is a 2-dimensional ndarray-like object containing double-\n precision floating-point numbers.\n","isFloat64ndarrayLike":"\nisFloat64ndarrayLike( value:any )\n Tests if a value is an ndarray-like object containing double-precision\n floating-point numbers.\n","isFloat64VectorLike":"\nisFloat64VectorLike( value:any )\n Tests if a value is a 1-dimensional ndarray-like object containing double-\n precision floating-point numbers.\n","isFunction":"\nisFunction( value:any )\n Tests if a value is a function.\n","isFunctionArray":"\nisFunctionArray( value:any )\n Tests if a value is an array-like object containing only functions.\n","isGeneratorObject":"\nisGeneratorObject( value:any )\n Tests if a value is a generator object.\n","isGeneratorObjectLike":"\nisGeneratorObjectLike( value:any )\n Tests if a value is generator object-like.\n","isgzipBuffer":"\nisgzipBuffer( value:any )\n Tests if a value is a gzip buffer.\n","isHexString":"\nisHexString( str:string )\n Tests whether a string contains only hexadecimal digits.\n","isInfinite":"\nisInfinite( value:any )\n Tests if a value is an infinite number.\n","isInfinite.isPrimitive":"\nisInfinite.isPrimitive( value:any )\n Tests if a value is a number primitive having an infinite value.\n","isInfinite.isObject":"\nisInfinite.isObject( value:any )\n Tests if a value is a number object having an infinite value.\n","isInheritedProperty":"\nisInheritedProperty( value:any, property:any )\n Tests if an object has an inherited property.\n","isInt8Array":"\nisInt8Array( value:any )\n Tests if a value is an Int8Array.\n","isInt16Array":"\nisInt16Array( value:any )\n Tests if a value is an Int16Array.\n","isInt32Array":"\nisInt32Array( value:any )\n Tests if a value is an Int32Array.\n","isInteger":"\nisInteger( value:any )\n Tests if a value is an integer.\n","isInteger.isPrimitive":"\nisInteger.isPrimitive( value:any )\n Tests if a value is a number primitive having an integer value.\n","isInteger.isObject":"\nisInteger.isObject( value:any )\n Tests if a value is a number object having an integer value.\n","isIntegerArray":"\nisIntegerArray( value:any )\n Tests if a value is an array-like object of integer values.\n","isIntegerArray.primitives":"\nisIntegerArray.primitives( value:any )\n Tests if a value is an array-like object containing only primitive integer\n values.\n","isIntegerArray.objects":"\nisIntegerArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having integer values.\n","isIterableLike":"\nisIterableLike( value:any )\n Tests if a value is iterable-like.\n","isIteratorLike":"\nisIteratorLike( value:any )\n Tests if a value is iterator-like.\n","isJSON":"\nisJSON( value:any )\n Tests if a value is a parseable JSON string.\n","isLeapYear":"\nisLeapYear( value:any )\n Tests whether a value corresponds to a leap year in the Gregorian calendar.\n","isLocalhost":"\nisLocalhost( value:any )\n Tests whether a value is a localhost hostname.\n","isLowercase":"\nisLowercase( value:any )\n Tests if a value is a lowercase string.\n","isMatrixLike":"\nisMatrixLike( value:any )\n Tests if a value is a 2-dimensional ndarray-like object.\n","isMethod":"\nisMethod( value:any, property:any )\n Tests if an object has a specified method name.\n","isMethodIn":"\nisMethodIn( value:any, property:any )\n Tests if an object has a specified method name, either own or inherited.\n","isNamedTypedTupleLike":"\nisNamedTypedTupleLike( value:any )\n Tests if a value is named typed tuple-like.\n","isnan":"\nisnan( value:any )\n Tests if a value is NaN.\n","isnan.isPrimitive":"\nisnan.isPrimitive( value:any )\n Tests if a value is a NaN number primitive.\n","isnan.isObject":"\nisnan.isObject( value:any )\n Tests if a value is a number object having a value of NaN.\n","isNaNArray":"\nisNaNArray( value:any )\n Tests if a value is an array-like object containing only NaN values.\n","isNaNArray.primitives":"\nisNaNArray.primitives( value:any )\n Tests if a value is an array-like object containing only primitive NaN\n values.\n","isNaNArray.objects":"\nisNaNArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having NaN values.\n","isNativeFunction":"\nisNativeFunction( value:any )\n Tests if a value is a native function.\n","isndarrayLike":"\nisndarrayLike( value:any )\n Tests if a value is ndarray-like.\n","isNegativeInteger":"\nisNegativeInteger( value:any )\n Tests if a value is a negative integer.\n","isNegativeInteger.isPrimitive":"\nisNegativeInteger.isPrimitive( value:any )\n Tests if a value is a number primitive having a negative integer value.\n","isNegativeInteger.isObject":"\nisNegativeInteger.isObject( value:any )\n Tests if a value is a number object having a negative integer value.\n","isNegativeIntegerArray":"\nisNegativeIntegerArray( value:any )\n Tests if a value is an array-like object containing only negative integers.\n","isNegativeIntegerArray.primitives":"\nisNegativeIntegerArray.primitives( value:any )\n Tests if a value is an array-like object containing only negative primitive\n integer values.\n","isNegativeIntegerArray.objects":"\nisNegativeIntegerArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having negative integer values.\n","isNegativeNumber":"\nisNegativeNumber( value:any )\n Tests if a value is a negative number.\n","isNegativeNumber.isPrimitive":"\nisNegativeNumber.isPrimitive( value:any )\n Tests if a value is a number primitive having a negative value.\n","isNegativeNumber.isObject":"\nisNegativeNumber.isObject( value:any )\n Tests if a value is a number object having a negative value.\n","isNegativeNumberArray":"\nisNegativeNumberArray( value:any )\n Tests if a value is an array-like object containing only negative numbers.\n","isNegativeNumberArray.primitives":"\nisNegativeNumberArray.primitives( value:any )\n Tests if a value is an array-like object containing only primitive negative\n numbers.\n","isNegativeNumberArray.objects":"\nisNegativeNumberArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having negative number values.\n","isNegativeZero":"\nisNegativeZero( value:any )\n Tests if a value is negative zero.\n","isNegativeZero.isPrimitive":"\nisNegativeZero.isPrimitive( value:any )\n Tests if a value is a number primitive equal to negative zero.\n","isNegativeZero.isObject":"\nisNegativeZero.isObject( value:any )\n Tests if a value is a number object having a value equal to negative zero.\n","isNodeBuiltin":"\nisNodeBuiltin( str:string )\n Tests whether a string matches a Node.js built-in module name.\n","isNodeDuplexStreamLike":"\nisNodeDuplexStreamLike( value:any )\n Tests if a value is Node duplex stream-like.\n","isNodeReadableStreamLike":"\nisNodeReadableStreamLike( value:any )\n Tests if a value is Node readable stream-like.\n","isNodeREPL":"\nisNodeREPL()\n Returns a boolean indicating if running in a Node.js REPL environment.\n","isNodeStreamLike":"\nisNodeStreamLike( value:any )\n Tests if a value is Node stream-like.\n","isNodeTransformStreamLike":"\nisNodeTransformStreamLike( value:any )\n Tests if a value is Node transform stream-like.\n","isNodeWritableStreamLike":"\nisNodeWritableStreamLike( value:any )\n Tests if a value is Node writable stream-like.\n","isNonConfigurableProperty":"\nisNonConfigurableProperty( value:any, property:any )\n Tests if an object's own property is non-configurable.\n","isNonConfigurablePropertyIn":"\nisNonConfigurablePropertyIn( value:any, property:any )\n Tests if an object's own or inherited property is non-configurable.\n","isNonEnumerableProperty":"\nisNonEnumerableProperty( value:any, property:any )\n Tests if an object's own property is non-enumerable.\n","isNonEnumerablePropertyIn":"\nisNonEnumerablePropertyIn( value:any, property:any )\n Tests if an object's own or inherited property is non-enumerable.\n","isNonNegativeInteger":"\nisNonNegativeInteger( value:any )\n Tests if a value is a nonnegative integer.\n","isNonNegativeInteger.isPrimitive":"\nisNonNegativeInteger.isPrimitive( value:any )\n Tests if a value is a number primitive having a nonnegative integer value.\n","isNonNegativeInteger.isObject":"\nisNonNegativeInteger.isObject( value:any )\n Tests if a value is a number object having a nonnegative integer value.\n","isNonNegativeIntegerArray":"\nisNonNegativeIntegerArray( value:any )\n Tests if a value is an array-like object containing only nonnegative\n integers.\n","isNonNegativeIntegerArray.primitives":"\nisNonNegativeIntegerArray.primitives( value:any )\n Tests if a value is an array-like object containing only nonnegative\n primitive integer values.\n","isNonNegativeIntegerArray.objects":"\nisNonNegativeIntegerArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having nonnegative integer values.\n","isNonNegativeNumber":"\nisNonNegativeNumber( value:any )\n Tests if a value is a nonnegative number.\n","isNonNegativeNumber.isPrimitive":"\nisNonNegativeNumber.isPrimitive( value:any )\n Tests if a value is a number primitive having a nonnegative value.\n","isNonNegativeNumber.isObject":"\nisNonNegativeNumber.isObject( value:any )\n Tests if a value is a number object having a nonnegative value.\n","isNonNegativeNumberArray":"\nisNonNegativeNumberArray( value:any )\n Tests if a value is an array-like object containing only nonnegative\n numbers.\n","isNonNegativeNumberArray.primitives":"\nisNonNegativeNumberArray.primitives( value:any )\n Tests if a value is an array-like object containing only primitive\n nonnegative numbers.\n","isNonNegativeNumberArray.objects":"\nisNonNegativeNumberArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having nonnegative number values.\n","isNonPositiveInteger":"\nisNonPositiveInteger( value:any )\n Tests if a value is a nonpositive integer.\n","isNonPositiveInteger.isPrimitive":"\nisNonPositiveInteger.isPrimitive( value:any )\n Tests if a value is a number primitive having a nonpositive integer value.\n","isNonPositiveInteger.isObject":"\nisNonPositiveInteger.isObject( value:any )\n Tests if a value is a number object having a nonpositive integer value.\n","isNonPositiveIntegerArray":"\nisNonPositiveIntegerArray( value:any )\n Tests if a value is an array-like object containing only nonpositive\n integers.\n","isNonPositiveIntegerArray.primitives":"\nisNonPositiveIntegerArray.primitives( value:any )\n Tests if a value is an array-like object containing only nonpositive\n primitive integer values.\n","isNonPositiveIntegerArray.objects":"\nisNonPositiveIntegerArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having nonpositive integer values.\n","isNonPositiveNumber":"\nisNonPositiveNumber( value:any )\n Tests if a value is a nonpositive number.\n","isNonPositiveNumber.isPrimitive":"\nisNonPositiveNumber.isPrimitive( value:any )\n Tests if a value is a number primitive having a nonpositive value.\n","isNonPositiveNumber.isObject":"\nisNonPositiveNumber.isObject( value:any )\n Tests if a value is a number object having a nonpositive value.\n","isNonPositiveNumberArray":"\nisNonPositiveNumberArray( value:any )\n Tests if a value is an array-like object containing only nonpositive\n numbers.\n","isNonPositiveNumberArray.primitives":"\nisNonPositiveNumberArray.primitives( value:any )\n Tests if a value is an array-like object containing only primitive\n nonpositive numbers.\n","isNonPositiveNumberArray.objects":"\nisNonPositiveNumberArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having nonpositive number values.\n","isNonSymmetricMatrix":"\nisNonSymmetricMatrix( value:any )\n Tests if a value is a non-symmetric matrix.\n","isNull":"\nisNull( value:any )\n Tests if a value is null.\n","isNullArray":"\nisNullArray( value:any )\n Tests if a value is an array-like object containing only null values.\n","isNumber":"\nisNumber( value:any )\n Tests if a value is a number.\n","isNumber.isPrimitive":"\nisNumber.isPrimitive( value:any )\n Tests if a value is a number primitive.\n","isNumber.isObject":"\nisNumber.isObject( value:any )\n Tests if a value is a `Number` object.\n","isNumberArray":"\nisNumberArray( value:any )\n Tests if a value is an array-like object containing only numbers.\n","isNumberArray.primitives":"\nisNumberArray.primitives( value:any )\n Tests if a value is an array-like object containing only number primitives.\n","isNumberArray.objects":"\nisNumberArray.objects( value:any )\n Tests if a value is an array-like object containing only `Number` objects.\n","isNumericArray":"\nisNumericArray( value:any )\n Tests if a value is a numeric array.\n","isObject":"\nisObject( value:any )\n Tests if a value is an object; e.g., `{}`.\n","isObjectArray":"\nisObjectArray( value:any )\n Tests if a value is an array-like object containing only objects.\n","isObjectLike":"\nisObjectLike( value:any )\n Tests if a value is object-like.\n","isOdd":"\nisOdd( value:any )\n Tests if a value is an odd number.\n","isOdd.isPrimitive":"\nisOdd.isPrimitive( value:any )\n Tests if a value is a number primitive that is an odd number.\n","isOdd.isObject":"\nisOdd.isObject( value:any )\n Tests if a value is a number object that has an odd number value.\n","isoWeeksInYear":"\nisoWeeksInYear( [year:integer] )\n Returns the number of ISO weeks in a year according to the Gregorian\n calendar.\n","isPersymmetricMatrix":"\nisPersymmetricMatrix( value:any )\n Tests if a value is a square matrix which is symmetric about its\n antidiagonal.\n","isPlainObject":"\nisPlainObject( value:any )\n Tests if a value is a plain object.\n","isPlainObjectArray":"\nisPlainObjectArray( value:any )\n Tests if a value is an array-like object containing only plain objects.\n","isPositiveInteger":"\nisPositiveInteger( value:any )\n Tests if a value is a positive integer.\n","isPositiveInteger.isPrimitive":"\nisPositiveInteger.isPrimitive( value:any )\n Tests if a value is a number primitive having a positive integer value.\n","isPositiveInteger.isObject":"\nisPositiveInteger.isObject( value:any )\n Tests if a value is a number object having a positive integer value.\n","isPositiveIntegerArray":"\nisPositiveIntegerArray( value:any )\n Tests if a value is an array-like object containing only positive integers.\n","isPositiveIntegerArray.primitives":"\nisPositiveIntegerArray.primitives( value:any )\n Tests if a value is an array-like object containing only positive primitive\n integer values.\n","isPositiveIntegerArray.objects":"\nisPositiveIntegerArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having positive integer values.\n","isPositiveNumber":"\nisPositiveNumber( value:any )\n Tests if a value is a positive number.\n","isPositiveNumber.isPrimitive":"\nisPositiveNumber.isPrimitive( value:any )\n Tests if a value is a number primitive having a positive value.\n","isPositiveNumber.isObject":"\nisPositiveNumber.isObject( value:any )\n Tests if a value is a number object having a positive value.\n","isPositiveNumberArray":"\nisPositiveNumberArray( value:any )\n Tests if a value is an array-like object containing only positive numbers.\n","isPositiveNumberArray.primitives":"\nisPositiveNumberArray.primitives( value:any )\n Tests if a value is an array-like object containing only positive primitive\n number values.\n","isPositiveNumberArray.objects":"\nisPositiveNumberArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having positive values.\n","isPositiveZero":"\nisPositiveZero( value:any )\n Tests if a value is positive zero.\n","isPositiveZero.isPrimitive":"\nisPositiveZero.isPrimitive( value:any )\n Tests if a value is a number primitive equal to positive zero.\n","isPositiveZero.isObject":"\nisPositiveZero.isObject( value:any )\n Tests if a value is a number object having a value equal to positive zero.\n","isPrime":"\nisPrime( value:any )\n Tests if a value is a prime number.\n","isPrime.isPrimitive":"\nisPrime.isPrimitive( value:any )\n Tests if a value is a number primitive which is a prime number.\n","isPrime.isObject":"\nisPrime.isObject( value:any )\n Tests if a value is a number object having a value which is a prime number.\n","isPrimitive":"\nisPrimitive( value:any )\n Tests if a value is a JavaScript primitive.\n","isPrimitiveArray":"\nisPrimitiveArray( value:any )\n Tests if a value is an array-like object containing only JavaScript\n primitives.\n","isPRNGLike":"\nisPRNGLike( value:any )\n Tests if a value is PRNG-like.\n","isProbability":"\nisProbability( value:any )\n Tests if a value is a probability.\n","isProbability.isPrimitive":"\nisProbability.isPrimitive( value:any )\n Tests if a value is a number primitive which is a probability.\n","isProbability.isObject":"\nisProbability.isObject( value:any )\n Tests if a value is a number object having a value which is a probability.\n","isProbabilityArray":"\nisProbabilityArray( value:any )\n Tests if a value is an array-like object containing only probabilities.\n","isProbabilityArray.primitives":"\nisProbabilityArray.primitives( value:any )\n Tests if a value is an array-like object containing only primitive\n probabilities.\n","isProbabilityArray.objects":"\nisProbabilityArray.objects( value:any )\n Tests if a value is an array-like object containing only number objects\n having probability values.\n","isPropertyKey":"\nisPropertyKey( value:any )\n Tests whether a value is a property key.\n","isPrototypeOf":"\nisPrototypeOf( value:any, proto:Object|Function )\n Tests if an object's prototype chain contains a provided prototype.\n","isRangeError":"\nisRangeError( value:any )\n Tests if a value is a RangeError object.\n","isReadableProperty":"\nisReadableProperty( value:any, property:any )\n Tests if an object's own property is readable.\n","isReadablePropertyIn":"\nisReadablePropertyIn( value:any, property:any )\n Tests if an object's own or inherited property is readable.\n","isReadOnlyProperty":"\nisReadOnlyProperty( value:any, property:any )\n Tests if an object's own property is read-only.\n","isReadOnlyPropertyIn":"\nisReadOnlyPropertyIn( value:any, property:any )\n Tests if an object's own or inherited property is read-only.\n","isReadWriteProperty":"\nisReadWriteProperty( value:any, property:any )\n Tests if an object's own property is readable and writable.\n","isReadWritePropertyIn":"\nisReadWritePropertyIn( value:any, property:any )\n Tests if an object's own or inherited property is readable and writable.\n","isReferenceError":"\nisReferenceError( value:any )\n Tests if a value is a ReferenceError object.\n","isRegExp":"\nisRegExp( value:any )\n Tests if a value is a regular expression.\n","isRegExpString":"\nisRegExpString( value:any )\n Tests if a value is a regular expression string.\n","isRelativePath":"\nisRelativePath( value:any )\n Tests if a value is a relative path.\n","isRelativePath.posix":"\nisRelativePath.posix( value:any )\n Tests if a value is a POSIX relative path.\n","isRelativePath.win32":"\nisRelativePath.win32( value:any )\n Tests if a value is a Windows relative path.\n","isSafeInteger":"\nisSafeInteger( value:any )\n Tests if a value is a safe integer.\n","isSafeInteger.isPrimitive":"\nisSafeInteger.isPrimitive( value:any )\n Tests if a value is a number primitive having a safe integer value.\n","isSafeInteger.isObject":"\nisSafeInteger.isObject( value:any )\n Tests if a value is a `Number` object having a safe integer value.\n","isSafeIntegerArray":"\nisSafeIntegerArray( value:any )\n Tests if a value is an array-like object containing only safe integers.\n","isSafeIntegerArray.primitives":"\nisSafeIntegerArray.primitives( value:any )\n Tests if a value is an array-like object containing only primitive safe\n integer values.\n","isSafeIntegerArray.objects":"\nisSafeIntegerArray.objects( value:any )\n Tests if a value is an array-like object containing only `Number` objects\n having safe integer values.\n","isSameNativeClass":"\nisSameNativeClass( a:any, b:any )\n Tests if two arguments have the same native class.\n","isSameType":"\nisSameType( a:any, b:any )\n Tests if two arguments have the same type.\n","isSameValue":"\nisSameValue( a:any, b:any )\n Tests if two arguments are the same value.\n","isSameValueZero":"\nisSameValueZero( a:any, b:any )\n Tests if two arguments are the same value.\n","isSharedArrayBuffer":"\nisSharedArrayBuffer( value:any )\n Tests if a value is a SharedArrayBuffer.\n","isSkewCentrosymmetricMatrix":"\nisSkewCentrosymmetricMatrix( value:any )\n Tests if a value is a skew-centrosymmetric matrix.\n","isSkewPersymmetricMatrix":"\nisSkewPersymmetricMatrix( value:any )\n Tests if a value is a skew-persymmetric matrix.\n","isSkewSymmetricMatrix":"\nisSkewSymmetricMatrix( value:any )\n Tests if a value is a skew-symmetric (or antisymmetric) matrix.\n","isSquareMatrix":"\nisSquareMatrix( value:any )\n Tests if a value is a 2-dimensional ndarray-like object having equal\n dimensions.\n","isSquareNumber":"\nisSquareNumber( value:any )\n Tests if a value is a square number.\n","isSquareNumber.isPrimitive":"\nisSquareNumber.isPrimitive( value:any )\n Tests if a value is a number primitive which is a square number.\n","isSquareNumber.isObject":"\nisSquareNumber.isObject( value:any )\n Tests if a value is a number object having a value which is a square number.\n","isSquareTriangularNumber":"\nisSquareTriangularNumber( value:any )\n Tests if a value is a square triangular number.\n","isSquareTriangularNumber.isPrimitive":"\nisSquareTriangularNumber.isPrimitive( value:any )\n Tests if a value is a number primitive which is a square triangular number.\n","isSquareTriangularNumber.isObject":"\nisSquareTriangularNumber.isObject( value:any )\n Tests if a value is a number object having a value which is a square\n triangular number.\n","isStrictEqual":"\nisStrictEqual( a:any, b:any )\n Tests if two arguments are strictly equal.\n","isString":"\nisString( value:any )\n Tests if a value is a string.\n","isString.isPrimitive":"\nisString.isPrimitive( value:any )\n Tests if a value is a string primitive.\n","isString.isObject":"\nisString.isObject( value:any )\n Tests if a value is a `String` object.\n","isStringArray":"\nisStringArray( value:any )\n Tests if a value is an array of strings.\n","isStringArray.primitives":"\nisStringArray.primitives( value:any )\n Tests if a value is an array containing only string primitives.\n","isStringArray.objects":"\nisStringArray.objects( value:any )\n Tests if a value is an array containing only `String` objects.\n","isSymbol":"\nisSymbol( value:any )\n Tests if a value is a symbol.\n","isSymbolArray":"\nisSymbolArray( value:any )\n Tests if a value is an array-like object containing only symbols.\n","isSymbolArray.primitives":"\nisSymbolArray.primitives( value:any )\n Tests if a value is an array-like object containing only `symbol`\n primitives.\n","isSymbolArray.objects":"\nisSymbolArray.objects( value:any )\n Tests if a value is an array-like object containing only `Symbol`\n objects.\n","isSymmetricMatrix":"\nisSymmetricMatrix( value:any )\n Tests if a value is a square matrix which equals its transpose.\n","isSyntaxError":"\nisSyntaxError( value:any )\n Tests if a value is a SyntaxError object.\n","isTriangularNumber":"\nisTriangularNumber( value:any )\n Tests if a value is a triangular number.\n","isTriangularNumber.isPrimitive":"\nisTriangularNumber.isPrimitive( value:any )\n Tests if a value is a number primitive which is a triangular number.\n","isTriangularNumber.isObject":"\nisTriangularNumber.isObject( value:any )\n Tests if a value is a number object having a value which is a triangular\n number.\n","isTruthy":"\nisTruthy( value:any )\n Tests if a value is a value which translates to `true` when evaluated in a\n boolean context.\n","isTruthyArray":"\nisTruthyArray( value:any )\n Tests if a value is an array-like object containing only truthy values.\n","isTypedArray":"\nisTypedArray( value:any )\n Tests if a value is a typed array.\n","isTypedArrayLength":"\nisTypedArrayLength( value:any )\n Tests if a value is a valid typed array length.\n","isTypedArrayLike":"\nisTypedArrayLike( value:any )\n Tests if a value is typed-array-like.\n","isTypeError":"\nisTypeError( value:any )\n Tests if a value is a TypeError object.\n","isUint8Array":"\nisUint8Array( value:any )\n Tests if a value is a Uint8Array.\n","isUint8ClampedArray":"\nisUint8ClampedArray( value:any )\n Tests if a value is a Uint8ClampedArray.\n","isUint16Array":"\nisUint16Array( value:any )\n Tests if a value is a Uint16Array.\n","isUint32Array":"\nisUint32Array( value:any )\n Tests if a value is a Uint32Array.\n","isUNCPath":"\nisUNCPath( value:any )\n Tests if a value is a UNC path.\n","isUndefined":"\nisUndefined( value:any )\n Tests if a value is undefined.\n","isUndefinedOrNull":"\nisUndefinedOrNull( value:any )\n Tests if a value is undefined or null.\n","isUnityProbabilityArray":"\nisUnityProbabilityArray( value:any )\n Tests if a value is an array of probabilities that sum to one.\n","isUppercase":"\nisUppercase( value:any )\n Tests if a value is an uppercase string.\n","isURI":"\nisURI( value:any )\n Tests if a value is a URI.\n","isURIError":"\nisURIError( value:any )\n Tests if a value is a URIError object.\n","isVectorLike":"\nisVectorLike( value:any )\n Tests if a value is a 1-dimensional ndarray-like object.\n","isWhitespace":"\nisWhitespace( str:string )\n Tests whether a string contains only white space characters.\n","isWritableProperty":"\nisWritableProperty( value:any, property:any )\n Tests if an object's own property is writable.\n","isWritablePropertyIn":"\nisWritablePropertyIn( value:any, property:any )\n Tests if an object's own or inherited property is writable.\n","isWriteOnlyProperty":"\nisWriteOnlyProperty( value:any, property:any )\n Tests if an object's own property is write-only.\n","isWriteOnlyPropertyIn":"\nisWriteOnlyPropertyIn( value:any, property:any )\n Tests if an object's own or inherited property is write-only.\n","iterAbs":"\niterAbs( iterator:Object )\n Returns an iterator which iteratively computes the absolute value.\n","iterAbs2":"\niterAbs2( iterator:Object )\n Returns an iterator which iteratively computes the squared absolute value.\n","iterAcos":"\niterAcos( iterator:Object )\n Returns an iterator which iteratively computes the arccosine.\n","iterAcosh":"\niterAcosh( iterator:Object )\n Returns an iterator which iteratively computes the hyperbolic arccosine.\n","iterAcot":"\niterAcot( iterator:Object )\n Returns an iterator which iteratively computes the inverse cotangent.\n","iterAcoth":"\niterAcoth( iterator:Object )\n Returns an iterator which iteratively computes the inverse hyperbolic\n cotangent.\n","iterAcovercos":"\niterAcovercos( iterator:Object )\n Returns an iterator which iteratively computes the inverse coversed cosine.\n","iterAcoversin":"\niterAcoversin( iterator:Object )\n Returns an iterator which iteratively computes the inverse coversed sine.\n","iterAdd":"\niterAdd( iter0:Object, ...iterator:Object )\n Returns an iterator which performs element-wise addition of two or more\n iterators.\n","iterAdvance":"\niterAdvance( iterator:Object[, n:integer] )\n Advances an entire iterator.\n","iterAhavercos":"\niterAhavercos( iterator:Object )\n Returns an iterator which iteratively computes the inverse half-value versed\n cosine.\n","iterAhaversin":"\niterAhaversin( iterator:Object )\n Returns an iterator which iteratively computes the inverse half-value versed\n sine.\n","iterAny":"\niterAny( iterator:Object )\n Tests whether at least one iterated value is truthy.\n","iterAnyBy":"\niterAnyBy( iterator:Object, predicate:Function[, thisArg:any ] )\n Tests whether at least one iterated value passes a test implemented by a\n predicate function.\n","iterAsin":"\niterAsin( iterator:Object )\n Returns an iterator which iteratively computes the arcsine.\n","iterAsinh":"\niterAsinh( iterator:Object )\n Returns an iterator which iteratively computes the hyperbolic arcsine.\n","iterAtan":"\niterAtan( iterator:Object )\n Returns an iterator which iteratively computes the arctangent.\n","iterAtan2":"\niterAtan2( y:Object|number, x:Object|number )\n Returns an iterator which iteratively computes the angle in the plane (in\n radians) between the positive x-axis and the ray from (0,0) to the point\n (x,y).\n","iterAtanh":"\niterAtanh( iterator:Object )\n Returns an iterator which iteratively computes the hyperbolic arctangent.\n","iterator2array":"\niterator2array( iterator:Object[, out:ArrayLikeObject][, mapFcn:Function[, \n thisArg:any]] )\n Creates (or fills) an array from an iterator.\n","iterator2arrayview":"\niterator2arrayview( iterator:Object, dest:ArrayLikeObject[, begin:integer[, \n end:integer]][, mapFcn:Function[, thisArg:any]] )\n Fills an array-like object view with values returned from an iterator.\n","iterator2arrayviewRight":"\niterator2arrayviewRight( iterator:Object, dest:ArrayLikeObject[, \n begin:integer[, end:integer]][, mapFcn:Function[, thisArg:any]] )\n Fills an array-like object view from right to left with values returned from\n an iterator.\n","iteratorStream":"\niteratorStream( iterator:Object[, options:Object] )\n Creates a readable stream from an iterator.\n","iteratorStream.factory":"\niteratorStream.factory( [options:Object] )\n Returns a function for creating readable streams from iterators.\n","iteratorStream.objectMode":"\niteratorStream.objectMode( iterator:Object[, options:Object] )\n Returns an \"objectMode\" readable stream from an iterator.\n","IteratorSymbol":"\nIteratorSymbol\n Iterator symbol.\n","iterAvercos":"\niterAvercos( iterator:Object )\n Returns an iterator which iteratively computes the inverse versed cosine.\n","iterAversin":"\niterAversin( iterator:Object )\n Returns an iterator which iteratively computes the inverse versed sine.\n","iterawgn":"\niterawgn( iterator:Object, sigma:number[, options:Object] )\n Returns an iterator which introduces additive white Gaussian noise (AWGN)\n with standard deviation `sigma`.\n","iterawln":"\niterawln( iterator:Object, sigma:number[, options:Object] )\n Returns an iterator which introduces additive white Laplacian noise (AWLN)\n with standard deviation `sigma`.\n","iterawun":"\niterawun( iterator:Object, sigma:number[, options:Object] )\n Returns an iterator which introduces additive white uniform noise (AWUN)\n with standard deviation `sigma`.\n","iterBartlettHannPulse":"\niterBartlettHannPulse( [options:Object] )\n Returns an iterator which generates a Bartlett-Hann pulse waveform.\n","iterBartlettPulse":"\niterBartlettPulse( [options:Object] )\n Returns an iterator which generates a Bartlett pulse waveform.\n","iterBesselj0":"\niterBesselj0( iterator:Object )\n Returns an iterator which iteratively evaluates the Bessel function of the\n first kind of order zero.\n","iterBesselj1":"\niterBesselj1( iterator:Object )\n Returns an iterator which iteratively evaluates the Bessel function of the\n first kind of order one.\n","iterBessely0":"\niterBessely0( iterator:Object )\n Returns an iterator which iteratively evaluates the Bessel function of the\n second kind of order zero.\n","iterBessely1":"\niterBessely1( iterator:Object )\n Returns an iterator which iteratively evaluates the Bessel function of the\n second kind of order one.\n","iterBeta":"\niterBeta( x:Object|number, y:Object|number )\n Returns an iterator which iteratively evaluates the beta function.\n","iterBetaln":"\niterBetaln( x:Object|number, y:Object|number )\n Returns an iterator which iteratively evaluates the natural logarithm of the\n beta function.\n","iterBinet":"\niterBinet( iterator:Object )\n Returns an iterator which iteratively evaluates Binet's formula extended to\n real numbers.\n","iterCbrt":"\niterCbrt( iterator:Object )\n Returns an iterator which iteratively computes the cube root.\n","iterCeil":"\niterCeil( iterator:Object )\n Returns an iterator which rounds each iterated value toward positive\n infinity.\n","iterCeil2":"\niterCeil2( iterator:Object )\n Returns an iterator which rounds each iterated value to the nearest power of\n two toward positive infinity.\n","iterCeil10":"\niterCeil10( iterator:Object )\n Returns an iterator which rounds each iterated value to the nearest power of\n 10 toward positive infinity.\n","iterCompositesSeq":"\niterCompositesSeq( [options:Object] )\n Returns an iterator which generates a sequence of composite numbers.\n","iterConcat":"\niterConcat( iter0:Object, ...iterator:Object )\n Returns an iterator which iterates over the values of two or more iterators.\n","iterConstant":"\niterConstant( value:any[, options:Object] )\n Returns an iterator which always returns the same value.\n","iterContinuedFraction":"\niterContinuedFraction( iterator:Object[, options:Object] )\n Evaluates the terms of a continued fraction.\n","iterContinuedFractionSeq":"\niterContinuedFractionSeq( x:number[, options:Object] )\n Returns an iterator which generates a list of all continued fraction terms\n which can be obtained given the precision of `x`.\n","iterCos":"\niterCos( iterator:Object )\n Returns an iterator which iteratively computes the cosine.\n","iterCosh":"\niterCosh( iterator:Object )\n Returns an iterator which iteratively computes the hyperbolic cosine.\n","iterCosineWave":"\niterCosineWave( [options:Object] )\n Returns an iterator which generates a cosine wave.\n","iterCosm1":"\niterCosm1( iterator:Object )\n Returns an iterator which iteratively computes `cos(x) - 1`.\n","iterCospi":"\niterCospi( iterator:Object )\n Returns an iterator which computes the cosine of each iterated value times\n π.\n","iterCounter":"\niterCounter( iterator:Object )\n Returns an iterator which iteratively computes the number of iterated\n values.\n","iterCovercos":"\niterCovercos( iterator:Object )\n Returns an iterator which iteratively computes the coversed cosine.\n","iterCoversin":"\niterCoversin( iterator:Object )\n Returns an iterator which iteratively computes the coversed sine.\n","iterCubesSeq":"\niterCubesSeq( [options:Object] )\n Returns an iterator which generates a sequence of cubes.\n","itercugmean":"\nitercugmean( iterator:Object )\n Returns an iterator which iteratively computes a cumulative geometric mean.\n","itercuhmean":"\nitercuhmean( iterator:Object )\n Returns an iterator which iteratively computes a cumulative harmonic mean.\n","itercumax":"\nitercumax( iterator:Object )\n Returns an iterator which iteratively computes a cumulative maximum value.\n","itercumaxabs":"\nitercumaxabs( iterator:Object )\n Returns an iterator which iteratively computes a cumulative maximum absolute\n value.\n","itercumean":"\nitercumean( iterator:Object )\n Returns an iterator which iteratively computes a cumulative arithmetic mean.\n","itercumeanabs":"\nitercumeanabs( iterator:Object )\n Returns an iterator which iteratively computes a cumulative arithmetic mean\n of absolute values.\n","itercumeanabs2":"\nitercumeanabs2( iterator:Object )\n Returns an iterator which iteratively computes a cumulative arithmetic mean\n of squared absolute values.\n","itercumidrange":"\nitercumidrange( iterator:Object )\n Returns an iterator which iteratively computes a cumulative mid-range.\n","itercumin":"\nitercumin( iterator:Object )\n Returns an iterator which iteratively computes a cumulative minimum value.\n","itercuminabs":"\nitercuminabs( iterator:Object )\n Returns an iterator which iteratively computes a cumulative minimum absolute\n value.\n","itercuprod":"\nitercuprod( iterator:Object )\n Returns an iterator which iteratively computes a cumulative product.\n","itercurange":"\nitercurange( iterator:Object )\n Returns an iterator which iteratively computes a cumulative range.\n","itercusum":"\nitercusum( iterator:Object )\n Returns an iterator which iteratively computes a cumulative sum.\n","itercusumabs":"\nitercusumabs( iterator:Object )\n Returns an iterator which iteratively computes a cumulative sum of absolute\n values.\n","itercusumabs2":"\nitercusumabs2( iterator:Object )\n Returns an iterator which iteratively computes a cumulative sum of squared\n absolute values.\n","iterDatespace":"\niterDatespace( start:integer|string|Date, stop:integer|string|Date[, \n N:integer][, options:Object] )\n Returns an iterator which returns evenly spaced dates over a specified\n interval.\n","iterDedupe":"\niterDedupe( iterator:Object[, limit:integer] )\n Returns an iterator which removes consecutive duplicated values.\n","iterDedupeBy":"\niterDedupeBy( iterator:Object, [limit:integer,] fcn:Function )\n Returns an iterator which removes consecutive values that resolve to the\n same value according to a provided function.\n","iterDeg2rad":"\niterDeg2rad( iterator:Object )\n Returns an iterator which iteratively converts an angle from degrees to\n radians.\n","iterDigamma":"\niterDigamma( iterator:Object )\n Returns an iterator which iteratively evaluates the digamma function.\n","iterDiracComb":"\niterDiracComb( [options:Object] )\n Returns an iterator which generates a Dirac comb.\n","iterDiracDelta":"\niterDiracDelta( iterator:Object )\n Returns an iterator which iteratively evaluates the Dirac delta function.\n","iterDivide":"\niterDivide( iter0:Object, ...iterator:Object )\n Returns an iterator which performs element-wise division of two or more\n iterators.\n","iterEllipe":"\niterEllipe( iterator:Object )\n Returns an iterator which iteratively computes the complete elliptic\n integral of the second kind.\n","iterEllipk":"\niterEllipk( iterator:Object )\n Returns an iterator which iteratively computes the complete elliptic\n integral of the first kind.\n","iterEmpty":"\niterEmpty()\n Returns an empty iterator.\n","iterErf":"\niterErf( iterator:Object )\n Returns an iterator which iteratively evaluates the error function.\n","iterErfc":"\niterErfc( iterator:Object )\n Returns an iterator which iteratively evaluates the complementary error\n function.\n","iterErfcinv":"\niterErfcinv( iterator:Object )\n Returns an iterator which iteratively evaluates the inverse complementary\n error function.\n","iterErfinv":"\niterErfinv( iterator:Object )\n Returns an iterator which iteratively evaluates the inverse error function.\n","iterEta":"\niterEta( iterator:Object )\n Returns an iterator which iteratively evaluates the Dirichlet eta function.\n","iterEvenIntegersSeq":"\niterEvenIntegersSeq( [options:Object] )\n Returns an iterator which generates an interleaved sequence of even\n integers.\n","iterEvery":"\niterEvery( iterator:Object )\n Tests whether all iterated values are truthy.\n","iterEveryBy":"\niterEveryBy( iterator:Object, predicate:Function[, thisArg:any ] )\n Tests whether every iterated value passes a test implemented by a predicate\n function.\n","iterExp":"\niterExp( iterator:Object )\n Returns an iterator which iteratively evaluates the natural exponential\n function.\n","iterExp2":"\niterExp2( iterator:Object )\n Returns an iterator which iteratively evaluates the base `2` exponential\n function.\n","iterExp10":"\niterExp10( iterator:Object )\n Returns an iterator which iteratively evaluates the base `10` exponential\n function.\n","iterExpit":"\niterExpit( iterator:Object )\n Returns an iterator which iteratively evaluates the standard logistic\n function.\n","iterExpm1":"\niterExpm1( iterator:Object )\n Returns an iterator which iteratively computes `exp(x) - 1`.\n","iterExpm1rel":"\niterExpm1rel( iterator:Object )\n Returns an iterator which iteratively evaluates the relative error\n exponential.\n","iterFactorial":"\niterFactorial( iterator:Object )\n Returns an iterator which iteratively evaluates the factorial function.\n","iterFactorialln":"\niterFactorialln( iterator:Object )\n Returns an iterator which iteratively evaluates the natural logarithm of the\n factorial function.\n","iterFactorialsSeq":"\niterFactorialsSeq( [options:Object] )\n Returns an iterator which generates a sequence of factorials.\n","iterFibonacciSeq":"\niterFibonacciSeq( [options:Object] )\n Returns an iterator which generates a Fibonacci sequence.\n","iterFifthPowersSeq":"\niterFifthPowersSeq( [options:Object] )\n Returns an iterator which generates a sequence of fifth powers.\n","iterFill":"\niterFill( iterator:Object, value:any[, begin:integer[, end:integer]] )\n Returns an iterator which replaces all values from a provided iterator from\n a start index to an end index with a static value.\n","iterFilter":"\niterFilter( iterator:Object, predicate:Function[, thisArg:any] )\n Returns an iterator which filters a provided iterator's values according to\n a predicate function.\n","iterFilterMap":"\niterFilterMap( iterator:Object, fcn:Function[, thisArg:any] )\n Returns an iterator which both filters and maps a provided iterator's\n values.\n","iterFirst":"\niterFirst( iterator:Object )\n Returns the first iterated value.\n","iterFlatTopPulse":"\niterFlatTopPulse( [options:Object] )\n Returns an iterator which generates a flat top pulse waveform.\n","iterFloor":"\niterFloor( iterator:Object )\n Returns an iterator which rounds each iterated value toward negative\n infinity.\n","iterFloor2":"\niterFloor2( iterator:Object )\n Returns an iterator which rounds each iterated value to the nearest power of\n two toward negative infinity.\n","iterFloor10":"\niterFloor10( iterator:Object )\n Returns an iterator which rounds each iterated value to the nearest power of\n 10 toward negative infinity.\n","iterFlow":"\niterFlow( methods:Object )\n Returns a fluent interface iterator constructor with a customized prototype\n based on provided methods.\n","iterForEach":"\niterForEach( iterator:Object, fcn:Function[, thisArg:any] )\n Returns an iterator which invokes a function for each iterated value before\n returning the iterated value.\n","iterFourthPowersSeq":"\niterFourthPowersSeq( [options:Object] )\n Returns an iterator which generates a sequence of fourth powers.\n","iterFresnelc":"\niterFresnelc( iterator:Object )\n Returns an iterator which iteratively computes the Fresnel integral C(x).\n","iterFresnels":"\niterFresnels( iterator:Object )\n Returns an iterator which iteratively computes the Fresnel integral S(x).\n","iterGamma":"\niterGamma( iterator:Object )\n Returns an iterator which iteratively evaluates the gamma function.\n","iterGamma1pm1":"\niterGamma1pm1( iterator:Object )\n Returns an iterator which iteratively computes `gamma(x+1) - 1` without\n cancellation errors for small `x`.\n","iterGammaln":"\niterGammaln( iterator:Object )\n Returns an iterator which iteratively evaluates the natural logarithm of the\n gamma function.\n","iterHacovercos":"\niterHacovercos( iterator:Object )\n Returns an iterator which iteratively computes the half-value coversed\n cosine.\n","iterHacoversin":"\niterHacoversin( iterator:Object )\n Returns an iterator which iteratively computes the half-value coversed sine.\n","iterHannPulse":"\niterHannPulse( [options:Object] )\n Returns an iterator which generates a Hann pulse waveform.\n","iterHavercos":"\niterHavercos( iterator:Object )\n Returns an iterator which iteratively computes the half-value versed cosine.\n","iterHaversin":"\niterHaversin( iterator:Object )\n Returns an iterator which iteratively computes the half-value versed sine.\n","iterHead":"\niterHead( iterator:Object, n:integer )\n Returns an iterator which returns the first `n` values of a provided\n iterator.\n","iterIncrspace":"\niterIncrspace( start:number, stop:number[, increment:number] )\n Returns an iterator which returns evenly spaced numbers according to a\n specified increment.\n","iterIntegersSeq":"\niterIntegersSeq( [options:Object] )\n Returns an iterator which generates an interleaved integer sequence.\n","iterIntersection":"\niterIntersection( iter0:Object, ...iterator:Object )\n Returns an iterator which returns the intersection of two or more iterators.\n","iterIntersectionByHash":"\niterIntersectionByHash( iter0:Object, ...iterator:Object, hashFcn:Function[, \n thisArg:any] )\n Returns an iterator which returns the intersection of two or more iterators\n according to a hash function.\n","iterInv":"\niterInv( iterator:Object )\n Returns an iterator which iteratively computes the multiplicative inverse.\n","iterLanczosPulse":"\niterLanczosPulse( [options:Object] )\n Returns an iterator which generates a Lanczos pulse waveform.\n","iterLast":"\niterLast( iterator:Object )\n Consumes an entire iterator and returns the last iterated value.\n","iterLength":"\niterLength( iterator:Object )\n Consumes an entire iterator and returns the number of iterated values.\n","iterLinspace":"\niterLinspace( start:number, stop:number[, N:integer] )\n Returns an iterator which returns evenly spaced numbers over a specified\n interval.\n","iterLn":"\niterLn( iterator:Object )\n Returns an iterator which iteratively evaluates the natural logarithm.\n","iterLog":"\niterLog( x:Object|number, b:Object|number )\n Returns an iterator which iteratively computes the base `b` logarithm.\n","iterLog1mexp":"\niterLog1mexp( iterator:Object )\n Returns an iterator which iteratively evaluates the natural logarithm of\n `1-exp(-|x|)`.\n","iterLog1p":"\niterLog1p( iterator:Object )\n Returns an iterator which iteratively evaluates the natural logarithm of\n `1+x`.\n","iterLog1pexp":"\niterLog1pexp( iterator:Object )\n Returns an iterator which iteratively evaluates the natural logarithm of\n `1+exp(x)`.\n","iterLog2":"\niterLog2( iterator:Object )\n Returns an iterator which iteratively evaluates the binary logarithm.\n","iterLog10":"\niterLog10( iterator:Object )\n Returns an iterator which iteratively evaluates the common logarithm\n (logarithm with base 10).\n","iterLogit":"\niterLogit( iterator:Object )\n Returns an iterator which iteratively evaluates the logit function.\n","iterLogspace":"\niterLogspace( start:number, stop:number[, N:integer][, options:Object] )\n Returns an iterator which returns evenly spaced numbers on a log scale.\n","iterLucasSeq":"\niterLucasSeq( [options:Object] )\n Returns an iterator which generates a Lucas sequence.\n","iterMap":"\niterMap( iterator:Object, fcn:Function[, thisArg:any] )\n Returns an iterator which invokes a function for each iterated value.\n","iterMapN":"\niterMapN( iter0:Object, ...iterator:Object, fcn:Function[, thisArg:any] )\n Returns an iterator which transforms iterated values from two or more\n iterators by applying the iterated values as arguments to a provided\n function.\n","itermax":"\nitermax( iterator:Object )\n Computes the maximum value of all iterated values.\n","itermaxabs":"\nitermaxabs( iterator:Object )\n Computes the maximum absolute value of all iterated values.\n","itermean":"\nitermean( iterator:Object )\n Computes an arithmetic mean over all iterated values.\n","itermeanabs":"\nitermeanabs( iterator:Object )\n Computes an arithmetic mean of absolute values for all iterated values.\n","itermeanabs2":"\nitermeanabs2( iterator:Object )\n Computes an arithmetic mean of squared absolute values for all iterated\n values.\n","itermidrange":"\nitermidrange( iterator:Object )\n Computes the mid-range of all iterated values.\n","itermin":"\nitermin( iterator:Object )\n Computes the minimum value of all iterated values.\n","iterminabs":"\niterminabs( iterator:Object )\n Computes the minimum absolute value of all iterated values.\n","itermmax":"\nitermmax( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving maximum value.\n","itermmaxabs":"\nitermmaxabs( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving maximum absolute\n value.\n","itermmean":"\nitermmean( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving arithmetic mean.\n","itermmeanabs":"\nitermmeanabs( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving arithmetic mean of\n absolute values.\n","itermmeanabs2":"\nitermmeanabs2( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving arithmetic mean of\n squared absolute values.\n","itermmidrange":"\nitermmidrange( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving mid-range.\n","itermmin":"\nitermmin( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving minimum value.\n","itermminabs":"\nitermminabs( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving minimum absolute\n value.\n","iterMod":"\niterMod( iter0:Object, ...iterator:Object )\n Returns an iterator which performs an element-wise modulo operation of two\n or more iterators.\n","itermprod":"\nitermprod( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving product.\n","itermrange":"\nitermrange( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving range.\n","itermsum":"\nitermsum( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving sum.\n","itermsumabs":"\nitermsumabs( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving sum of absolute\n values.\n","itermsumabs2":"\nitermsumabs2( iterator:Object, W:integer )\n Returns an iterator which iteratively computes a moving sum of squared\n absolute values.\n","iterMultiply":"\niterMultiply( iter0:Object, ...iterator:Object )\n Returns an iterator which performs element-wise multiplication of two or\n more iterators.\n","iterNegaFibonacciSeq":"\niterNegaFibonacciSeq( [options:Object] )\n Returns an iterator which generates a negaFibonacci sequence.\n","iterNegaLucasSeq":"\niterNegaLucasSeq( [options:Object] )\n Returns an iterator which generates a negaLucas sequence.\n","iterNegativeEvenIntegersSeq":"\niterNegativeEvenIntegersSeq( [options:Object] )\n Returns an iterator which generates a sequence of negative even integers.\n","iterNegativeIntegersSeq":"\niterNegativeIntegersSeq( [options:Object] )\n Returns an iterator which generates a negative integer sequence.\n","iterNegativeOddIntegersSeq":"\niterNegativeOddIntegersSeq( [options:Object] )\n Returns an iterator which generates a sequence of negative odd integers.\n","iterNone":"\niterNone( iterator:Object )\n Tests whether all iterated values are falsy.\n","iterNoneBy":"\niterNoneBy( iterator:Object, predicate:Function[, thisArg:any ] )\n Tests whether every iterated value fails a test implemented by a predicate\n function.\n","iterNonFibonacciSeq":"\niterNonFibonacciSeq( [options:Object] )\n Returns an iterator which generates a non-Fibonacci integer sequence.\n","iterNonNegativeEvenIntegersSeq":"\niterNonNegativeEvenIntegersSeq( [options:Object] )\n Returns an iterator which generates a sequence of nonnegative even integers.\n","iterNonNegativeIntegersSeq":"\niterNonNegativeIntegersSeq( [options:Object] )\n Returns an iterator which generates a nonnegative integer sequence.\n","iterNonPositiveEvenIntegersSeq":"\niterNonPositiveEvenIntegersSeq( [options:Object] )\n Returns an iterator which generates a sequence of nonpositive even integers.\n","iterNonPositiveIntegersSeq":"\niterNonPositiveIntegersSeq( [options:Object] )\n Returns an iterator which generates a nonpositive integer sequence.\n","iterNonSquaresSeq":"\niterNonSquaresSeq( [options:Object] )\n Returns an iterator which generates a sequence of nonsquares.\n","iterNth":"\niterNth( iterator:Object, n:integer )\n Returns the nth iterated value.\n","iterOddIntegersSeq":"\niterOddIntegersSeq( [options:Object] )\n Returns an iterator which generates an interleaved sequence of odd integers.\n","iterPeriodicSinc":"\niterPeriodicSinc( n:integer[, options:Object] )\n Returns an iterator which generates a periodic sinc waveform.\n","iterPipeline":"\niterPipeline( iterFcn:Function|Array[, ...iterFcn:Function] )\n Returns an iterator pipeline.\n","iterPop":"\niterPop( iterator:Object[, clbk:Function[, thisArg:any]] )\n Returns an iterator which skips the last value of a provided iterator.\n","iterPositiveEvenIntegersSeq":"\niterPositiveEvenIntegersSeq( [options:Object] )\n Returns an iterator which generates a sequence of positive even integers.\n","iterPositiveIntegersSeq":"\niterPositiveIntegersSeq( [options:Object] )\n Returns an iterator which generates a positive integer sequence.\n","iterPositiveOddIntegersSeq":"\niterPositiveOddIntegersSeq( [options:Object] )\n Returns an iterator which generates a sequence of positive odd integers.\n","iterPow":"\niterPow( base:Object|number, exponent:Object|number )\n Returns an iterator which iteratively evaluates the exponential function.\n","iterPrimesSeq":"\niterPrimesSeq( [options:Object] )\n Returns an iterator which generates a sequence of prime numbers.\n","iterprod":"\niterprod( iterator:Object )\n Computes the product of all iterated values.\n","iterPulse":"\niterPulse( [options:Object] )\n Returns an iterator which generates a pulse waveform.\n","iterPush":"\niterPush( iterator:Object, ...items:any )\n Returns an iterator which appends additional values to the end of a provided\n iterator.\n","iterRad2deg":"\niterRad2deg( iterator:Object )\n Returns an iterator which iteratively converts an angle from radians to\n degrees.\n","iterRamp":"\niterRamp( iterator:Object )\n Returns an iterator which iteratively evaluates the ramp function.\n","iterrange":"\niterrange( iterator:Object )\n Computes the range of all iterated values.\n","iterReject":"\niterReject( iterator:Object, predicate:Function[, thisArg:any] )\n Returns an iterator which rejects a provided iterator's values according to\n a predicate function.\n","iterReplicate":"\niterReplicate( iterator:Object, n:integer )\n Returns an iterator which replicates each iterated value `n` times.\n","iterReplicateBy":"\niterReplicateBy( iterator:Object, fcn:Function[, thisArg:any] )\n Returns an iterator which replicates each iterated value according to a\n provided function.\n","iterRound":"\niterRound( iterator:Object )\n Returns an iterator which rounds each iterated value to the nearest integer.\n","iterRound2":"\niterRound2( iterator:Object )\n Returns an iterator which rounds each iterated value to the nearest power of\n two on a linear scale.\n","iterRound10":"\niterRound10( iterator:Object )\n Returns an iterator which rounds each iterated value to the nearest power of\n 10 on a linear scale.\n","iterRsqrt":"\niterRsqrt( iterator:Object )\n Returns an iterator which iteratively computes the reciprocal (inverse)\n square root.\n","iterSawtoothWave":"\niterSawtoothWave( [options:Object] )\n Returns an iterator which generates a sawtooth wave.\n","iterShift":"\niterShift( iterator:Object[, clbk:Function[, thisArg:any]] )\n Returns an iterator which skips the first value of a provided iterator.\n","iterSignum":"\niterSignum( iterator:Object )\n Returns an iterator which iteratively evaluates the signum function.\n","iterSin":"\niterSin( iterator:Object )\n Returns an iterator which iteratively computes the sine.\n","iterSinc":"\niterSinc( iterator:Object )\n Returns an iterator which iteratively computes the normalized cardinal sine.\n","iterSineWave":"\niterSineWave( [options:Object] )\n Returns an iterator which generates a sine wave.\n","iterSinh":"\niterSinh( iterator:Object )\n Returns an iterator which iteratively evaluates the hyperbolic sine.\n","iterSinpi":"\niterSinpi( iterator:Object )\n Returns an iterator which computes the sine of each iterated value times π.\n","iterSlice":"\niterSlice( iterator:Object[, begin:integer[, end:integer]] )\n Returns an iterator which returns a subsequence of iterated values from a\n provided iterator.\n","iterSome":"\niterSome( iterator:Object, n:number )\n Tests whether at least `n` iterated values are truthy.\n","iterSomeBy":"\niterSomeBy( iterator:Object, n:integer, predicate:Function[, thisArg:any ] )\n Tests whether at least `n` iterated values pass a test implemented by a\n predicate function.\n","iterSpence":"\niterSpence( iterator:Object )\n Returns an iterator which iteratively evaluates Spence's function.\n","iterSqrt":"\niterSqrt( iterator:Object )\n Returns an iterator which iteratively computes the principal square root.\n","iterSqrt1pm1":"\niterSqrt1pm1( iterator:Object )\n Returns an iterator which iteratively computes `sqrt(1+x) - 1` more \n accurately for small `x`.\n","iterSquaredTriangularSeq":"\niterSquaredTriangularSeq( [options:Object] )\n Returns an iterator which generates a sequence of squared triangular\n numbers.\n","iterSquaresSeq":"\niterSquaresSeq( [options:Object] )\n Returns an iterator which generates a sequence of squares.\n","iterSquareWave":"\niterSquareWave( [options:Object] )\n Returns an iterator which generates a square wave.\n","iterstdev":"\niterstdev( iterator:Object[, mean:number] )\n Computes a correct sample standard deviation over all iterated values.\n","iterStep":"\niterStep( start:number, increment:number[, N:number] )\n Returns an iterator which returns a sequence of numbers according to a\n specified increment.\n","iterStrided":"\niterStrided( iterator:Object, stride:integer[, offset:integer[, \n eager:boolean]] )\n Returns an iterator which steps by a specified amount.\n","iterStridedBy":"\niterStridedBy( iterator:Object, fcn:Function[, offset:integer[, \n eager:boolean]][, thisArg:any] )\n Returns an iterator which steps according to a provided callback function.\n","iterSubtract":"\niterSubtract( iter0:Object, ...iterator:Object )\n Returns an iterator which performs element-wise subtraction of two or more\n iterators.\n","itersum":"\nitersum( iterator:Object )\n Computes the sum of all iterated values.\n","itersumabs":"\nitersumabs( iterator:Object )\n Computes the sum of absolute values for all iterated values.\n","itersumabs2":"\nitersumabs2( iterator:Object )\n Computes the sum of squared absolute values for all iterated values.\n","iterTan":"\niterTan( iterator:Object )\n Returns an iterator which iteratively evaluates the tangent.\n","iterTanh":"\niterTanh( iterator:Object )\n Returns an iterator which iteratively evaluates the hyperbolic tangent.\n","iterThunk":"\niterThunk( iterFcn:Function[, ...args:any] )\n Returns an iterator \"thunk\".\n","iterTriangleWave":"\niterTriangleWave( [options:Object] )\n Returns an iterator which generates a triangle wave.\n","iterTriangularSeq":"\niterTriangularSeq( [options:Object] )\n Returns an iterator which generates a sequence of triangular numbers.\n","iterTrigamma":"\niterTrigamma( iterator:Object )\n Returns an iterator which iteratively evaluates the trigamma function.\n","iterTrunc":"\niterTrunc( iterator:Object )\n Returns an iterator which rounds each iterated value toward zero.\n","iterTrunc2":"\niterTrunc2( iterator:Object )\n Returns an iterator which rounds each iterated value to the nearest power of\n two toward zero.\n","iterTrunc10":"\niterTrunc10( iterator:Object )\n Returns an iterator which rounds each iterated value to the nearest power of\n 10 toward zero.\n","iterUnion":"\niterUnion( iter0:Object, ...iterator:Object )\n Returns an iterator which returns the union of two or more iterators.\n","iterUnique":"\niterUnique( iterator:Object )\n Returns an iterator which returns unique values.\n","iterUniqueBy":"\niterUniqueBy( iterator:Object, predicate:Function[, thisArg:any] )\n Returns an iterator which returns unique values according to a predicate\n function.\n","iterUniqueByHash":"\niterUniqueByHash( iterator:Object, hashFcn:Function[, thisArg:any] )\n Returns an iterator which returns unique values according to a hash\n function.\n","iterUnitspace":"\niterUnitspace( start:number[, stop:number] )\n Returns an iterator which returns numbers incremented by one.\n","iterUnshift":"\niterUnshift( iterator:Object, ...items:any )\n Returns an iterator which prepends values to the beginning of a provided\n iterator.\n","itervariance":"\nitervariance( iterator:Object[, mean:number] )\n Computes an unbiased sample variance over all iterated values.\n","iterVercos":"\niterVercos( iterator:Object )\n Returns an iterator which iteratively computes the versed cosine.\n","iterVersin":"\niterVersin( iterator:Object )\n Returns an iterator which iteratively computes the versed sine.\n","iterZeta":"\niterZeta( iterator:Object )\n Returns an iterator which iteratively evaluates the Riemann zeta function.\n","joinStream":"\njoinStream( [options:Object] )\n Returns a transform stream which joins streamed data.\n","joinStream.factory":"\njoinStream.factory( [options:Object] )\n Returns a function for creating transform streams for joined streamed data.\n","joinStream.objectMode":"\njoinStream.objectMode( [options:Object] )\n Returns an \"objectMode\" transform stream for joining streamed data.\n","kde2d":"\nkde2d( x:Array, y:Array[, options:Object] )\n Two-dimensional kernel density estimation.\n","kebabcase":"\nkebabcase( str:string )\n Converts a string to kebab case.\n","keyBy":"\nkeyBy( collection:Array|TypedArray|Object, fcn:Function[, thisArg:any] )\n Converts a collection to an object whose keys are determined by a provided\n function and whose values are the collection values.\n","keyByRight":"\nkeyByRight( collection:Array|TypedArray|Object, fcn:Function[, thisArg:any] )\n Converts a collection to an object whose keys are determined by a provided\n function and whose values are the collection values, iterating from right to\n left.\n","keysIn":"\nkeysIn( obj:any )\n Returns an array of an object's own and inherited enumerable property\n names.\n","kruskalTest":"\nkruskalTest( ...x:Array[, options:Object] )\n Computes the Kruskal-Wallis test for equal medians.\n","kstest":"\nkstest( x:Array, y:Function|string[, ...params:number][, \n options:Object] )\n Computes a Kolmogorov-Smirnov goodness-of-fit test.\n","leveneTest":"\nleveneTest( x:Array[, ...y:Array[, options:Object]] )\n Computes Levene's test for equal variances.\n","LinkedList":"\nLinkedList()\n Linked list constructor.\n","linspace":"\nlinspace( start:number|ComplexLike, stop:number|ComplexLike, length:integer[, \n options:Object] )\n Generates a linearly spaced array over a specified interval.\n","linspace.assign":"\nlinspace.assign( start:number|ComplexLike, stop:number|ComplexLike, \n out:ArrayLikeObject[, options:Object] )\n Generates a linearly spaced sequence over a specified interval and assigns\n the results to a provided output array.\n","LIU_NEGATIVE_OPINION_WORDS_EN":"\nLIU_NEGATIVE_OPINION_WORDS_EN()\n Returns a list of negative opinion words.\n","LIU_POSITIVE_OPINION_WORDS_EN":"\nLIU_POSITIVE_OPINION_WORDS_EN()\n Returns a list of positive opinion words.\n","LN_HALF":"\nLN_HALF\n Natural logarithm of `1/2`.\n","LN_PI":"\nLN_PI\n Natural logarithm of the mathematical constant `π`.\n","LN_SQRT_TWO_PI":"\nLN_SQRT_TWO_PI\n Natural logarithm of the square root of `2π`.\n","LN_TWO_PI":"\nLN_TWO_PI\n Natural logarithm of `2π`.\n","LN2":"\nLN2\n Natural logarithm of `2`.\n","LN10":"\nLN10\n Natural logarithm of `10`.\n","LOG2E":"\nLOG2E\n Base 2 logarithm of Euler's number.\n","LOG10E":"\nLOG10E\n Base 10 logarithm of Euler's number.\n","logspace":"\nlogspace( a:number, b:number[, length:integer] )\n Generates a logarithmically spaced numeric array between `10^a` and `10^b`.\n","lowercase":"\nlowercase( str:string )\n Converts a string to lowercase.\n","lowercaseKeys":"\nlowercaseKeys( obj:Object )\n Converts each object key to lowercase.\n","lowess":"\nlowess( x:Array, y:Array[, options:Object] )\n Locally-weighted polynomial regression via the LOWESS algorithm.\n","lpad":"\nlpad( str:string, len:integer[, pad:string] )\n Left pads a string such that the padded string has a length of at least\n `len`.\n","ltrim":"\nltrim( str:string )\n Trims whitespace from the beginning of a string.\n","MALE_FIRST_NAMES_EN":"\nMALE_FIRST_NAMES_EN()\n Returns a list of common male first names in English speaking countries.\n","map":"\nmap( arr:ArrayLikeObject|ndarray, fcn:Function[, thisArg:any] )\n Applies a function to each element in an array and assigns the result to an\n element in a new array.\n","map.assign":"\nmap.assign( arr:ArrayLikeObject|ndarray, out:ArrayLikeObject|ndarray, \n fcn:Function[, thisArg:any] )\n Applies a function to each element in an array and assigns the result to an\n element in an output array.\n","map2":"\nmap2( x:ArrayLikeObject|ndarray, y:ArrayLikeObject|ndarray, fcn:Function[, \n thisArg:any] )\n Applies a function to elements in two input arrays and assigns the results\n to a new array.\n","map2.assign":"\nmap2.assign( x:ArrayLikeObject|ndarray, y:ArrayLikeObject|ndarray, \n out:ArrayLikeObject|ndarray, fcn:Function[, thisArg:any] )\n Applies a function to elements in two input arrays and assigns the results\n to an output array.\n","map2d":"\nmap2d( arr:ArrayLikeObject, fcn:Function[, thisArg:any] )\n Applies a function to each nested element in an array of arrays and assigns\n the result to a nested element in a new array of arrays.\n","map2Right":"\nmap2Right( x:ArrayLikeObject|ndarray, y:ArrayLikeObject|ndarray, fcn:Function[, \n thisArg:any] )\n Applies a function to elements in two input arrays while iterating from\n right to left and assigns the results to a new array.\n","map2Right.assign":"\nmap2Right.assign( x:ArrayLikeObject|ndarray, y:ArrayLikeObject|ndarray, \n out:ArrayLikeObject|ndarray, fcn:Function[, thisArg:any] )\n Applies a function to elements in two input arrays while iterating from\n right to left and assigns the results to an output array.\n","map3d":"\nmap3d( arr:ArrayLikeObject>, fcn:Function[, \n thisArg:any] )\n Applies a function to each nested element in a three-dimensional nested\n array and assigns the result to a nested element in a new three-dimensional\n nested array.\n","map4d":"\nmap4d( arr:ArrayLikeObject, fcn:Function[, thisArg:any] )\n Applies a function to each nested element in a four-dimensional nested array\n and assigns the result to a nested element in a new four-dimensional nested\n array.\n","map5d":"\nmap5d( arr:ArrayLikeObject, fcn:Function[, thisArg:any] )\n Applies a function to each nested element in a five-dimensional nested array\n and assigns the result to a nested element in a new five-dimensional nested\n array.\n","mapArguments":"\nmapArguments( fcn:Function, clbk:Function[, thisArg:any] )\n Returns a function that applies arguments to a provided function after\n transforming arguments according to a callback function.\n","mapFun":"\nmapFun( fcn:Function, n:integer[, thisArg:any] )\n Invokes a function `n` times and returns an array of accumulated function\n return values.\n","mapFunAsync":"\nmapFunAsync( fcn:Function, n:integer, [options:Object,] done:Function )\n Invokes a function `n` times and returns an array of accumulated function\n return values.\n","mapFunAsync.factory":"\nmapFunAsync.factory( [options:Object,] fcn:Function )\n Returns a function which invokes a function `n` times and returns an array\n of accumulated function return values.\n","mapKeys":"\nmapKeys( obj:Object, transform:Function )\n Maps keys from one object to a new object having the same values.\n","mapKeysAsync":"\nmapKeysAsync( obj:Object, [options:Object,] transform:Function, done:Function )\n Maps keys from one object to a new object having the same values.\n","mapKeysAsync.factory":"\nmapKeysAsync.factory( [options:Object,] transform:Function )\n Returns a function which maps keys from one object to a new object having\n the same values.\n","mapReduce":"\nmapReduce( arr:ArrayLikeObject|ndarray, initial:any, mapper:Function, \n reducer:Function[, thisArg:any] )\n Performs a map-reduce operation for each element in an array and returns the\n accumulated result.\n","mapReduceRight":"\nmapReduceRight( arr:ArrayLikeObject|ndarray, initial:any, mapper:Function, \n reducer:Function[, thisArg:any] )\n Performs a map-reduce operation for each element in an array while iterating\n from right to left and returns the accumulated result.\n","mapRight":"\nmapRight( arr:ArrayLikeObject|ndarray, fcn:Function[, thisArg:any] )\n Applies a function to each element in an array and assigns the result to an\n element in a new array, iterating from right to left.\n","mapRight.assign":"\nmapRight.assign( arr:ArrayLikeObject|ndarray, out:ArrayLikeObject|ndarray, \n fcn:Function[, thisArg:any] )\n Applies a function to each element in an array and assigns the result to an\n element in an output array, iterating from right to left.\n","mapValues":"\nmapValues( obj:Object, transform:Function )\n Maps values from one object to a new object having the same keys.\n","mapValuesAsync":"\nmapValuesAsync( obj:Object, [options:Object,] transform:Function, \n done:Function )\n Maps values from one object to a new object having the same keys.\n","mapValuesAsync.factory":"\nmapValuesAsync.factory( [options:Object,] transform:Function )\n Returns a function which maps values from one object to a new object having\n the same keys.\n","maskArguments":"\nmaskArguments( fcn:Function, mask:ArrayLikeObject[, thisArg:any] )\n Returns a function that applies arguments to a provided function according\n to a specified mask.\n","MAX_ARRAY_LENGTH":"\nMAX_ARRAY_LENGTH\n Maximum length for a generic array.\n","MAX_TYPED_ARRAY_LENGTH":"\nMAX_TYPED_ARRAY_LENGTH\n Maximum length for a typed array.\n","memoize":"\nmemoize( fcn:Function[, hashFunction:Function] )\n Returns a memoized function.\n","merge":"\nmerge( target:Object, ...source:Object )\n Merges objects into a target object.\n","merge.factory":"\nmerge.factory( options:Object )\n Returns a function for merging and extending objects.\n","MILLISECONDS_IN_DAY":"\nMILLISECONDS_IN_DAY\n Number of milliseconds in a day.\n","MILLISECONDS_IN_HOUR":"\nMILLISECONDS_IN_HOUR\n Number of milliseconds in an hour.\n","MILLISECONDS_IN_MINUTE":"\nMILLISECONDS_IN_MINUTE\n Number of milliseconds in a minute.\n","MILLISECONDS_IN_SECOND":"\nMILLISECONDS_IN_SECOND\n Number of milliseconds in a second.\n","MILLISECONDS_IN_WEEK":"\nMILLISECONDS_IN_WEEK\n Number of milliseconds in a week.\n","MINARD_NAPOLEONS_MARCH":"\nMINARD_NAPOLEONS_MARCH( [options:Object] )\n Returns data for Charles Joseph Minard's cartographic depiction of\n Napoleon's Russian campaign of 1812.\n","MINUTES_IN_DAY":"\nMINUTES_IN_DAY\n Number of minutes in a day.\n","MINUTES_IN_HOUR":"\nMINUTES_IN_HOUR\n Number of minutes in an hour.\n","MINUTES_IN_WEEK":"\nMINUTES_IN_WEEK\n Number of minutes in a week.\n","minutesInMonth":"\nminutesInMonth( [month:string|Date|integer[, year:integer]] )\n Returns the number of minutes in a month.\n","minutesInYear":"\nminutesInYear( [value:integer|Date] )\n Returns the number of minutes in a year according to the Gregorian calendar.\n","MOBY_DICK":"\nMOBY_DICK()\n Returns the text of Moby Dick by Herman Melville.\n","MONTH_NAMES_EN":"\nMONTH_NAMES_EN()\n Returns a list of month names (English).\n","MONTHS_IN_YEAR":"\nMONTHS_IN_YEAR\n Number of months in a year.\n","moveProperty":"\nmoveProperty( source:Object, prop:string, target:Object )\n Moves a property from one object to another object.\n","namedtypedtuple":"\nnamedtypedtuple( fields:Array[, options:Object] )\n Returns a named typed tuple factory.\n","naryFunction":"\nnaryFunction( fcn:Function, arity:integer[, thisArg:any] )\n Returns a function that applies a specified number of arguments to a\n provided function.\n","nativeClass":"\nnativeClass( value:any )\n Returns a string value indicating a specification defined classification of\n an object.\n","ndarray":"\nndarray( dtype:string, buffer:ArrayLikeObject|TypedArray|Buffer, \n shape:ArrayLikeObject, strides:ArrayLikeObject, \n offset:integer, order:string[, options:Object] )\n Returns an ndarray.\n","ndarray.prototype.byteLength":"\nndarray.prototype.byteLength\n Size (in bytes) of the array (if known).\n","ndarray.prototype.BYTES_PER_ELEMENT":"\nndarray.prototype.BYTES_PER_ELEMENT\n Size (in bytes) of each array element (if known).\n","ndarray.prototype.data":"\nndarray.prototype.data\n Pointer to the underlying data buffer.\n","ndarray.prototype.dtype":"\nndarray.prototype.dtype\n Underlying data type.\n","ndarray.prototype.flags":"\nndarray.prototype.flags\n Meta information, such as information concerning the memory layout of the\n array.\n","ndarray.prototype.length":"\nndarray.prototype.length\n Length of the array (i.e., number of elements).\n","ndarray.prototype.ndims":"\nndarray.prototype.ndims\n Number of dimensions.\n","ndarray.prototype.offset":"\nndarray.prototype.offset\n Index offset which specifies the buffer index at which to start iterating\n over array elements.\n","ndarray.prototype.order":"\nndarray.prototype.order\n Array order.\n","ndarray.prototype.shape":"\nndarray.prototype.shape\n Array shape.\n","ndarray.prototype.strides":"\nndarray.prototype.strides\n Index strides which specify how to access data along corresponding array\n dimensions.\n","ndarray.prototype.get":"\nndarray.prototype.get( ...idx:integer )\n Returns an array element specified according to provided subscripts.\n","ndarray.prototype.iget":"\nndarray.prototype.iget( idx:integer )\n Returns an array element located at a specified linear index.\n","ndarray.prototype.set":"\nndarray.prototype.set( ...idx:integer, v:any )\n Sets an array element specified according to provided subscripts.\n","ndarray.prototype.iset":"\nndarray.prototype.iset( idx:integer, v:any )\n Sets an array element located at a specified linear index.\n","ndarray.prototype.toString":"\nndarray.prototype.toString()\n Serializes an ndarray as a string.\n","ndarray.prototype.toJSON":"\nndarray.prototype.toJSON()\n Serializes an ndarray as a JSON object.\n","ndarrayCastingModes":"\nndarrayCastingModes()\n Returns a list of ndarray casting modes.\n","ndarrayDataTypes":"\nndarrayDataTypes()\n Returns a list of ndarray data types.\n","ndarrayDispatch":"\nndarrayDispatch( fcns:Function|ArrayLikeObject, \n types:ArrayLikeObject, data:ArrayLikeObject|null, nargs:integer, nin:integer, \n nout:integer )\n Returns an ndarray function interface which performs multiple dispatch.\n","ndarrayIndexModes":"\nndarrayIndexModes()\n Returns a list of ndarray index modes.\n","ndarrayMinDataType":"\nndarrayMinDataType( value:any )\n Returns the minimum ndarray data type of the closest \"kind\" necessary for\n storing a provided scalar value.\n","ndarrayNextDataType":"\nndarrayNextDataType( [dtype:any] )\n Returns the next larger ndarray data type of the same kind.\n","ndarrayOrders":"\nndarrayOrders()\n Returns a list of ndarray orders.\n","ndarrayPromotionRules":"\nndarrayPromotionRules( [dtype1:any, dtype2:any] )\n Returns the ndarray data type with the smallest size and closest \"kind\" to\n which ndarray data types can be safely cast.\n","ndarraySafeCasts":"\nndarraySafeCasts( [dtype:any] )\n Returns a list of ndarray data types to which a provided ndarray data type\n can be safely cast.\n","ndarraySameKindCasts":"\nndarraySameKindCasts( [dtype:any] )\n Returns a list of ndarray data types to which a provided ndarray data type\n can be safely cast or cast within the same \"kind\".\n","ndzeros":"\nndzeros( shape:ArrayLikeObject|integer[, options:Object] )\n Returns a zero-filled ndarray having a specified shape and data type.\n","ndzerosLike":"\nndzerosLike( x:ndarray[, options:Object] )\n Returns a zero-filled ndarray having the same shape and data type as a\n provided input ndarray.\n","nextGraphemeClusterBreak":"\nnextGraphemeClusterBreak( str:string[, fromIndex:integer] )\n Returns the next extended grapheme cluster break in a string after a\n specified position.\n","nextTick":"\nnextTick( clbk[, ...args] )\n Adds a callback to the \"next tick queue\".\n","NIGHTINGALES_ROSE":"\nNIGHTINGALES_ROSE()\n Returns data for Nightingale's famous polar area diagram.\n","NINF":"\nNINF\n Double-precision floating-point negative infinity.\n","NODE_VERSION":"\nNODE_VERSION\n Node version.\n","none":"\nnone( collection:Array|TypedArray|Object )\n Tests whether all elements in a collection are falsy.\n","noneBy":"\nnoneBy( collection:Array|TypedArray|Object, predicate:Function[, thisArg:any ] )\n Tests whether all elements in a collection fail a test implemented by a\n predicate function.\n","noneByAsync":"\nnoneByAsync( collection:Array|TypedArray|Object, [options:Object,] \n predicate:Function, done:Function )\n Tests whether all elements in a collection fail a test implemented by a\n predicate function.\n","noneByAsync.factory":"\nnoneByAsync.factory( [options:Object,] predicate:Function )\n Returns a function which tests whether all elements in a collection fail a\n test implemented by a predicate function.\n","noneByRight":"\nnoneByRight( collection:Array|TypedArray|Object, predicate:Function[, \n thisArg:any ] )\n Tests whether all elements in a collection fail a test implemented by a\n predicate function, iterating from right to left.\n","noneByRightAsync":"\nnoneByRightAsync( collection:Array|TypedArray|Object, [options:Object,] \n predicate:Function, done:Function )\n Tests whether all elements in a collection fail a test implemented by a\n predicate function, iterating from right to left.\n","noneByRightAsync.factory":"\nnoneByRightAsync.factory( [options:Object,] predicate:Function )\n Returns a function which tests whether all elements in a collection fail a\n test implemented by a predicate function, iterating from right to left.\n","nonEnumerableProperties":"\nnonEnumerableProperties( value:any )\n Returns an array of an object's own non-enumerable property names and\n symbols.\n","nonEnumerablePropertiesIn":"\nnonEnumerablePropertiesIn( value:any )\n Returns an array of an object's own and inherited non-enumerable property\n names and symbols.\n","nonEnumerablePropertyNames":"\nnonEnumerablePropertyNames( value:any )\n Returns an array of an object's own non-enumerable property names.\n","nonEnumerablePropertyNamesIn":"\nnonEnumerablePropertyNamesIn( value:any )\n Returns an array of an object's own and inherited non-enumerable property\n names.\n","nonEnumerablePropertySymbols":"\nnonEnumerablePropertySymbols( value:any )\n Returns an array of an object's own non-enumerable symbol properties.\n","nonEnumerablePropertySymbolsIn":"\nnonEnumerablePropertySymbolsIn( value:any )\n Returns an array of an object's own and inherited non-enumerable symbol\n properties.\n","nonIndexKeys":"\nnonIndexKeys( obj:any )\n Returns an array of an object's own enumerable property names which are not\n integer indices.\n","noop":"\nnoop()\n A function which does nothing.\n","now":"\nnow()\n Returns the time in seconds since the epoch.\n","NUM_CPUS":"\nNUM_CPUS\n Number of CPUs.\n","Number":"\nNumber( value:number )\n Returns a Number object.\n","numGraphemeClusters":"\nnumGraphemeClusters( str:string )\n Returns the number of grapheme clusters in a string.\n","Object":"\nObject( value:any )\n Returns an object.\n","Object.assign":"\nObject.assign( target:Object, ...sources:Object )\n Assigns enumerable and own properties from source objects to a target\n object.\n","Object.create":"\nObject.create( prototype:Object, properties:Object )\n Creates a new object with a specified prototype object and properties.\n","Object.defineProperties":"\nObject.defineProperties( obj:Object, properties:Object )\n Defines properties for an object.\n","Object.defineProperty":"\nObject.defineProperty( obj:Object, key:string, descriptor:Object )\n Defines a property for an object.\n","Object.entries":"\nObject.entries( obj:Object )\n Returns an array of an object's own enumerable string-keyed property\n [key, value] pairs.\n","Object.freeze":"\nObject.freeze( obj:Object )\n Freezes an object.\n","Object.getOwnPropertyDescriptor":"\nObject.getOwnPropertyDescriptor( obj:Object, key:string )\n Returns an object's own property descriptor.\n","Object.getOwnPropertyDescriptors":"\nObject.getOwnPropertyDescriptors( obj:Object )\n Returns an object's own property descriptors.\n","Object.getOwnPropertyNames":"\nObject.getOwnPropertyNames( obj:Object )\n Returns an array of an object's own enumerable and non-enumerable\n property names.\n","Object.getOwnPropertySymbols":"\nObject.getOwnPropertySymbols( obj:Object )\n Returns an array of an object's own enumerable and non-enumerable\n symbol property names.\n","Object.getPrototypeOf":"\nObject.getPrototypeOf( obj:Object )\n Returns an object's prototype.\n","Object.hasOwn":"\nObject.hasOwn( obj:Object, p:string )\n Returns a boolean indicating whether an object has a property with the\n specified name.\n","Object.is":"\nObject.is( value1:any, value2:any )\n Returns a boolean indicating whether two values are the same value.\n","Object.isExtensible":"\nObject.isExtensible( obj:Object )\n Returns a boolean indicating whether an object is extensible.\n","Object.isFrozen":"\nObject.isFrozen( obj:Object )\n Returns a boolean indicating whether an object is frozen.\n","Object.isSealed":"\nObject.isSealed( obj:Object )\n Returns a boolean indicating whether an object is sealed.\n","Object.keys":"\nObject.keys( obj:Object )\n Returns an array of an object's own enumerable string-keyed property\n names.\n","Object.preventExtensions":"\nObject.preventExtensions( obj:Object )\n Prevents the addition of new properties to an object.\n","Object.seal":"\nObject.seal( obj:Object )\n Prevents the addition of new properties to an object and marks all\n existing properties as non-configurable.\n","Object.setPrototypeOf":"\nObject.setPrototypeOf( obj:Object, proto:Object )\n Sets an object's prototype.\n","Object.values":"\nObject.values( obj:Object )\n Returns an array of an object's own enumerable property values.\n","Object.prototype.toLocaleString":"\nObject.prototype.toLocaleString()\n Returns a string representing the object.\n","Object.prototype.toString":"\nObject.prototype.toString()\n Returns a string representing the object.\n","Object.prototype.valueOf":"\nObject.prototype.valueOf()\n Returns the primitive value of the object.\n","Object.prototype.hasOwnProperty":"\nObject.prototype.hasOwnProperty( p:string )\n Returns a boolean indicating whether an object has a property with the\n specified name.\n","Object.prototype.isPrototypeOf":"\nObject.prototype.isPrototypeOf( obj:Object )\n Returns a boolean indicating whether an object exists in another object's\n prototype chain.\n","Object.prototype.propertyIsEnumerable":"\nObject.prototype.propertyIsEnumerable( p:string )\n Returns a boolean indicating whether an object's property is enumerable.\n","Object.prototype.constructor":"\nObject.prototype.constructor\n Property whose value is a reference to the constructor function that\n created the instance object.\n","objectEntries":"\nobjectEntries( obj:ObjectLike )\n Returns an array of an object's own enumerable property `[key, value]`\n pairs.\n","objectEntriesIn":"\nobjectEntriesIn( obj:ObjectLike )\n Returns an array of an object's own and inherited enumerable property\n `[key, value]` pairs.\n","objectFromEntries":"\nobjectFromEntries( entries:Array )\n Creates an object from an array of key-value pairs.\n","objectInverse":"\nobjectInverse( obj:ObjectLike[, options:Object] )\n Inverts an object, such that keys become values and values become keys.\n","objectInverseBy":"\nobjectInverseBy( obj:ObjectLike, [options:Object,] transform:Function )\n Inverts an object, such that keys become values and values become keys,\n according to a transform function.\n","objectKeys":"\nobjectKeys( value:any )\n Returns an array of an object's own enumerable property names.\n","objectValues":"\nobjectValues( obj:ObjectLike )\n Returns an array of an object's own enumerable property values.\n","objectValuesIn":"\nobjectValuesIn( obj:ObjectLike )\n Returns an array of an object's own and inherited enumerable property\n values.\n","omit":"\nomit( obj:Object, keys:string|Array )\n Returns a partial object copy excluding specified keys.\n","omitBy":"\nomitBy( obj:Object, predicate:Function )\n Returns a partial object copy excluding properties for which a predicate\n returns a truthy value.\n","open":"\nopen( path:string|Buffer[, flags:string|number[, mode:integer]], clbk:Function )\n Asynchronously opens a file.\n","open.sync":"\nopen.sync( path:string|Buffer[, flags:string|number[, mode:integer]] )\n Synchronously opens a file.\n","openURL":"\nopenURL( url:string )\n Opens a URL in a user's default browser.\n","ordinalize":"\nordinalize( value:string|integer[, options:Object] )\n Converts an integer to an ordinal string (e.g., `1st`, `2nd`, etc.).\n","PACE_BOSTON_HOUSE_PRICES":"\nPACE_BOSTON_HOUSE_PRICES()\n Returns a (corrected) dataset derived from information collected by the US\n Census Service concerning housing in Boston, Massachusetts (1978).\n","pad":"\npad( str:string, len:integer[, options:Object] )\n Pads a `string` such that the padded `string` has length `len`.\n","padjust":"\npadjust( pvals:Array, method:string[, comparisons:integer] )\n Adjusts supplied p-values for multiple comparisons via a specified method.\n","papply":"\npapply( fcn:Function, ...args:any )\n Returns a function of smaller arity by partially applying arguments.\n","papplyRight":"\npapplyRight( fcn:Function, ...args:any )\n Returns a function of smaller arity by partially applying arguments from the\n right.\n","parallel":"\nparallel( files:Array, [options:Object,] clbk:Function )\n Executes scripts in parallel.\n","parseJSON":"\nparseJSON( str:string[, reviver:Function] )\n Attempts to parse a string as JSON.\n","pascalcase":"\npascalcase( str:string )\n Converts a string to Pascal case.\n","PATH_DELIMITER":"\nPATH_DELIMITER\n Platform-specific path delimiter.\n","PATH_DELIMITER_POSIX":"\nPATH_DELIMITER_POSIX\n POSIX path delimiter.\n","PATH_DELIMITER_WIN32":"\nPATH_DELIMITER_WIN32\n Windows path delimiter.\n","PATH_SEP":"\nPATH_SEP\n Platform-specific path segment separator.\n","PATH_SEP_POSIX":"\nPATH_SEP_POSIX\n POSIX path segment separator.\n","PATH_SEP_WIN32":"\nPATH_SEP_WIN32\n Windows path segment separator.\n","pcorrtest":"\npcorrtest( x:Array, y:Array[, options:Object] )\n Computes a Pearson product-moment correlation test between paired samples.\n","percentEncode":"\npercentEncode( str:string )\n Percent-encodes a UTF-16 encoded string according to RFC 3986.\n","PHI":"\nPHI\n Golden ratio.\n","PI":"\nPI\n The mathematical constant `π`.\n","PI_SQUARED":"\nPI_SQUARED\n Square of the mathematical constant `π`.\n","pick":"\npick( obj:Object, keys:string|Array )\n Returns a partial object copy containing only specified keys.\n","pickArguments":"\npickArguments( fcn:Function, indices:Array[, thisArg:any] )\n Returns a function that applies specified arguments to a provided function.\n","pickBy":"\npickBy( obj:Object, predicate:Function )\n Returns a partial object copy containing properties for which a predicate\n returns a truthy value.\n","PINF":"\nPINF\n Double-precision floating-point positive infinity.\n","pkg2alias":"\npkg2alias( pkg:string )\n Returns the alias associated with a specified package name.\n","pkg2related":"\npkg2related( pkg:string )\n Returns package names related to a specified package name.\n","pkg2standalone":"\npkg2standalone( pkg:string )\n Returns the standalone package name associated with a provided internal\n package name.\n","PLATFORM":"\nPLATFORM\n Platform on which the current process is running.\n","plot":"\nplot( [x:Array|Array, y:Array|Array,] [options:Object] )\n Returns a plot instance for creating 2-dimensional plots.\n","Plot":"\nPlot( [x:Array|Array, y:Array|Array,] [options:Object] )\n Returns a plot instance for creating 2-dimensional plots.\n","pluck":"\npluck( arr:Array, prop:string[, options:Object] )\n Extracts a property value from each element of an object array.\n","pop":"\npop( collection:Array|TypedArray|Object )\n Removes and returns the last element of a collection.\n","porterStemmer":"\nporterStemmer( word:string )\n Extracts the stem of a given word.\n","prepend":"\nprepend( collection1:Array|TypedArray|Object, \n collection2:Array|TypedArray|Object )\n Adds the elements of one collection to the beginning of another collection.\n","prevGraphemeClusterBreak":"\nprevGraphemeClusterBreak( str:string[, fromIndex:integer] )\n Returns the previous extended grapheme cluster break in a string before a\n specified position.\n","PRIMES_100K":"\nPRIMES_100K()\n Returns an array containing the first 100,000 prime numbers.\n","properties":"\nproperties( value:any )\n Returns an array of an object's own enumerable and non-enumerable property\n names and symbols.\n","propertiesIn":"\npropertiesIn( value:any )\n Returns an array of an object's own and inherited property names and\n symbols.\n","propertyDescriptor":"\npropertyDescriptor( value:any, property:string|symbol )\n Returns a property descriptor for an object's own property.\n","propertyDescriptorIn":"\npropertyDescriptorIn( value:any, property:string|symbol )\n Returns a property descriptor for an object's own or inherited property.\n","propertyDescriptors":"\npropertyDescriptors( value:any )\n Returns an object's own property descriptors.\n","propertyDescriptorsIn":"\npropertyDescriptorsIn( value:any )\n Returns an object's own and inherited property descriptors.\n","propertyNames":"\npropertyNames( value:any )\n Returns an array of an object's own enumerable and non-enumerable property\n names.\n","propertyNamesIn":"\npropertyNamesIn( value:any )\n Returns an array of an object's own and inherited enumerable and non-\n enumerable property names.\n","propertySymbols":"\npropertySymbols( value:any )\n Returns an array of an object's own symbol properties.\n","propertySymbolsIn":"\npropertySymbolsIn( value:any )\n Returns an array of an object's own and inherited symbol properties.\n","Proxy":"\nProxy( target:Object, handlers:Object )\n Returns a proxy object implementing custom behavior for specified object\n operations.\n","Proxy.revocable":"\nProxy.revocable( target:Object, handlers:Object )\n Returns a revocable proxy object.\n","push":"\npush( collection:Array|TypedArray|Object, ...items:any )\n Adds one or more elements to the end of a collection.\n","quarterOfYear":"\nquarterOfYear( [month:integer|string|Date] )\n Returns the quarter of the year.\n","random.iterators.arcsine":"\nrandom.iterators.arcsine( a:number, b:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from an\n arcsine distribution.\n","random.iterators.bernoulli":"\nrandom.iterators.bernoulli( p:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n Bernoulli distribution.\n","random.iterators.beta":"\nrandom.iterators.beta( α:number, β:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n beta distribution.\n","random.iterators.betaprime":"\nrandom.iterators.betaprime( α:number, β:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n beta prime distribution.\n","random.iterators.binomial":"\nrandom.iterators.binomial( n:integer, p:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n binomial distribution.\n","random.iterators.boxMuller":"\nrandom.iterators.boxMuller( [options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n standard normal distribution using the Box-Muller transform.\n","random.iterators.cauchy":"\nrandom.iterators.cauchy( x0:number, Ɣ:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n Cauchy distribution.\n","random.iterators.chi":"\nrandom.iterators.chi( k:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a chi\n distribution.\n","random.iterators.chisquare":"\nrandom.iterators.chisquare( k:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n chi-square distribution.\n","random.iterators.cosine":"\nrandom.iterators.cosine( μ:number, s:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a raised\n cosine distribution.\n","random.iterators.discreteUniform":"\nrandom.iterators.discreteUniform( a:integer, b:integer[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n discrete uniform distribution.\n","random.iterators.erlang":"\nrandom.iterators.erlang( k:integer, λ:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from an Erlang\n distribution.\n","random.iterators.exponential":"\nrandom.iterators.exponential( λ:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from an\n exponential distribution.\n","random.iterators.f":"\nrandom.iterators.f( d1:number, d2:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from an F\n distribution.\n","random.iterators.frechet":"\nrandom.iterators.frechet( α:number, s:number, m:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a Fréchet\n distribution.\n","random.iterators.gamma":"\nrandom.iterators.gamma( α:number, β:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a gamma\n distribution.\n","random.iterators.geometric":"\nrandom.iterators.geometric( p:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n geometric distribution.\n","random.iterators.gumbel":"\nrandom.iterators.gumbel( μ:number, β:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a Gumbel\n distribution.\n","random.iterators.hypergeometric":"\nrandom.iterators.hypergeometric( N:integer, K:integer, n:integer[, \n options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n hypergeometric distribution.\n","random.iterators.improvedZiggurat":"\nrandom.iterators.improvedZiggurat( [options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n standard normal distribution using the Improved Ziggurat algorithm.\n","random.iterators.invgamma":"\nrandom.iterators.invgamma( α:number, β:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from an\n inverse gamma distribution.\n","random.iterators.kumaraswamy":"\nrandom.iterators.kumaraswamy( a:number, b:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n Kumaraswamy's double bounded distribution.\n","random.iterators.laplace":"\nrandom.iterators.laplace( μ:number, b:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a Laplace\n (double exponential) distribution.\n","random.iterators.levy":"\nrandom.iterators.levy( μ:number, c:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a Lévy\n distribution.\n","random.iterators.logistic":"\nrandom.iterators.logistic( μ:number, s:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n logistic distribution.\n","random.iterators.lognormal":"\nrandom.iterators.lognormal( μ:number, σ:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n lognormal distribution.\n","random.iterators.minstd":"\nrandom.iterators.minstd( [options:Object] )\n Returns an iterator for generating pseudorandom integers on the interval\n `[1, 2147483646]`.\n","random.iterators.minstdShuffle":"\nrandom.iterators.minstdShuffle( [options:Object] )\n Returns an iterator for generating pseudorandom integers on the interval\n `[1, 2147483646]`.\n","random.iterators.mt19937":"\nrandom.iterators.mt19937( [options:Object] )\n Returns an iterator for generating pseudorandom integers on the interval\n `[1, 4294967295]`.\n","random.iterators.negativeBinomial":"\nrandom.iterators.negativeBinomial( r:number, p:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n negative binomial distribution.\n","random.iterators.normal":"\nrandom.iterators.normal( μ:number, σ:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a normal\n distribution.\n","random.iterators.pareto1":"\nrandom.iterators.pareto1( α:number, β:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a Pareto\n (Type I) distribution.\n","random.iterators.poisson":"\nrandom.iterators.poisson( λ:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a Poisson\n distribution.\n","random.iterators.randi":"\nrandom.iterators.randi( [options:Object] )\n Create an iterator for generating pseudorandom numbers having integer\n values.\n","random.iterators.randn":"\nrandom.iterators.randn( [options:Object] )\n Create an iterator for generating pseudorandom numbers drawn from a standard\n normal distribution.\n","random.iterators.randu":"\nrandom.iterators.randu( [options:Object] )\n Create an iterator for generating uniformly distributed pseudorandom numbers\n between 0 and 1.\n","random.iterators.rayleigh":"\nrandom.iterators.rayleigh( σ:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n Rayleigh distribution.\n","random.iterators.t":"\nrandom.iterators.t( v:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n Student's t distribution.\n","random.iterators.triangular":"\nrandom.iterators.triangular( a:number, b:number, c:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n triangular distribution.\n","random.iterators.uniform":"\nrandom.iterators.uniform( a:number, b:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n continuous uniform distribution.\n","random.iterators.weibull":"\nrandom.iterators.weibull( k:number, λ:number[, options:Object] )\n Returns an iterator for generating pseudorandom numbers drawn from a\n Weibull distribution.\n","random.streams.arcsine":"\nrandom.streams.arcsine( a:number, b:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from an\n arcsine distribution.\n","random.streams.arcsine.factory":"\nrandom.streams.arcsine.factory( [a:number, b:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from an arcsine distribution.\n","random.streams.arcsine.objectMode":"\nrandom.streams.arcsine.objectMode( a:number, b:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from an arcsine distribution.\n","random.streams.bernoulli":"\nrandom.streams.bernoulli( p:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Bernoulli distribution.\n","random.streams.bernoulli.factory":"\nrandom.streams.bernoulli.factory( [p:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Bernoulli distribution.\n","random.streams.bernoulli.objectMode":"\nrandom.streams.bernoulli.objectMode( p:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Bernoulli distribution.\n","random.streams.beta":"\nrandom.streams.beta( α:number, β:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n beta distribution.\n","random.streams.beta.factory":"\nrandom.streams.beta.factory( [α:number, β:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a beta distribution.\n","random.streams.beta.objectMode":"\nrandom.streams.beta.objectMode( α:number, β:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a beta distribution.\n","random.streams.betaprime":"\nrandom.streams.betaprime( α:number, β:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n beta prime distribution.\n","random.streams.betaprime.factory":"\nrandom.streams.betaprime.factory( [α:number, β:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a beta prime distribution.\n","random.streams.betaprime.objectMode":"\nrandom.streams.betaprime.objectMode( α:number, β:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a beta prime distribution.\n","random.streams.binomial":"\nrandom.streams.binomial( n:integer, p:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n binomial distribution.\n","random.streams.binomial.factory":"\nrandom.streams.binomial.factory( [n:integer, p:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a binomial distribution.\n","random.streams.binomial.objectMode":"\nrandom.streams.binomial.objectMode( n:integer, p:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a binomial distribution.\n","random.streams.boxMuller":"\nrandom.streams.boxMuller( [options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n standard normal distribution using the Box-Muller transform.\n","random.streams.boxMuller.factory":"\nrandom.streams.boxMuller.factory( [options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a standard normal distribution using the Box-Muller\n transform.\n","random.streams.boxMuller.objectMode":"\nrandom.streams.boxMuller.objectMode( [options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a standard normal distribution using the Box-Muller transform.\n","random.streams.cauchy":"\nrandom.streams.cauchy( x0:number, γ:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Cauchy distribution.\n","random.streams.cauchy.factory":"\nrandom.streams.cauchy.factory( [x0:number, γ:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Cauchy distribution.\n","random.streams.cauchy.objectMode":"\nrandom.streams.cauchy.objectMode( x0:number, γ:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Cauchy distribution.\n","random.streams.chi":"\nrandom.streams.chi( k:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n chi distribution.\n","random.streams.chi.factory":"\nrandom.streams.chi.factory( [k:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a chi distribution.\n","random.streams.chi.objectMode":"\nrandom.streams.chi.objectMode( k:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a chi distribution.\n","random.streams.chisquare":"\nrandom.streams.chisquare( k:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n chi-square distribution.\n","random.streams.chisquare.factory":"\nrandom.streams.chisquare.factory( [k:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a chi-square distribution.\n","random.streams.chisquare.objectMode":"\nrandom.streams.chisquare.objectMode( k:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a chi-square distribution.\n","random.streams.cosine":"\nrandom.streams.cosine( μ:number, s:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n raised cosine distribution.\n","random.streams.cosine.factory":"\nrandom.streams.cosine.factory( [μ:number, s:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a raised cosine distribution.\n","random.streams.cosine.objectMode":"\nrandom.streams.cosine.objectMode( μ:number, s:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a raised cosine distribution.\n","random.streams.discreteUniform":"\nrandom.streams.discreteUniform( a:integer, b:integer[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n discrete uniform distribution.\n","random.streams.discreteUniform.factory":"\nrandom.streams.discreteUniform.factory( [a:integer, b:integer, ]\n [options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a discrete uniform distribution.\n","random.streams.discreteUniform.objectMode":"\nrandom.streams.discreteUniform.objectMode( a:integer, b:integer[, \n options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a discrete uniform distribution.\n","random.streams.erlang":"\nrandom.streams.erlang( k:integer, λ:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from an\n Erlang distribution.\n","random.streams.erlang.factory":"\nrandom.streams.erlang.factory( [k:number, λ:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from an Erlang distribution.\n","random.streams.erlang.objectMode":"\nrandom.streams.erlang.objectMode( k:number, λ:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from an Erlang distribution.\n","random.streams.exponential":"\nrandom.streams.exponential( λ:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from an\n exponential distribution.\n","random.streams.exponential.factory":"\nrandom.streams.exponential.factory( [λ:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from an exponential distribution.\n","random.streams.exponential.objectMode":"\nrandom.streams.exponential.objectMode( λ:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from an exponential distribution.\n","random.streams.f":"\nrandom.streams.f( d1:number, d2:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from an\n F distribution.\n","random.streams.f.factory":"\nrandom.streams.f.factory( [d1:number, d2:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from an F distribution.\n","random.streams.f.objectMode":"\nrandom.streams.f.objectMode( d1:number, d2:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from an F distribution.\n","random.streams.frechet":"\nrandom.streams.frechet( α:number, s:number, m:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Fréchet distribution.\n","random.streams.frechet.factory":"\nrandom.streams.frechet.factory( [α:number, s:number, m:number,]\n [options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Fréchet distribution.\n","random.streams.frechet.objectMode":"\nrandom.streams.frechet.objectMode( α:number, s:number, m:number[, \n options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Fréchet distribution.\n","random.streams.gamma":"\nrandom.streams.gamma( α:number, β:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n gamma distribution.\n","random.streams.gamma.factory":"\nrandom.streams.gamma.factory( [α:number, β:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a gamma distribution.\n","random.streams.gamma.objectMode":"\nrandom.streams.gamma.objectMode( α:number, β:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a gamma distribution.\n","random.streams.geometric":"\nrandom.streams.geometric( p:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n geometric distribution.\n","random.streams.geometric.factory":"\nrandom.streams.geometric.factory( [p:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a geometric distribution.\n","random.streams.geometric.objectMode":"\nrandom.streams.geometric.objectMode( p:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a geometric distribution.\n","random.streams.gumbel":"\nrandom.streams.gumbel( μ:number, β:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Gumbel distribution.\n","random.streams.gumbel.factory":"\nrandom.streams.gumbel.factory( [μ:number, β:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Gumbel distribution.\n","random.streams.gumbel.objectMode":"\nrandom.streams.gumbel.objectMode( μ:number, β:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Gumbel distribution.\n","random.streams.hypergeometric":"\nrandom.streams.hypergeometric( N:integer, K:integer, n:integer[, \n options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n hypergeometric distribution.\n","random.streams.hypergeometric.factory":"\nrandom.streams.hypergeometric.factory( [N:integer, K:integer, n:integer,]\n [options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a hypergeometric distribution.\n","random.streams.hypergeometric.objectMode":"\nrandom.streams.hypergeometric.objectMode( N:integer, K:integer, n:integer[, \n options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a hypergeometric distribution.\n","random.streams.improvedZiggurat":"\nrandom.streams.improvedZiggurat( [options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n standard normal distribution using the Improved Ziggurat algorithm.\n","random.streams.improvedZiggurat.factory":"\nrandom.streams.improvedZiggurat.factory( [options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a standard normal distribution using the Improved\n Ziggurat algorithm.\n","random.streams.improvedZiggurat.objectMode":"\nrandom.streams.improvedZiggurat.objectMode( [options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a standard normal distribution using the Improved Ziggurat\n algorithm.\n","random.streams.invgamma":"\nrandom.streams.invgamma( α:number, β:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from an\n inverse gamma distribution.\n","random.streams.invgamma.factory":"\nrandom.streams.invgamma.factory( [α:number, β:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from an inverse gamma distribution.\n","random.streams.invgamma.objectMode":"\nrandom.streams.invgamma.objectMode( α:number, β:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from an inverse gamma distribution.\n","random.streams.kumaraswamy":"\nrandom.streams.kumaraswamy( a:number, b:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Kumaraswamy's double bounded distribution.\n","random.streams.kumaraswamy.factory":"\nrandom.streams.kumaraswamy.factory( [a:number, b:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Kumaraswamy's double bounded distribution.\n","random.streams.kumaraswamy.objectMode":"\nrandom.streams.kumaraswamy.objectMode( a:number, b:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Kumaraswamy's double bounded distribution.\n","random.streams.laplace":"\nrandom.streams.laplace( μ:number, b:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Laplace (double exponential) distribution.\n","random.streams.laplace.factory":"\nrandom.streams.laplace.factory( [μ:number, b:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Laplace (double exponential) distribution.\n","random.streams.laplace.objectMode":"\nrandom.streams.laplace.objectMode( μ:number, b:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Laplace (double exponential) distribution.\n","random.streams.levy":"\nrandom.streams.levy( μ:number, c:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Lévy distribution.\n","random.streams.levy.factory":"\nrandom.streams.levy.factory( [μ:number, c:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Lévy distribution.\n","random.streams.levy.objectMode":"\nrandom.streams.levy.objectMode( μ:number, c:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Lévy distribution.\n","random.streams.logistic":"\nrandom.streams.logistic( μ:number, s:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n logistic distribution.\n","random.streams.logistic.factory":"\nrandom.streams.logistic.factory( [μ:number, s:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a logistic distribution.\n","random.streams.logistic.objectMode":"\nrandom.streams.logistic.objectMode( μ:number, s:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a logistic distribution.\n","random.streams.lognormal":"\nrandom.streams.lognormal( μ:number, σ:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n lognormal distribution.\n","random.streams.lognormal.factory":"\nrandom.streams.lognormal.factory( [μ:number, σ:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a lognormal distribution.\n","random.streams.lognormal.objectMode":"\nrandom.streams.lognormal.objectMode( μ:number, σ:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a lognormal distribution.\n","random.streams.minstd":"\nrandom.streams.minstd( [options:Object] )\n Returns a readable stream for generating pseudorandom numbers on the\n interval `[1, 2147483646]`.\n","random.streams.minstd.factory":"\nrandom.streams.minstd.factory( [options] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers on the interval `[1, 2147483646]`.\n","random.streams.minstd.objectMode":"\nrandom.streams.minstd.objectMode( [options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n on the interval `[1, 2147483646]`.\n","random.streams.minstdShuffle":"\nrandom.streams.minstdShuffle( [options:Object] )\n Returns a readable stream for generating pseudorandom numbers on the\n interval `[1, 2147483646]`.\n","random.streams.minstdShuffle.factory":"\nrandom.streams.minstdShuffle.factory( [options] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers on the interval `[1, 2147483646]`.\n","random.streams.minstdShuffle.objectMode":"\nrandom.streams.minstdShuffle.objectMode( [options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n on the interval `[1, 2147483646]`.\n","random.streams.mt19937":"\nrandom.streams.mt19937( [options:Object] )\n Returns a readable stream for generating pseudorandom numbers on the\n interval `[1, 4294967295]`.\n","random.streams.mt19937.factory":"\nrandom.streams.mt19937.factory( [options] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers on the interval `[1, 4294967295]`.\n","random.streams.mt19937.objectMode":"\nrandom.streams.mt19937.objectMode( [options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n on the interval `[1, 4294967295]`.\n","random.streams.negativeBinomial":"\nrandom.streams.negativeBinomial( r:number, p:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n negative binomial distribution.\n","random.streams.negativeBinomial.factory":"\nrandom.streams.negativeBinomial.factory( [r:number, p:number, ]\n [options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a negative binomial distribution.\n","random.streams.negativeBinomial.objectMode":"\nrandom.streams.negativeBinomial.objectMode( r:integer, p:number[, \n options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a negative binomial distribution.\n","random.streams.normal":"\nrandom.streams.normal( μ:number, σ:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n normal distribution.\n","random.streams.normal.factory":"\nrandom.streams.normal.factory( [μ:number, σ:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a normal distribution.\n","random.streams.normal.objectMode":"\nrandom.streams.normal.objectMode( μ:number, σ:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a normal distribution.\n","random.streams.pareto1":"\nrandom.streams.pareto1( α:number, β:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Pareto (Type I) distribution.\n","random.streams.pareto1.factory":"\nrandom.streams.pareto1.factory( [α:number, β:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Pareto (Type I) distribution.\n","random.streams.pareto1.objectMode":"\nrandom.streams.pareto1.objectMode( α:number, β:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Pareto (Type I) distribution.\n","random.streams.poisson":"\nrandom.streams.poisson( λ:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Poisson distribution.\n","random.streams.poisson.factory":"\nrandom.streams.poisson.factory( [λ:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Poisson distribution.\n","random.streams.poisson.objectMode":"\nrandom.streams.poisson.objectMode( λ:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Poisson distribution.\n","random.streams.randi":"\nrandom.streams.randi( [options:Object] )\n Returns a readable stream for generating pseudorandom numbers having integer\n values.\n","random.streams.randi.factory":"\nrandom.streams.randi.factory( [options] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers having integer values.\n","random.streams.randi.objectMode":"\nrandom.streams.randi.objectMode( [options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n having integer values.\n","random.streams.randn":"\nrandom.streams.randn( [options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n standard normal distribution.\n","random.streams.randn.factory":"\nrandom.streams.randn.factory( [options] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a standard normal distribution.\n","random.streams.randn.objectMode":"\nrandom.streams.randn.objectMode( [options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a standard normal distribution.\n","random.streams.randu":"\nrandom.streams.randu( [options:Object] )\n Returns a readable stream for generating uniformly distributed pseudorandom\n numbers between 0 and 1.\n","random.streams.randu.factory":"\nrandom.streams.randu.factory( [options] )\n Returns a function for creating readable streams which generate uniformly\n distributed pseudorandom numbers between 0 and 1.\n","random.streams.randu.objectMode":"\nrandom.streams.randu.objectMode( [options:Object] )\n Returns an \"objectMode\" readable stream for generating uniformly distributed\n pseudorandom numbers between 0 and 1.\n","random.streams.rayleigh":"\nrandom.streams.rayleigh( σ:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Rayleigh distribution.\n","random.streams.rayleigh.factory":"\nrandom.streams.rayleigh.factory( [σ:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Rayleigh distribution.\n","random.streams.rayleigh.objectMode":"\nrandom.streams.rayleigh.objectMode( σ:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Rayleigh distribution.\n","random.streams.t":"\nrandom.streams.t( v:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Student's t distribution.\n","random.streams.t.factory":"\nrandom.streams.t.factory( [v:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Student's t distribution.\n","random.streams.t.objectMode":"\nrandom.streams.t.objectMode( v:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Student's t distribution.\n","random.streams.triangular":"\nrandom.streams.triangular( a:number, b:number, c:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n triangular distribution.\n","random.streams.triangular.factory":"\nrandom.streams.triangular.factory( [a:number, b:number, c:number, ]\n [options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a triangular distribution.\n","random.streams.triangular.objectMode":"\nrandom.streams.triangular.objectMode( a:number, b:number, c:number[, \n options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a triangular distribution.\n","random.streams.uniform":"\nrandom.streams.uniform( a:number, b:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n uniform distribution.\n","random.streams.uniform.factory":"\nrandom.streams.uniform.factory( [a:number, b:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a uniform distribution.\n","random.streams.uniform.objectMode":"\nrandom.streams.uniform.objectMode( a:number, b:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a uniform distribution.\n","random.streams.weibull":"\nrandom.streams.weibull( k:number, λ:number[, options:Object] )\n Returns a readable stream for generating pseudorandom numbers drawn from a\n Weibull distribution.\n","random.streams.weibull.factory":"\nrandom.streams.weibull.factory( [k:number, λ:number, ][options:Object] )\n Returns a function for creating readable streams which generate pseudorandom\n numbers drawn from a Weibull distribution.\n","random.streams.weibull.objectMode":"\nrandom.streams.weibull.objectMode( k:number, λ:number[, options:Object] )\n Returns an \"objectMode\" readable stream for generating pseudorandom numbers\n drawn from a Weibull distribution.\n","ranks":"\nranks( arr:Array[, options:Object] )\n Computes the sample ranks for the values of an array-like object.\n","readDir":"\nreadDir( path:string|Buffer, clbk:Function )\n Asynchronously reads the contents of a directory.\n","readDir.sync":"\nreadDir.sync( path:string|Buffer )\n Synchronously reads the contents of a directory.\n","readFile":"\nreadFile( file:string|Buffer|integer[, options:Object|string], clbk:Function )\n Asynchronously reads the entire contents of a file.\n","readFile.sync":"\nreadFile.sync( file:string|Buffer|integer[, options:Object|string] )\n Synchronously reads the entire contents of a file.\n","readFileList":"\nreadFileList( filepaths:Array[, options:Object|string], clbk:Function )\n Asynchronously reads the entire contents of each file in a file list.\n","readFileList.sync":"\nreadFileList.sync( filepaths:Array[, options:Object|string] )\n Synchronously reads the entire contents of each file in a file list.\n","readJSON":"\nreadJSON( file:string|Buffer|integer[, options:Object|string], clbk:Function )\n Asynchronously reads a file as JSON.\n","readJSON.sync":"\nreadJSON.sync( file:string|Buffer|integer[, options:Object|string] )\n Synchronously reads a file as JSON.\n","readWASM":"\nreadWASM( file:string|Buffer|integer[, options:Object], clbk:Function )\n Asynchronously reads a file as WebAssembly.\n","readWASM.sync":"\nreadWASM.sync( file:string|Buffer|integer[, options:Object] )\n Synchronously reads a file as WebAssembly.\n","real":"\nreal( z:Complex128 )\n Returns the real component of a double-precision complex floating-point\n number.\n","realarray":"\nrealarray( [dtype:string] )\n Creates a typed array.\n\nrealarray( length:integer[, dtype:string] )\n Returns a typed array having a specified length.\n\nrealarray( typedarray:TypedArray[, dtype:string] )\n Creates a typed array from another typed array.\n\nrealarray( obj:Object[, dtype:string] )\n Creates a typed array from an array-like object or iterable.\n\nrealarray( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]][, \n dtype:string] )\n Returns a typed array view of an ArrayBuffer.\n","realarrayCtors":"\nrealarrayCtors( dtype:string )\n Returns a typed array constructor.\n","realarrayDataTypes":"\nrealarrayDataTypes()\n Returns a list of typed array data types.\n","realf":"\nrealf( z:Complex64 )\n Returns the real component of a single-precision complex floating-point\n number.\n","realmax":"\nrealmax( dtype:string )\n Returns the maximum finite value capable of being represented by a numeric\n real type.\n","realmin":"\nrealmin( dtype:string )\n Returns the smallest positive normal value capable of being represented by a\n numeric real type.\n","reBasename":"\nreBasename( [platform:string] )\n Returns a regular expression to capture the last part of a path.\n","reBasename.REGEXP":"\nreBasename.REGEXP\n Regular expression to capture the last part of a POSIX path.\n","reBasename.REGEXP_POSIX":"\nreBasename.REGEXP_POSIX\n Regular expression to capture the last part of a POSIX path.\n","reBasename.REGEXP_WIN32":"\nreBasename.REGEXP_WIN32\n Regular expression to capture the last part of a Windows path.\n","reBasenamePosix":"\nreBasenamePosix()\n Returns a regular expression to capture the last part of a POSIX path.\n","reBasenamePosix.REGEXP":"\nreBasenamePosix.REGEXP\n Regular expression to capture the last part of a POSIX path.\n","reBasenameWindows":"\nreBasenameWindows()\n Returns a regular expression to capture the last part of a Windows path.\n","reBasenameWindows.REGEXP":"\nreBasenameWindows.REGEXP\n Regular expression to capture the last part of a Windows path.\n","reColorHexadecimal":"\nreColorHexadecimal( [mode:string] )\n Returns a regular expression to match a hexadecimal color.\n","reColorHexadecimal.REGEXP":"\nreColorHexadecimal.REGEXP\n Regular expression to match a full hexadecimal color.\n","reColorHexadecimal.REGEXP_SHORTHAND":"\nreColorHexadecimal.REGEXP_SHORTHAND\n Regular expression to match a shorthand hexadecimal color.\n","reColorHexadecimal.REGEXP_EITHER":"\nreColorHexadecimal.REGEXP_EITHER\n Regular expression to match either a shorthand or full length hexadecimal\n color.\n","reDecimalNumber":"\nreDecimalNumber( [options:Object] )\n Returns a regular expression to match a decimal number.\n","reDecimalNumber.REGEXP":"\nreDecimalNumber.REGEXP\n Regular expression to match a decimal number.\n","reDecimalNumber.REGEXP_CAPTURE":"\nreDecimalNumber.REGEXP_CAPTURE\n Regular expression to capture a decimal number.\n","reDirname":"\nreDirname( [platform:string] )\n Returns a regular expression to capture a path dirname.\n","reDirname.REGEXP":"\nreDirname.REGEXP\n Regular expression to capture a path dirname.\n","reDirname.REGEXP_POSIX":"\nreDirname.REGEXP_POSIX\n Regular expression to capture a POSIX path dirname.\n","reDirname.REGEXP_WIN32":"\nreDirname.REGEXP_WIN32\n Regular expression to capture a Windows path dirname.\n","reDirnamePosix":"\nreDirnamePosix()\n Returns a regular expression to capture a POSIX path dirname.\n","reDirnamePosix.REGEXP":"\nreDirnamePosix.REGEXP\n Regular expression to capture a POSIX path dirname.\n","reDirnameWindows":"\nreDirnameWindows()\n Returns a regular expression to capture a Windows path dirname.\n","reDirnameWindows.REGEXP":"\nreDirnameWindows.REGEXP\n Regular expression to capture a Windows path dirname.\n","reduce":"\nreduce( arr:ArrayLikeObject|ndarray, initial:any, reducer:Function[, \n thisArg:any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","reduce2d":"\nreduce2d( arr:ArrayLikeObject, initial:ArrayLikeObject, \n reducer:Function[, thisArg:any] )\n Reduces the number of dimensions by one of a two-dimensional nested array by\n applying a function against an accumulator and each element along the\n innermost dimension and returning the accumulation results as a one-\n dimensional array.\n","reduceAsync":"\nreduceAsync( collection:Array|TypedArray|Object, initial:any, [options:Object,] \n reducer:Function, done:Function )\n Applies a function against an accumulator and each element in a collection\n and returns the accumulated result.\n","reduceAsync.factory":"\nreduceAsync.factory( [options:Object,] fcn:Function )\n Returns a function which applies a function against an accumulator and each\n element in a collection and returns the accumulated result.\n","reduceRight":"\nreduceRight( arr:ArrayLikeObject|ndarray, initial:any, reducer:Function[, \n thisArg:any] )\n Applies a function against an accumulator and each element in an array while\n iterating from right to left and returns the accumulated result.\n","reduceRightAsync":"\nreduceRightAsync( collection:Array|TypedArray|Object, initial:any, \n [options:Object,] reducer:Function, done:Function )\n Applies a function against an accumulator and each element in a collection\n and returns the accumulated result, iterating from right to left.\n","reduceRightAsync.factory":"\nreduceRightAsync.factory( [options:Object,] fcn:Function )\n Returns a function which applies a function against an accumulator and each\n element in a collection and returns the accumulated result, iterating from\n right to left.\n","reEOL":"\nreEOL( [options:Object] )\n Regular expression to match a newline character sequence: /\\r?\\n/.\n","reEOL.REGEXP":"\nreEOL.REGEXP\n Regular expression to match a newline character sequence: /\\r?\\n/.\n","reEOL.REGEXP_CAPTURE":"\nreEOL.REGEXP_CAPTURE\n Regular expression to capture a newline character sequence: /\\r?\\n/.\n","reExtendedLengthPath":"\nreExtendedLengthPath()\n Returns a regular expression to test if a string is an extended-length path.\n","reExtendedLengthPath.REGEXP":"\nreExtendedLengthPath.REGEXP\n Regular expression to test if a string is an extended-length path.\n","reExtname":"\nreExtname( [platform:string] )\n Returns a regular expression to capture a filename extension.\n","reExtname.REGEXP":"\nreExtname.REGEXP\n Regular expression to capture a filename extension.\n","reExtname.REGEXP_POSIX":"\nreExtname.REGEXP_POSIX\n Regular expression to capture a POSIX filename extension.\n","reExtname.REGEXP_WIN32":"\nreExtname.REGEXP_WIN32\n Regular expression to capture a Windows filename extension.\n","reExtnamePosix":"\nreExtnamePosix\n Returns a regular expression to capture a POSIX filename extension.\n","reExtnamePosix.REGEXP":"\nreExtnamePosix.REGEXP\n Regular expression to capture a POSIX filename extension.\n","reExtnameWindows":"\nreExtnameWindows\n Returns a regular expression to capture a Windows filename extension.\n","reExtnameWindows.REGEXP":"\nreExtnameWindows.REGEXP\n Regular expression to capture a Windows filename extension.\n","reFilename":"\nreFilename( [platform:string] )\n Regular expression to split a filename.\n","reFilename.REGEXP":"\nreFilename.REGEXP\n Regular expression to split a filename.\n","reFilename.REGEXP_POSIX":"\nreFilename.REGEXP_POSIX\n Regular expression to split a POSIX filename.\n","reFilename.REGEXP_WIN32":"\nreFilename.REGEXP_WIN32\n Regular expression to split a Windows filename.\n","reFilenamePosix":"\nreFilenamePosix()\n Returns a regular expression to split a POSIX filename.\n","reFilenamePosix.REGEXP":"\nreFilenamePosix.REGEXP\n Regular expression to split a POSIX filename.\n","reFilenameWindows":"\nreFilenameWindows()\n Returns a regular expression to split a Windows filename.\n","reFilenameWindows.REGEXP":"\nreFilenameWindows.REGEXP\n Regular expression to split a Windows filename.\n","reFromString":"\nreFromString( str:string )\n Parses a regular expression string and returns a new regular expression.\n","reFunctionName":"\nreFunctionName()\n Return a regular expression to capture a function name.\n","reFunctionName.REGEXP":"\nreFunctionName.REGEXP\n Regular expression to capture a function name.\n","regexp2json":"\nregexp2json( re:RegExp )\n Returns a JSON representation of a regular expression.\n","reim":"\nreim( z:Complex128 )\n Returns the real and imaginary components of a double-precision complex\n floating-point number.\n","reimf":"\nreimf( z:Complex64 )\n Returns the real and imaginary components of a single-precision complex\n floating-point number.\n","rejectArguments":"\nrejectArguments( fcn:Function, predicate:Function[, thisArg:any] )\n Returns a function that applies arguments to a provided function according\n to a predicate function.\n","removeFirst":"\nremoveFirst( str:string[, n:integer] )\n Removes the first character(s) of a `string`.\n","removeLast":"\nremoveLast( str:string[, n:integer] )\n Removes the last character(s) of a `string`.\n","removePunctuation":"\nremovePunctuation( str:string )\n Removes punctuation characters from a `string`.\n","removeUTF8BOM":"\nremoveUTF8BOM( str:string )\n Removes a UTF-8 byte order mark (BOM) from the beginning of a `string`.\n","removeWords":"\nremoveWords( str:string, words:Array[, ignoreCase:boolean] )\n Removes all occurrences of the given words from a `string`.\n","rename":"\nrename( oldPath:string|Buffer, newPath:string|Buffer, clbk:Function )\n Asynchronously renames a file.\n","rename.sync":"\nrename.sync( oldPath:string|Buffer, newPath:string|Buffer )\n Synchronously renames a file.\n","reNativeFunction":"\nreNativeFunction()\n Returns a regular expression to match a native function.\n","reNativeFunction.REGEXP":"\nreNativeFunction.REGEXP\n Regular expression to match a native function.\n","reorderArguments":"\nreorderArguments( fcn:Function, indices:Array[, thisArg:any] )\n Returns a function that invokes a provided function with reordered\n arguments.\n","repeat":"\nrepeat( str:string, n:integer )\n Repeats a string `n` times and returns the concatenated result.\n","replace":"\nreplace( str:string, search:string|RegExp, newval:string|Function )\n Replaces search occurrences with a replacement string.\n","reRegExp":"\nreRegExp()\n Returns a regular expression to parse a regular expression string.\n","reRegExp.REGEXP":"\nreRegExp.REGEXP\n Regular expression to parse a regular expression string.\n","rescape":"\nrescape( str:string )\n Escapes a regular expression string.\n","reSemVer":"\nreSemVer()\n Returns a regular expression to match a semantic version string.\n","reSemVer.REGEXP":"\nreSemVer.REGEXP\n Regular expression to match a semantic version string.\n","resolveParentPath":"\nresolveParentPath( path:string[, options:Object], clbk:Function )\n Asynchronously resolves a path by walking parent directories.\n","resolveParentPath.sync":"\nresolveParentPath.sync( path:string[, options:Object] )\n Synchronously resolves a path by walking parent directories.\n","resolveParentPathBy":"\nresolveParentPathBy( path:string[, options:Object], predicate:Function, \n clbk:Function )\n Asynchronously resolves a path according to a predicate function by walking\n parent directories.\n","resolveParentPathBy.sync":"\nresolveParentPathBy.sync( path:string[, options:Object], predicate:Function )\n Synchronously resolves a path according to a predicate function by walking\n parent directories.\n","reUncPath":"\nreUncPath()\n Return a regular expression to parse a UNC path.\n","reUncPath.REGEXP":"\nreUncPath.REGEXP\n Regular expression to parse a UNC path.\n","reUtf16SurrogatePair":"\nreUtf16SurrogatePair()\n Returns a regular expression to match a UTF-16 surrogate pair.\n","reUtf16SurrogatePair.REGEXP":"\nreUtf16SurrogatePair.REGEXP\n Regular expression to match a UTF-16 surrogate pair.\n","reUtf16UnpairedSurrogate":"\nreUtf16UnpairedSurrogate()\n Returns a regular expression to match an unpaired UTF-16 surrogate.\n","reUtf16UnpairedSurrogate.REGEXP":"\nreUtf16UnpairedSurrogate.REGEXP\n Regular expression to match an unpaired UTF-16 surrogate.\n","reverseArguments":"\nreverseArguments( fcn:Function[, thisArg:any] )\n Returns a function that invokes a provided function with arguments in\n reverse order.\n","reverseString":"\nreverseString( str:string )\n Reverses a `string`.\n","reviveBasePRNG":"\nreviveBasePRNG( key:string, value:any )\n Revives a JSON-serialized pseudorandom number generator (PRNG).\n","reviveBuffer":"\nreviveBuffer( key:string, value:any )\n Revives a JSON-serialized Buffer.\n","reviveComplex":"\nreviveComplex( key:string, value:any )\n Revives a JSON-serialized complex number.\n","reviveComplex64":"\nreviveComplex64( key:string, value:any )\n Revives a JSON-serialized 64-bit complex number.\n","reviveComplex128":"\nreviveComplex128( key:string, value:any )\n Revives a JSON-serialized 128-bit complex number.\n","reviveError":"\nreviveError( key:string, value:any )\n Revives a JSON-serialized error object.\n","reviveRegExp":"\nreviveRegExp( key:string, value:any )\n Revives a JSON-serialized regular expression.\n","reviveTypedArray":"\nreviveTypedArray( key:string, value:any )\n Revives a JSON-serialized typed array.\n","reWhitespace":"\nreWhitespace( [options:Object] )\n Returns a regular expression to match a white space character.\n","reWhitespace.REGEXP":"\nreWhitespace.REGEXP\n Regular expression to match a white space character.\n","reWhitespace.REGEXP_CAPTURE":"\nreWhitespace.REGEXP_CAPTURE\n Regular expression to capture white space characters.\n","rpad":"\nrpad( str:string, len:integer[, pad:string] )\n Right pads a `string` such that the padded `string` has a length of at least\n `len`.\n","rtrim":"\nrtrim( str:string )\n Trims whitespace from the end of a string.\n","safeintmax":"\nsafeintmax( dtype:string )\n Returns the maximum safe integer capable of being represented by a numeric\n real type.\n","safeintmin":"\nsafeintmin( dtype:string )\n Returns the minimum safe integer capable of being represented by a numeric\n real type.\n","sample":"\nsample( x:ArrayLike[, options:Object] )\n Samples elements from an array-like object.\n","sample.factory":"\nsample.factory( [pool:ArrayLike, ][options:Object] )\n Returns a function to sample elements from an array-like object.\n","SAVOY_STOPWORDS_FIN":"\nSAVOY_STOPWORDS_FIN()\n Returns a list of Finnish stop words.\n","SAVOY_STOPWORDS_FR":"\nSAVOY_STOPWORDS_FR()\n Returns a list of French stop words.\n","SAVOY_STOPWORDS_GER":"\nSAVOY_STOPWORDS_GER()\n Returns a list of German stop words.\n","SAVOY_STOPWORDS_IT":"\nSAVOY_STOPWORDS_IT()\n Returns a list of Italian stop words.\n","SAVOY_STOPWORDS_POR":"\nSAVOY_STOPWORDS_POR()\n Returns a list of Portuguese stop words.\n","SAVOY_STOPWORDS_SP":"\nSAVOY_STOPWORDS_SP()\n Returns a list of Spanish stop words.\n","SAVOY_STOPWORDS_SWE":"\nSAVOY_STOPWORDS_SWE()\n Returns a list of Swedish stop words.\n","scalar2ndarray":"\nscalar2ndarray( value:any[, dtype:string] )\n Returns a zero-dimensional ndarray containing a provided scalar value.\n","sdot":"\nsdot( x:ndarray, y:ndarray )\n Computes the dot product of two single-precision floating-point vectors.\n","SECONDS_IN_DAY":"\nSECONDS_IN_DAY\n Number of seconds in a day.\n","SECONDS_IN_HOUR":"\nSECONDS_IN_HOUR\n Number of seconds in an hour.\n","SECONDS_IN_MINUTE":"\nSECONDS_IN_MINUTE\n Number of seconds in a minute.\n","SECONDS_IN_WEEK":"\nSECONDS_IN_WEEK\n Number of seconds in a week.\n","secondsInMonth":"\nsecondsInMonth( [month:string|Date|integer[, year:integer]] )\n Returns the number of seconds in a month.\n","secondsInYear":"\nsecondsInYear( [value:integer|Date] )\n Returns the number of seconds in a year according to the Gregorian calendar.\n","setConfigurableReadOnly":"\nsetConfigurableReadOnly( obj:Object, prop:string|symbol, value:any )\n Defines a configurable read-only property.\n","setConfigurableReadOnlyAccessor":"\nsetConfigurableReadOnlyAccessor( obj:Object, prop:string|symbol, \n getter:Function )\n Defines a configurable read-only accessor.\n","setConfigurableReadWriteAccessor":"\nsetConfigurableReadWriteAccessor( obj:Object, prop:string|symbol, \n getter:Function, setter:Function )\n Defines a configurable property having read-write accessors.\n","setConfigurableWriteOnlyAccessor":"\nsetConfigurableWriteOnlyAccessor( obj:Object, prop:string|symbol, \n setter:Function )\n Defines a configurable write-only accessor.\n","setMemoizedConfigurableReadOnly":"\nsetMemoizedConfigurableReadOnly( obj:Object, prop:string|symbol, fcn:Function )\n Defines a configurable memoized read-only object property.\n","setMemoizedReadOnly":"\nsetMemoizedReadOnly( obj:Object, prop:string|symbol, fcn:Function )\n Defines a memoized read-only object property.\n","setNonEnumerableProperty":"\nsetNonEnumerableProperty( obj:Object, prop:string|symbol, value:any )\n Defines a non-enumerable property.\n","setNonEnumerableReadOnly":"\nsetNonEnumerableReadOnly( obj:Object, prop:string|symbol, value:any )\n Defines a non-enumerable read-only property.\n","setNonEnumerableReadOnlyAccessor":"\nsetNonEnumerableReadOnlyAccessor( obj:Object, prop:string|symbol, \n getter:Function )\n Defines a non-enumerable read-only accessor.\n","setNonEnumerableReadWriteAccessor":"\nsetNonEnumerableReadWriteAccessor( obj:Object, prop:string|symbol, \n getter:Function, setter:Function )\n Defines a non-enumerable property having read-write accessors.\n","setNonEnumerableWriteOnlyAccessor":"\nsetNonEnumerableWriteOnlyAccessor( obj:Object, prop:string|symbol, \n setter:Function )\n Defines a non-enumerable write-only accessor.\n","setReadOnly":"\nsetReadOnly( obj:Object, prop:string|symbol, value:any )\n Defines a read-only property.\n","setReadOnlyAccessor":"\nsetReadOnlyAccessor( obj:Object, prop:string|symbol, getter:Function )\n Defines a read-only accessor.\n","setReadWriteAccessor":"\nsetReadWriteAccessor( obj:Object, prop:string|symbol, getter:Function, \n setter:Function )\n Defines a property having read-write accessors.\n","setWriteOnlyAccessor":"\nsetWriteOnlyAccessor( obj:Object, prop:string|symbol, setter:Function )\n Defines a write-only accessor.\n","SharedArrayBuffer":"\nSharedArrayBuffer( size:integer )\n Returns a shared array buffer having a specified number of bytes.\n","SharedArrayBuffer.length":"\nSharedArrayBuffer.length\n Number of input arguments the constructor accepts.\n","SharedArrayBuffer.prototype.byteLength":"\nSharedArrayBuffer.prototype.byteLength\n Read-only property which returns the length (in bytes) of the array buffer.\n","SharedArrayBuffer.prototype.slice":"\nSharedArrayBuffer.prototype.slice( [start:integer[, end:integer]] )\n Copies the bytes of a shared array buffer to a new shared array buffer.\n","shift":"\nshift( collection:Array|TypedArray|Object )\n Removes and returns the first element of a collection.\n","shuffle":"\nshuffle( arr:ArrayLike[, options:Object] )\n Shuffles elements of an array-like object.\n","shuffle.factory":"\nshuffle.factory( [options:Object] )\n Returns a function to shuffle elements of array-like objects.\n","sizeOf":"\nsizeOf( dtype:string )\n Returns the size (in bytes) of the canonical binary representation of a\n specified numeric type.\n","snakecase":"\nsnakecase( str:string )\n Converts a string to snake case.\n","some":"\nsome( collection:Array|TypedArray|Object, n:number )\n Tests whether at least `n` elements in a collection are truthy.\n","someBy":"\nsomeBy( collection:Array|TypedArray|Object, n:number, predicate:Function[, \n thisArg:any ] )\n Tests whether a collection contains at least `n` elements which pass a test\n implemented by a predicate function.\n","someByAsync":"\nsomeByAsync( collection:Array|TypedArray|Object, n:number, [options:Object,] \n predicate:Function, done:Function )\n Tests whether a collection contains at least `n` elements which pass a test\n implemented by a predicate function.\n","someByAsync.factory":"\nsomeByAsync.factory( [options:Object,] predicate:Function )\n Returns a function which tests whether a collection contains at least `n`\n elements which pass a test implemented by a predicate function.\n","someByRight":"\nsomeByRight( collection:Array|TypedArray|Object, n:number, predicate:Function[, \n thisArg:any ] )\n Tests whether a collection contains at least `n` elements which pass a test\n implemented by a predicate function, iterating from right to left.\n","someByRightAsync":"\nsomeByRightAsync( collection:Array|TypedArray|Object, n:number, \n [options:Object,] predicate:Function, done:Function )\n Tests whether a collection contains at least `n` elements which pass a test\n implemented by a predicate function, iterating from right to left.\n","someByRightAsync.factory":"\nsomeByRightAsync.factory( [options:Object,] predicate:Function )\n Returns a function which tests whether a collection contains at least `n`\n elements which pass a test implemented by a predicate function, iterating\n from right to left.\n","SOTU":"\nSOTU( [options:Object] )\n Returns State of the Union (SOTU) addresses.\n","SPACHE_REVISED":"\nSPACHE_REVISED()\n Returns a list of simple American-English words (revised Spache).\n","SPAM_ASSASSIN":"\nSPAM_ASSASSIN()\n Returns the Spam Assassin public mail corpus.\n","SparklineBase":"\nSparklineBase( [data:ArrayLike|ndarray,] [options:Object] )\n Returns a Sparkline instance.\n","sparsearray2iterator":"\nsparsearray2iterator( src:ArrayLikeObject[, mapFcn:Function[, thisArg:any]] )\n Returns an iterator which iterates over the elements of a sparse array-like\n object.\n","sparsearray2iteratorRight":"\nsparsearray2iteratorRight( src:ArrayLikeObject[, mapFcn:Function[, \n thisArg:any]] )\n Returns an iterator which iterates from right to left over the elements of a\n sparse array-like object.\n","splitStream":"\nsplitStream( [options:Object] )\n Returns a transform stream which splits streamed data.\n","splitStream.factory":"\nsplitStream.factory( [options:Object] )\n Returns a function for creating transform streams for splitting streamed\n data.\n","splitStream.objectMode":"\nsplitStream.objectMode( [options:Object] )\n Returns an \"objectMode\" transform stream for splitting streamed data.\n","SQRT_EPS":"\nSQRT_EPS\n Square root of double-precision floating-point epsilon.\n","SQRT_HALF":"\nSQRT_HALF\n Square root of `1/2`.\n","SQRT_HALF_PI":"\nSQRT_HALF_PI\n Square root of the mathematical constant `π` divided by `2`.\n","SQRT_PHI":"\nSQRT_PHI\n Square root of the golden ratio.\n","SQRT_PI":"\nSQRT_PI\n Square root of the mathematical constant `π`.\n","SQRT_THREE":"\nSQRT_THREE\n Square root of `3`.\n","SQRT_TWO":"\nSQRT_TWO\n Square root of `2`.\n","SQRT_TWO_PI":"\nSQRT_TWO_PI\n Square root of the mathematical constant `π` times `2`.\n","SSA_US_BIRTHS_2000_2014":"\nSSA_US_BIRTHS_2000_2014()\n Returns US birth data from 2000 to 2014, as provided by the Social Security\n Administration.\n","sswap":"\nsswap( x:ndarray, y:ndarray )\n Interchanges two single-precision floating-point vectors.\n","Stack":"\nStack()\n Stack constructor.\n","standalone2pkg":"\nstandalone2pkg( pkg:string )\n Returns the internal package name associated with a provided standalone\n package name.\n","STANDARD_CARD_DECK":"\nSTANDARD_CARD_DECK()\n Returns a string array containing two or three letter abbreviations for each\n card in a standard 52-card deck.\n","startcase":"\nstartcase( str:string )\n Capitalizes the first letter of each word in an input string.\n","startsWith":"\nstartsWith( str:string, search:string[, position:integer] )\n Tests if a string starts with the characters of another string.\n","STOPWORDS_EN":"\nSTOPWORDS_EN()\n Returns a list of English stop words.\n","strided.abs":"\nstrided.abs( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Computes the absolute value for each element in a strided array `x` and\n assigns the results to elements in a strided array `y`.\n","strided.abs.ndarray":"\nstrided.abs.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n offsetX:integer, dtypeY:any, y:ArrayLikeObject, strideY:integer, \n offsetY:integer )\n Computes the absolute value for each element in a strided array `x` and\n assigns the results to elements in a strided array `y` using alternative\n indexing semantics.\n","strided.abs2":"\nstrided.abs2( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Computes the squared absolute value for each element in a strided array `x`\n and assigns the results to elements in a strided array `y`.\n","strided.abs2.ndarray":"\nstrided.abs2.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, \n strideX:integer, offsetX:integer, dtypeY:any, y:ArrayLikeObject, \n strideY:integer, offsetY:integer )\n Computes the squared absolute value for each element in a strided array `x`\n and assigns the results to elements in a strided array `y` using alternative\n indexing semantics.\n","strided.abs2By":"\nstrided.abs2By( N:integer, x:Array|TypedArray|Object, sx:integer, \n y:Array|TypedArray|Object, sy:integer, clbk:Function[, thisArg:any] )\n Computes the squared absolute value of each element retrieved from an input\n strided array `x` via a callback function and assigns each result to an\n element in an output strided array `y`.\n","strided.abs2By.ndarray":"\nstrided.abs2By.ndarray( N:integer, x:Array|TypedArray|Object, sx:integer, \n ox:integer, y:Array|TypedArray|Object, sy:integer, oy:integer, \n clbk:Function[, thisArg:any] )\n Computes the squared absolute value of each element retrieved from an input\n strided array `x` via a callback function and assigns each result to an\n element in an output strided array `y` using alternative indexing semantics.\n","strided.absBy":"\nstrided.absBy( N:integer, x:Array|TypedArray|Object, sx:integer, \n y:Array|TypedArray|Object, sy:integer, clbk:Function[, thisArg:any] )\n Computes the absolute value of each element retrieved from a strided input\n array `x` via a callback function and assigns each result to an element in a\n strided output array `y`.\n","strided.absBy.ndarray":"\nstrided.absBy.ndarray( N:integer, x:Array|TypedArray|Object, sx:integer, \n ox:integer, y:Array|TypedArray|Object, sy:integer, oy:integer, \n clbk:Function[, thisArg:any] )\n Computes the absolute value of each element retrieved from a strided input\n array `x` via a callback function and assigns each result to an element in a\n strided output array `y` using alternative indexing semantics.\n","strided.add":"\nstrided.add( N:integer, dx:any, x:ArrayLikeObject, sx:integer, dy:any, \n y:ArrayLikeObject, sy:integer, dz:any, z:ArrayLikeObject, sz:integer )\n Adds each element in a strided array `x` to a corresponding element in a\n strided array `y` and assigns the results to elements in a strided array\n `z`.\n","strided.add.ndarray":"\nstrided.add.ndarray( N:integer, dx:any, x:ArrayLikeObject, sx:integer, \n ox:integer, dy:any, y:ArrayLikeObject, sy:integer, oy:integer, dz:any, \n z:ArrayLikeObject, sz:integer, oz:integer )\n Adds each element in a strided array `x` to a corresponding element in a\n strided array `y` and assigns the results to elements in a strided array\n `z` using alternative indexing semantics.\n","strided.cbrt":"\nstrided.cbrt( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Computes the cube root of each element in a strided array `x` and assigns\n the results to elements in a strided array `y`.\n","strided.cbrt.ndarray":"\nstrided.cbrt.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, \n strideX:integer, offsetX:integer, dtypeY:any, y:ArrayLikeObject, \n strideY:integer, offsetY:integer )\n Computes the cube root of each element in a strided array `x` and assigns\n the results to elements in a strided array `y` using alternative indexing\n semantics.\n","strided.ceil":"\nstrided.ceil( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Rounds each element in a strided array `x` toward positive infinity and\n assigns the results to elements in a strided array `y`.\n","strided.ceil.ndarray":"\nstrided.ceil.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, \n strideX:integer, offsetX:integer, dtypeY:any, y:ArrayLikeObject, \n strideY:integer, offsetY:integer )\n Rounds each element in a strided array `x` toward positive infinity and\n assigns the results to elements in a strided array `y` using alternative\n indexing semantics.\n","strided.deg2rad":"\nstrided.deg2rad( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Converts each element in a strided array `x` from degrees to radians and\n assigns the results to elements in a strided array `y`.\n","strided.deg2rad.ndarray":"\nstrided.deg2rad.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, \n strideX:integer, offsetX:integer, dtypeY:any, y:ArrayLikeObject, \n strideY:integer, offsetY:integer )\n Converts each element in a strided array `x` from degrees to radians and\n assigns the results to elements in a strided array `y` using alternative\n indexing semantics.\n","strided.dispatch":"\nstrided.dispatch( fcns:Function|ArrayLikeObject, \n types:ArrayLikeObject, data:ArrayLikeObject|null, nargs:integer, nin:integer, \n nout:integer )\n Returns a strided array function interface which performs multiple dispatch.\n","strided.floor":"\nstrided.floor( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Rounds each element in a strided array `x` toward negative infinity and\n assigns the results to elements in a strided array `y`.\n","strided.floor.ndarray":"\nstrided.floor.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, \n strideX:integer, offsetX:integer, dtypeY:any, y:ArrayLikeObject, \n strideY:integer, offsetY:integer )\n Rounds each element in a strided array `x` toward negative infinity and\n assigns the results to elements in a strided array `y` using alternative\n indexing semantics.\n","strided.inv":"\nstrided.inv( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Computes the multiplicative inverse for each element in a strided array `x`\n and assigns the results to elements in a strided array `y`.\n","strided.inv.ndarray":"\nstrided.inv.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n offsetX:integer, dtypeY:any, y:ArrayLikeObject, strideY:integer, \n offsetY:integer )\n Computes the multiplicative inverse for each element in a strided array `x`\n and assigns the results to elements in a strided array `y` using alternative\n indexing semantics.\n","strided.mul":"\nstrided.mul( N:integer, dx:any, x:ArrayLikeObject, sx:integer, dy:any, \n y:ArrayLikeObject, sy:integer, dz:any, z:ArrayLikeObject, sz:integer )\n Multiplies each element in a strided array `x` to a corresponding element in\n a strided array `y` and assigns the results to elements in a strided array\n `z`.\n","strided.mul.ndarray":"\nstrided.mul.ndarray( N:integer, dx:any, x:ArrayLikeObject, sx:integer, \n ox:integer, dy:any, y:ArrayLikeObject, sy:integer, oy:integer, dz:any, \n z:ArrayLikeObject, sz:integer, oz:integer )\n Multiplies each element in a strided array `x` to a corresponding element in\n a strided array `y` and assigns the results to elements in a strided array\n `z` using alternative indexing semantics.\n","strided.ramp":"\nstrided.ramp( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Evaluates the ramp function for each element in a strided array `x` and\n assigns the results to elements in a strided array `y`.\n","strided.ramp.ndarray":"\nstrided.ramp.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, \n strideX:integer, offsetX:integer, dtypeY:any, y:ArrayLikeObject, \n strideY:integer, offsetY:integer )\n Evaluates the ramp function for each element in a strided array `x` and\n assigns the results to elements in a strided array `y` using alternative\n indexing semantics.\n","strided.rsqrt":"\nstrided.rsqrt( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Computes the reciprocal square root for each element in a strided array `x`\n and assigns the results to elements in a strided array `y`.\n","strided.rsqrt.ndarray":"\nstrided.rsqrt.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, \n strideX:integer, offsetX:integer, dtypeY:any, y:ArrayLikeObject, \n strideY:integer, offsetY:integer )\n Computes the reciprocal square root for each element in a strided array `x`\n and assigns the results to elements in a strided array `y` using alternative\n indexing semantics.\n","strided.sqrt":"\nstrided.sqrt( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Computes the principal square root for each element in a strided array `x`\n and assigns the results to elements in a strided array `y`.\n","strided.sqrt.ndarray":"\nstrided.sqrt.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, \n strideX:integer, offsetX:integer, dtypeY:any, y:ArrayLikeObject, \n strideY:integer, offsetY:integer )\n Computes the principal square root for each element in a strided array `x`\n and assigns the results to elements in a strided array `y` using alternative\n indexing semantics.\n","strided.sub":"\nstrided.sub( N:integer, dx:any, x:ArrayLikeObject, sx:integer, dy:any, \n y:ArrayLikeObject, sy:integer, dz:any, z:ArrayLikeObject, sz:integer )\n Subtracts each element in a strided array `x` to a corresponding element in\n a strided array `y` and assigns the results to elements in a strided array\n `z`.\n","strided.sub.ndarray":"\nstrided.sub.ndarray( N:integer, dx:any, x:ArrayLikeObject, sx:integer, \n ox:integer, dy:any, y:ArrayLikeObject, sy:integer, oy:integer, dz:any, \n z:ArrayLikeObject, sz:integer, oz:integer )\n Subtracts each element in a strided array `x` to a corresponding element in\n a strided array `y` and assigns the results to elements in a strided array\n `z` using alternative indexing semantics.\n","strided.trunc":"\nstrided.trunc( N:integer, dtypeX:any, x:ArrayLikeObject, strideX:integer, \n dtypeY:any, y:ArrayLikeObject, strideY:integer )\n Rounds each element in a strided array `x` toward zero and assigns the\n results to elements in a strided array `y`.\n","strided.trunc.ndarray":"\nstrided.trunc.ndarray( N:integer, dtypeX:any, x:ArrayLikeObject, \n strideX:integer, offsetX:integer, dtypeY:any, y:ArrayLikeObject, \n strideY:integer, offsetY:integer )\n Rounds each element in a strided array `x` toward zero and assigns the\n results to elements in a strided array `y` using alternative indexing\n semantics.\n","stridedarray2iterator":"\nstridedarray2iterator( N:integer, src:ArrayLikeObject, stride:integer, \n offset:integer[, mapFcn:Function[, thisArg:any]] )\n Returns an iterator which iterates over elements of an array-like object\n according to specified stride parameters.\n","stridedArrayStream":"\nstridedArrayStream( N:integer, buffer:ArrayLikeObject, stride:integer, \n offset:integer[, options:Object] )\n Creates a readable stream from a strided array-like object.\n","stridedArrayStream.factory":"\nstridedArrayStream.factory( [options:Object] )\n Returns a function for creating readable streams from array-like objects.\n","stridedArrayStream.objectMode":"\nstridedArrayStream.objectMode( N:integer, buffer:ArrayLikeObject, \n stride:integer, offset:integer[, options:Object] )\n Returns an \"objectMode\" readable stream from a strided array-like object.\n","string2buffer":"\nstring2buffer( str:string[, encoding:string] )\n Allocates a buffer containing a provided string.\n","sub2ind":"\nsub2ind( shape:ArrayLike, ...subscript:integer[, options:Object] )\n Converts subscripts to a linear index.\n","substringAfter":"\nsubstringAfter( str:string, search:string[, fromIndex:integer] )\n Returns the part of a string after a specified substring.\n","substringAfterLast":"\nsubstringAfterLast( str:string, search:string[, fromIndex:integer] )\n Returns the part of a string after the last occurrence of a specified\n substring.\n","substringBefore":"\nsubstringBefore( str:string, search:string )\n Returns the part of a string before a specified substring.\n","substringBeforeLast":"\nsubstringBeforeLast( str:string, search:string )\n Returns the part of a string before the last occurrence of a specified\n substring.\n","SUTHAHARAN_MULTI_HOP_SENSOR_NETWORK":"\nSUTHAHARAN_MULTI_HOP_SENSOR_NETWORK()\n Returns a dataset consisting of labeled wireless sensor network data set\n collected from a multi-hop wireless sensor network deployment using TelosB\n motes.\n","SUTHAHARAN_SINGLE_HOP_SENSOR_NETWORK":"\nSUTHAHARAN_SINGLE_HOP_SENSOR_NETWORK()\n Returns a dataset consisting of labeled wireless sensor network data set\n collected from a simple single-hop wireless sensor network deployment using\n TelosB motes.\n","Symbol":"\nSymbol( [description:string] )\n Returns a symbol.\n","tabulate":"\ntabulate( collection:Array|TypedArray|Object )\n Generates a frequency table.\n","tabulateBy":"\ntabulateBy( collection:Array|TypedArray|Object, [options:Object,] \n indicator:Function )\n Generates a frequency table according to an indicator function.\n","tabulateByAsync":"\ntabulateByAsync( collection:Array|TypedArray|Object, [options:Object,] \n indicator:Function, done:Function )\n Generates a frequency table according to an indicator function.\n","tabulateByAsync.factory":"\ntabulateByAsync.factory( [options:Object,] indicator:Function )\n Returns a function which generates a frequency table according to an\n indicator function.\n","thunk":"\nthunk( fcn:Function[, ...args:any] )\n Returns a thunk.\n","tic":"\ntic()\n Returns a high-resolution time.\n","timeit":"\ntimeit( code:string, [options:Object,] clbk:Function )\n Times a snippet.\n","tmpdir":"\ntmpdir()\n Returns the directory for storing temporary files.\n","toc":"\ntoc( time:Array )\n Returns a high-resolution time difference, where `time` is a two-element\n array with format `[seconds, nanoseconds]`.\n","tokenize":"\ntokenize( str:string[, keepWhitespace:boolean] )\n Tokenizes a string.\n","transformStream":"\ntransformStream( [options:Object] )\n Returns a transform stream.\n","transformStream.factory":"\ntransformStream.factory( [options:Object] )\n Returns a function for creating transform streams.\n","transformStream.objectMode":"\ntransformStream.objectMode( [options:Object] )\n Returns an \"objectMode\" transform stream.\n","transformStream.ctor":"\ntransformStream.ctor( [options:Object] )\n Returns a custom transform stream constructor.\n","trim":"\ntrim( str:string )\n Trims whitespace from the beginning and end of a `string`.\n","truncate":"\ntruncate( str:string, len:integer[, ending:string] )\n Truncates a string to a specified length.\n","truncateMiddle":"\ntruncateMiddle( str:string, len:integer[, seq:string] )\n Truncates a string in the middle to a specified length.\n","trycatch":"\ntrycatch( x:Function, y:any )\n If a function does not throw, returns the function return value; otherwise,\n returns `y`.\n","trycatchAsync":"\ntrycatchAsync( x:Function, y:any, done:Function )\n If a function does not return an error, invokes a callback with the function\n result; otherwise, invokes a callback with a value `y`.\n","tryFunction":"\ntryFunction( fcn:Function[, thisArg:any] )\n Wraps a function in a try/catch block.\n","tryRequire":"\ntryRequire( id:string )\n Wraps `require` in a `try/catch` block.\n","trythen":"\ntrythen( x:Function, y:Function )\n If a function does not throw, returns the function return value; otherwise,\n returns the value returned by a second function `y`.\n","trythenAsync":"\ntrythenAsync( x:Function, y:Function, done:Function )\n If a function does not return an error, invokes a callback with the function\n result; otherwise, invokes a second function `y`.\n","ttest":"\nttest( x:Array[, y:Array][, options:Object] )\n Computes a one-sample or paired Student's t test.\n","ttest2":"\nttest2( x:Array, y:Array[, options:Object] )\n Computes a two-sample Student's t test.\n","TWO_PI":"\nTWO_PI\n The mathematical constant `π` times `2`.\n","typedarray":"\ntypedarray( [dtype:string] )\n Creates a typed array.\n\ntypedarray( length:integer[, dtype:string] )\n Returns a typed array having a specified length.\n\ntypedarray( typedarray:TypedArray[, dtype:string] )\n Creates a typed array from another typed array.\n\ntypedarray( obj:Object[, dtype:string] )\n Creates a typed array from an array-like object or iterable.\n\ntypedarray( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]][, \n dtype:string] )\n Returns a typed array view of an ArrayBuffer.\n","typedarray2json":"\ntypedarray2json( arr:TypedArray )\n Returns a JSON representation of a typed array.\n","typedarrayCtors":"\ntypedarrayCtors( dtype:string )\n Returns a typed array constructor.\n","typedarrayDataTypes":"\ntypedarrayDataTypes()\n Returns a list of typed array data types.\n","typedarraypool":"\ntypedarraypool( [dtype:string] )\n Returns an uninitialized typed array from a typed array memory pool.\n\ntypedarraypool( length:integer[, dtype:string] )\n Returns an uninitialized typed array having a specified length from a typed\n array memory pool.\n\ntypedarraypool( typedarray:TypedArray[, dtype:string] )\n Creates a pooled typed array from another typed array.\n\ntypedarraypool( obj:Object[, dtype:string] )\n Creates a pooled typed array from an array-like object.\n","typedarraypool.malloc":"\ntypedarraypool.malloc( [dtype:string] )\n Returns an uninitialized typed array from a typed array memory pool.\n\ntypedarraypool.malloc( length:integer[, dtype:string] )\n Returns a typed array having a specified length from a typed array memory\n pool.\n\ntypedarraypool.malloc( typedarray:TypedArray[, dtype:string] )\n Creates a pooled typed array from another typed array.\n\ntypedarraypool.malloc( obj:Object[, dtype:string] )\n Creates a pooled typed array from an array-like object.\n","typedarraypool.calloc":"\ntypedarraypool.calloc( [dtype:string] )\n Returns a zero-initialized typed array from a typed array memory pool.\n\ntypedarraypool.calloc( length:integer[, dtype:string] )\n Returns a zero-initialized typed array having a specified length from a\n typed array memory pool.\n","typedarraypool.free":"\ntypedarraypool.free( buf:TypedArray|ArrayBuffer )\n Frees a typed array or typed array buffer for use in a future allocation.\n","typedarraypool.clear":"\ntypedarraypool.clear()\n Clears the typed array pool allowing garbage collection of previously\n allocated (and currently free) array buffers.\n","typedarraypool.highWaterMark":"\ntypedarraypool.highWaterMark\n Read-only property returning the pool's high water mark.\n","typedarraypool.nbytes":"\ntypedarraypool.nbytes\n Read-only property returning the total number of allocated bytes.\n","typedarraypool.factory":"\ntypedarraypool.factory( [options:Object] )\n Creates a typed array pool.\n","typemax":"\ntypemax( dtype:string )\n Returns the maximum value of a specified numeric type.\n","typemin":"\ntypemin( dtype:string )\n Returns the minimum value of a specified numeric type.\n","typeOf":"\ntypeOf( value:any )\n Determines a value's type.\n","UINT8_MAX":"\nUINT8_MAX\n Maximum unsigned 8-bit integer.\n","UINT8_NUM_BYTES":"\nUINT8_NUM_BYTES\n Size (in bytes) of an 8-bit unsigned integer.\n","Uint8Array":"\nUint8Array()\n A typed array constructor which returns a typed array representing an array\n of 8-bit unsigned integers in the platform byte order.\n\nUint8Array( length:integer )\n Returns a typed array having a specified length.\n\nUint8Array( typedarray:TypedArray )\n Creates a typed array from another typed array.\n\nUint8Array( obj:Object )\n Creates a typed array from an array-like object or iterable.\n\nUint8Array( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Returns a typed array view of an ArrayBuffer.\n","Uint8Array.from":"\nUint8Array.from( src:ArrayLike|Iterable[, map:Function[, thisArg:Any]] )\n Creates a new typed array from an array-like object or an iterable.\n","Uint8Array.of":"\nUint8Array.of( element0:number[, element1:number[, ...elementN:number]] )\n Creates a new typed array from a variable number of arguments.\n","Uint8Array.BYTES_PER_ELEMENT":"\nUint8Array.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Uint8Array.name":"\nUint8Array.name\n Typed array constructor name.\n","Uint8Array.prototype.buffer":"\nUint8Array.prototype.buffer\n Read-only property which returns the ArrayBuffer referenced by the typed\n array.\n","Uint8Array.prototype.byteLength":"\nUint8Array.prototype.byteLength\n Read-only property which returns the length (in bytes) of the typed array.\n","Uint8Array.prototype.byteOffset":"\nUint8Array.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the typed array\n from the start of its ArrayBuffer.\n","Uint8Array.prototype.BYTES_PER_ELEMENT":"\nUint8Array.prototype.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Uint8Array.prototype.length":"\nUint8Array.prototype.length\n Read-only property which returns the number of view elements.\n","Uint8Array.prototype.copyWithin":"\nUint8Array.prototype.copyWithin( target:integer, start:integer[, end:integer] )\n Copies a sequence of elements within the array starting at `start` and\n ending at `end` (non-inclusive) to the position starting at `target`.\n","Uint8Array.prototype.entries":"\nUint8Array.prototype.entries()\n Returns an iterator for iterating over array key-value pairs.\n","Uint8Array.prototype.every":"\nUint8Array.prototype.every( predicate:Function[, thisArg:Any] )\n Tests whether all array elements pass a test implemented by a predicate\n function.\n","Uint8Array.prototype.fill":"\nUint8Array.prototype.fill( value:number[, start:integer[, end:integer]] )\n Fills an array from a start index to an end index (non-inclusive) with a\n provided value.\n","Uint8Array.prototype.filter":"\nUint8Array.prototype.filter( predicate:Function[, thisArg:Any] )\n Creates a new array which includes those elements for which a predicate\n function returns a truthy value.\n","Uint8Array.prototype.find":"\nUint8Array.prototype.find( predicate:Function[, thisArg:Any] )\n Returns the first array element for which a provided predicate function\n returns a truthy value.\n","Uint8Array.prototype.findIndex":"\nUint8Array.prototype.findIndex( predicate:Function[, thisArg:Any] )\n Returns the index of the first array element for which a provided predicate\n function returns a truthy value.\n","Uint8Array.prototype.forEach":"\nUint8Array.prototype.forEach( fcn:Function[, thisArg:Any] )\n Invokes a callback for each array element.\n","Uint8Array.prototype.includes":"\nUint8Array.prototype.includes( searchElement:number[, fromIndex:integer] )\n Returns a boolean indicating whether an array includes a search element.\n","Uint8Array.prototype.indexOf":"\nUint8Array.prototype.indexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the first array element strictly equal to a search\n element.\n","Uint8Array.prototype.join":"\nUint8Array.prototype.join( [separator:string] )\n Serializes an array by joining all array elements as a string.\n","Uint8Array.prototype.keys":"\nUint8Array.prototype.keys()\n Returns an iterator for iterating over array keys.\n","Uint8Array.prototype.lastIndexOf":"\nUint8Array.prototype.lastIndexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the last array element strictly equal to a search\n element.\n","Uint8Array.prototype.map":"\nUint8Array.prototype.map( fcn:Function[, thisArg:Any] )\n Maps each array element to an element in a new typed array.\n","Uint8Array.prototype.reduce":"\nUint8Array.prototype.reduce( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","Uint8Array.prototype.reduceRight":"\nUint8Array.prototype.reduceRight( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result, iterating from right to left.\n","Uint8Array.prototype.reverse":"\nUint8Array.prototype.reverse()\n Reverses an array *in-place*.\n","Uint8Array.prototype.set":"\nUint8Array.prototype.set( arr:ArrayLike[, offset:integer] )\n Sets array elements.\n","Uint8Array.prototype.slice":"\nUint8Array.prototype.slice( [begin:integer[, end:integer]] )\n Copies array elements to a new array with the same underlying data type as\n the host array.\n","Uint8Array.prototype.some":"\nUint8Array.prototype.some( predicate:Function[, thisArg:Any] )\n Tests whether at least one array element passes a test implemented by a\n predicate function.\n","Uint8Array.prototype.sort":"\nUint8Array.prototype.sort( [compareFunction:Function] )\n Sorts an array *in-place*.\n","Uint8Array.prototype.subarray":"\nUint8Array.prototype.subarray( [begin:integer[, end:integer]] )\n Creates a new typed array over the same underlying ArrayBuffer and with the\n same underlying data type as the host array.\n","Uint8Array.prototype.toLocaleString":"\nUint8Array.prototype.toLocaleString( [locales:string|Array[, options:Object]] )\n Serializes an array as a locale-specific string.\n","Uint8Array.prototype.toString":"\nUint8Array.prototype.toString()\n Serializes an array as a string.\n","Uint8Array.prototype.values":"\nUint8Array.prototype.values()\n Returns an iterator for iterating over array elements.\n","Uint8ClampedArray":"\nUint8ClampedArray()\n A typed array constructor which returns a typed array representing an array\n of 8-bit unsigned integers in the platform byte order clamped to 0-255.\n\nUint8ClampedArray( length:integer )\n Returns a typed array having a specified length.\n\nUint8ClampedArray( typedarray:TypedArray )\n Creates a typed array from another typed array.\n\nUint8ClampedArray( obj:Object )\n Creates a typed array from an array-like object or iterable.\n\nUint8ClampedArray( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Returns a typed array view of an ArrayBuffer.\n","Uint8ClampedArray.from":"\nUint8ClampedArray.from( src:ArrayLike|Iterable[, map:Function[, thisArg:Any]] )\n Creates a new typed array from an array-like object or an iterable.\n","Uint8ClampedArray.of":"\nUint8ClampedArray.of( element0:number[, element1:number[, ...elementN:number]] )\n Creates a new typed array from a variable number of arguments.\n","Uint8ClampedArray.BYTES_PER_ELEMENT":"\nUint8ClampedArray.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Uint8ClampedArray.name":"\nUint8ClampedArray.name\n Typed array constructor name.\n","Uint8ClampedArray.prototype.buffer":"\nUint8ClampedArray.prototype.buffer\n Read-only property which returns the ArrayBuffer referenced by the typed\n array.\n","Uint8ClampedArray.prototype.byteLength":"\nUint8ClampedArray.prototype.byteLength\n Read-only property which returns the length (in bytes) of the typed array.\n","Uint8ClampedArray.prototype.byteOffset":"\nUint8ClampedArray.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the typed array\n from the start of its ArrayBuffer.\n","Uint8ClampedArray.prototype.BYTES_PER_ELEMENT":"\nUint8ClampedArray.prototype.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Uint8ClampedArray.prototype.length":"\nUint8ClampedArray.prototype.length\n Read-only property which returns the number of view elements.\n","Uint8ClampedArray.prototype.copyWithin":"\nUint8ClampedArray.prototype.copyWithin( target:integer, start:integer[, \n end:integer] )\n Copies a sequence of elements within the array starting at `start` and\n ending at `end` (non-inclusive) to the position starting at `target`.\n","Uint8ClampedArray.prototype.entries":"\nUint8ClampedArray.prototype.entries()\n Returns an iterator for iterating over array key-value pairs.\n","Uint8ClampedArray.prototype.every":"\nUint8ClampedArray.prototype.every( predicate:Function[, thisArg:Any] )\n Tests whether all array elements pass a test implemented by a predicate\n function.\n","Uint8ClampedArray.prototype.fill":"\nUint8ClampedArray.prototype.fill( value:number[, start:integer[, end:integer]] )\n Fills an array from a start index to an end index (non-inclusive) with a\n provided value.\n","Uint8ClampedArray.prototype.filter":"\nUint8ClampedArray.prototype.filter( predicate:Function[, thisArg:Any] )\n Creates a new array which includes those elements for which a predicate\n function returns a truthy value.\n","Uint8ClampedArray.prototype.find":"\nUint8ClampedArray.prototype.find( predicate:Function[, thisArg:Any] )\n Returns the first array element for which a provided predicate function\n returns a truthy value.\n","Uint8ClampedArray.prototype.findIndex":"\nUint8ClampedArray.prototype.findIndex( predicate:Function[, thisArg:Any] )\n Returns the index of the first array element for which a provided predicate\n function returns a truthy value.\n","Uint8ClampedArray.prototype.forEach":"\nUint8ClampedArray.prototype.forEach( fcn:Function[, thisArg:Any] )\n Invokes a callback for each array element.\n","Uint8ClampedArray.prototype.includes":"\nUint8ClampedArray.prototype.includes( searchElement:number[, \n fromIndex:integer] )\n Returns a boolean indicating whether an array includes a search element.\n","Uint8ClampedArray.prototype.indexOf":"\nUint8ClampedArray.prototype.indexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the first array element strictly equal to a search\n element.\n","Uint8ClampedArray.prototype.join":"\nUint8ClampedArray.prototype.join( [separator:string] )\n Serializes an array by joining all array elements as a string.\n","Uint8ClampedArray.prototype.keys":"\nUint8ClampedArray.prototype.keys()\n Returns an iterator for iterating over array keys.\n","Uint8ClampedArray.prototype.lastIndexOf":"\nUint8ClampedArray.prototype.lastIndexOf( searchElement:number[, \n fromIndex:integer] )\n Returns the index of the last array element strictly equal to a search\n element.\n","Uint8ClampedArray.prototype.map":"\nUint8ClampedArray.prototype.map( fcn:Function[, thisArg:Any] )\n Maps each array element to an element in a new typed array.\n","Uint8ClampedArray.prototype.reduce":"\nUint8ClampedArray.prototype.reduce( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","Uint8ClampedArray.prototype.reduceRight":"\nUint8ClampedArray.prototype.reduceRight( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result, iterating from right to left.\n","Uint8ClampedArray.prototype.reverse":"\nUint8ClampedArray.prototype.reverse()\n Reverses an array *in-place*.\n","Uint8ClampedArray.prototype.set":"\nUint8ClampedArray.prototype.set( arr:ArrayLike[, offset:integer] )\n Sets array elements.\n","Uint8ClampedArray.prototype.slice":"\nUint8ClampedArray.prototype.slice( [begin:integer[, end:integer]] )\n Copies array elements to a new array with the same underlying data type as\n the host array.\n","Uint8ClampedArray.prototype.some":"\nUint8ClampedArray.prototype.some( predicate:Function[, thisArg:Any] )\n Tests whether at least one array element passes a test implemented by a\n predicate function.\n","Uint8ClampedArray.prototype.sort":"\nUint8ClampedArray.prototype.sort( [compareFunction:Function] )\n Sorts an array *in-place*.\n","Uint8ClampedArray.prototype.subarray":"\nUint8ClampedArray.prototype.subarray( [begin:integer[, end:integer]] )\n Creates a new typed array over the same underlying ArrayBuffer and with the\n same underlying data type as the host array.\n","Uint8ClampedArray.prototype.toLocaleString":"\nUint8ClampedArray.prototype.toLocaleString( [locales:string|Array[, \n options:Object]] )\n Serializes an array as a locale-specific string.\n","Uint8ClampedArray.prototype.toString":"\nUint8ClampedArray.prototype.toString()\n Serializes an array as a string.\n","Uint8ClampedArray.prototype.values":"\nUint8ClampedArray.prototype.values()\n Returns an iterator for iterating over array elements.\n","UINT16_MAX":"\nUINT16_MAX\n Maximum unsigned 16-bit integer.\n","UINT16_NUM_BYTES":"\nUINT16_NUM_BYTES\n Size (in bytes) of a 16-bit unsigned integer.\n","Uint16Array":"\nUint16Array()\n A typed array constructor which returns a typed array representing an array\n of 16-bit unsigned integers in the platform byte order.\n\nUint16Array( length:integer )\n Returns a typed array having a specified length.\n\nUint16Array( typedarray:TypedArray )\n Creates a typed array from another typed array.\n\nUint16Array( obj:Object )\n Creates a typed array from an array-like object or iterable.\n\nUint16Array( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Returns a typed array view of an ArrayBuffer.\n","Uint16Array.from":"\nUint16Array.from( src:ArrayLike|Iterable[, map:Function[, thisArg:Any]] )\n Creates a new typed array from an array-like object or an iterable.\n","Uint16Array.of":"\nUint16Array.of( element0:number[, element1:number[, ...elementN:number]] )\n Creates a new typed array from a variable number of arguments.\n","Uint16Array.BYTES_PER_ELEMENT":"\nUint16Array.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Uint16Array.name":"\nUint16Array.name\n Typed array constructor name.\n","Uint16Array.prototype.buffer":"\nUint16Array.prototype.buffer\n Read-only property which returns the ArrayBuffer referenced by the typed\n array.\n","Uint16Array.prototype.byteLength":"\nUint16Array.prototype.byteLength\n Read-only property which returns the length (in bytes) of the typed array.\n","Uint16Array.prototype.byteOffset":"\nUint16Array.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the typed array\n from the start of its ArrayBuffer.\n","Uint16Array.prototype.BYTES_PER_ELEMENT":"\nUint16Array.prototype.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Uint16Array.prototype.length":"\nUint16Array.prototype.length\n Read-only property which returns the number of view elements.\n","Uint16Array.prototype.copyWithin":"\nUint16Array.prototype.copyWithin( target:integer, start:integer[, end:integer] )\n Copies a sequence of elements within the array starting at `start` and\n ending at `end` (non-inclusive) to the position starting at `target`.\n","Uint16Array.prototype.entries":"\nUint16Array.prototype.entries()\n Returns an iterator for iterating over array key-value pairs.\n","Uint16Array.prototype.every":"\nUint16Array.prototype.every( predicate:Function[, thisArg:Any] )\n Tests whether all array elements pass a test implemented by a predicate\n function.\n","Uint16Array.prototype.fill":"\nUint16Array.prototype.fill( value:number[, start:integer[, end:integer]] )\n Fills an array from a start index to an end index (non-inclusive) with a\n provided value.\n","Uint16Array.prototype.filter":"\nUint16Array.prototype.filter( predicate:Function[, thisArg:Any] )\n Creates a new array which includes those elements for which a predicate\n function returns a truthy value.\n","Uint16Array.prototype.find":"\nUint16Array.prototype.find( predicate:Function[, thisArg:Any] )\n Returns the first array element for which a provided predicate function\n returns a truthy value.\n","Uint16Array.prototype.findIndex":"\nUint16Array.prototype.findIndex( predicate:Function[, thisArg:Any] )\n Returns the index of the first array element for which a provided predicate\n function returns a truthy value.\n","Uint16Array.prototype.forEach":"\nUint16Array.prototype.forEach( fcn:Function[, thisArg:Any] )\n Invokes a callback for each array element.\n","Uint16Array.prototype.includes":"\nUint16Array.prototype.includes( searchElement:number[, fromIndex:integer] )\n Returns a boolean indicating whether an array includes a search element.\n","Uint16Array.prototype.indexOf":"\nUint16Array.prototype.indexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the first array element strictly equal to a search\n element.\n","Uint16Array.prototype.join":"\nUint16Array.prototype.join( [separator:string] )\n Serializes an array by joining all array elements as a string.\n","Uint16Array.prototype.keys":"\nUint16Array.prototype.keys()\n Returns an iterator for iterating over array keys.\n","Uint16Array.prototype.lastIndexOf":"\nUint16Array.prototype.lastIndexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the last array element strictly equal to a search\n element.\n","Uint16Array.prototype.map":"\nUint16Array.prototype.map( fcn:Function[, thisArg:Any] )\n Maps each array element to an element in a new typed array.\n","Uint16Array.prototype.reduce":"\nUint16Array.prototype.reduce( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","Uint16Array.prototype.reduceRight":"\nUint16Array.prototype.reduceRight( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result, iterating from right to left.\n","Uint16Array.prototype.reverse":"\nUint16Array.prototype.reverse()\n Reverses an array *in-place*.\n","Uint16Array.prototype.set":"\nUint16Array.prototype.set( arr:ArrayLike[, offset:integer] )\n Sets array elements.\n","Uint16Array.prototype.slice":"\nUint16Array.prototype.slice( [begin:integer[, end:integer]] )\n Copies array elements to a new array with the same underlying data type as\n the host array.\n","Uint16Array.prototype.some":"\nUint16Array.prototype.some( predicate:Function[, thisArg:Any] )\n Tests whether at least one array element passes a test implemented by a\n predicate function.\n","Uint16Array.prototype.sort":"\nUint16Array.prototype.sort( [compareFunction:Function] )\n Sorts an array *in-place*.\n","Uint16Array.prototype.subarray":"\nUint16Array.prototype.subarray( [begin:integer[, end:integer]] )\n Creates a new typed array over the same underlying ArrayBuffer and with the\n same underlying data type as the host array.\n","Uint16Array.prototype.toLocaleString":"\nUint16Array.prototype.toLocaleString( [locales:string|Array[, options:Object]] )\n Serializes an array as a locale-specific string.\n","Uint16Array.prototype.toString":"\nUint16Array.prototype.toString()\n Serializes an array as a string.\n","Uint16Array.prototype.values":"\nUint16Array.prototype.values()\n Returns an iterator for iterating over array elements.\n","UINT32_MAX":"\nUINT32_MAX\n Maximum unsigned 32-bit integer.\n","UINT32_NUM_BYTES":"\nUINT32_NUM_BYTES\n Size (in bytes) of a 32-bit unsigned integer.\n","Uint32Array":"\nUint32Array()\n A typed array constructor which returns a typed array representing an array\n of 32-bit unsigned integers in the platform byte order.\n\nUint32Array( length:integer )\n Returns a typed array having a specified length.\n\nUint32Array( typedarray:TypedArray )\n Creates a typed array from another typed array.\n\nUint32Array( obj:Object )\n Creates a typed array from an array-like object or iterable.\n\nUint32Array( buffer:ArrayBuffer[, byteOffset:integer[, length:integer]] )\n Returns a typed array view of an ArrayBuffer.\n","Uint32Array.from":"\nUint32Array.from( src:ArrayLike|Iterable[, map:Function[, thisArg:Any]] )\n Creates a new typed array from an array-like object or an iterable.\n","Uint32Array.of":"\nUint32Array.of( element0:number[, element1:number[, ...elementN:number]] )\n Creates a new typed array from a variable number of arguments.\n","Uint32Array.BYTES_PER_ELEMENT":"\nUint32Array.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Uint32Array.name":"\nUint32Array.name\n Typed array constructor name.\n","Uint32Array.prototype.buffer":"\nUint32Array.prototype.buffer\n Read-only property which returns the ArrayBuffer referenced by the typed\n array.\n","Uint32Array.prototype.byteLength":"\nUint32Array.prototype.byteLength\n Read-only property which returns the length (in bytes) of the typed array.\n","Uint32Array.prototype.byteOffset":"\nUint32Array.prototype.byteOffset\n Read-only property which returns the offset (in bytes) of the typed array\n from the start of its ArrayBuffer.\n","Uint32Array.prototype.BYTES_PER_ELEMENT":"\nUint32Array.prototype.BYTES_PER_ELEMENT\n Number of bytes per view element.\n","Uint32Array.prototype.length":"\nUint32Array.prototype.length\n Read-only property which returns the number of view elements.\n","Uint32Array.prototype.copyWithin":"\nUint32Array.prototype.copyWithin( target:integer, start:integer[, end:integer] )\n Copies a sequence of elements within the array starting at `start` and\n ending at `end` (non-inclusive) to the position starting at `target`.\n","Uint32Array.prototype.entries":"\nUint32Array.prototype.entries()\n Returns an iterator for iterating over array key-value pairs.\n","Uint32Array.prototype.every":"\nUint32Array.prototype.every( predicate:Function[, thisArg:Any] )\n Tests whether all array elements pass a test implemented by a predicate\n function.\n","Uint32Array.prototype.fill":"\nUint32Array.prototype.fill( value:number[, start:integer[, end:integer]] )\n Fills an array from a start index to an end index (non-inclusive) with a\n provided value.\n","Uint32Array.prototype.filter":"\nUint32Array.prototype.filter( predicate:Function[, thisArg:Any] )\n Creates a new array which includes those elements for which a predicate\n function returns a truthy value.\n","Uint32Array.prototype.find":"\nUint32Array.prototype.find( predicate:Function[, thisArg:Any] )\n Returns the first array element for which a provided predicate function\n returns a truthy value.\n","Uint32Array.prototype.findIndex":"\nUint32Array.prototype.findIndex( predicate:Function[, thisArg:Any] )\n Returns the index of the first array element for which a provided predicate\n function returns a truthy value.\n","Uint32Array.prototype.forEach":"\nUint32Array.prototype.forEach( fcn:Function[, thisArg:Any] )\n Invokes a callback for each array element.\n","Uint32Array.prototype.includes":"\nUint32Array.prototype.includes( searchElement:number[, fromIndex:integer] )\n Returns a boolean indicating whether an array includes a search element.\n","Uint32Array.prototype.indexOf":"\nUint32Array.prototype.indexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the first array element strictly equal to a search\n element.\n","Uint32Array.prototype.join":"\nUint32Array.prototype.join( [separator:string] )\n Serializes an array by joining all array elements as a string.\n","Uint32Array.prototype.keys":"\nUint32Array.prototype.keys()\n Returns an iterator for iterating over array keys.\n","Uint32Array.prototype.lastIndexOf":"\nUint32Array.prototype.lastIndexOf( searchElement:number[, fromIndex:integer] )\n Returns the index of the last array element strictly equal to a search\n element.\n","Uint32Array.prototype.map":"\nUint32Array.prototype.map( fcn:Function[, thisArg:Any] )\n Maps each array element to an element in a new typed array.\n","Uint32Array.prototype.reduce":"\nUint32Array.prototype.reduce( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result.\n","Uint32Array.prototype.reduceRight":"\nUint32Array.prototype.reduceRight( fcn:Function[, initialValue:Any] )\n Applies a function against an accumulator and each element in an array and\n returns the accumulated result, iterating from right to left.\n","Uint32Array.prototype.reverse":"\nUint32Array.prototype.reverse()\n Reverses an array *in-place*.\n","Uint32Array.prototype.set":"\nUint32Array.prototype.set( arr:ArrayLike[, offset:integer] )\n Sets array elements.\n","Uint32Array.prototype.slice":"\nUint32Array.prototype.slice( [begin:integer[, end:integer]] )\n Copies array elements to a new array with the same underlying data type as\n the host array.\n","Uint32Array.prototype.some":"\nUint32Array.prototype.some( predicate:Function[, thisArg:Any] )\n Tests whether at least one array element passes a test implemented by a\n predicate function.\n","Uint32Array.prototype.sort":"\nUint32Array.prototype.sort( [compareFunction:Function] )\n Sorts an array *in-place*.\n","Uint32Array.prototype.subarray":"\nUint32Array.prototype.subarray( [begin:integer[, end:integer]] )\n Creates a new typed array over the same underlying ArrayBuffer and with the\n same underlying data type as the host array.\n","Uint32Array.prototype.toLocaleString":"\nUint32Array.prototype.toLocaleString( [locales:string|Array[, options:Object]] )\n Serializes an array as a locale-specific string.\n","Uint32Array.prototype.toString":"\nUint32Array.prototype.toString()\n Serializes an array as a string.\n","Uint32Array.prototype.values":"\nUint32Array.prototype.values()\n Returns an iterator for iterating over array elements.\n","umask":"\numask( [mask:integer|string,] [options:Object] )\n Returns the current process mask, if not provided a mask; otherwise, sets\n the process mask and returns the previous mask.\n","uncapitalize":"\nuncapitalize( str:string )\n Lowercases the first character of a string.\n","uncapitalizeKeys":"\nuncapitalizeKeys( obj:Object )\n Converts the first letter of each object key to lowercase.\n","uncurry":"\nuncurry( fcn:Function[, arity:integer, ][thisArg:any] )\n Transforms a curried function into a function invoked with multiple\n arguments.\n","uncurryRight":"\nuncurryRight( fcn:Function[, arity:integer, ][thisArg:any] )\n Transforms a curried function into a function invoked with multiple\n arguments.\n","UNICODE_MAX":"\nUNICODE_MAX\n Maximum Unicode code point.\n","UNICODE_MAX_BMP":"\nUNICODE_MAX_BMP\n Maximum Unicode code point in the Basic Multilingual Plane (BMP).\n","UnicodeColumnChartSparkline":"\nUnicodeColumnChartSparkline( [data:ArrayLike|ndarray,] [options:Object] )\n Returns a sparkline column chart instance.\n","UnicodeLineChartSparkline":"\nUnicodeLineChartSparkline( [data:ArrayLike|ndarray,] [options:Object] )\n Returns a sparkline line chart instance.\n","UnicodeSparkline":"\nUnicodeSparkline( [data:ArrayLike|ndarray,] [options:Object] )\n Returns a Unicode sparkline instance.\n","UnicodeTristateChartSparkline":"\nUnicodeTristateChartSparkline( [data:ArrayLike|ndarray,] [options:Object] )\n Returns a sparkline tristate chart instance.\n","UnicodeUpDownChartSparkline":"\nUnicodeUpDownChartSparkline( [data:ArrayLike|ndarray,] [options:Object] )\n Returns a sparkline up/down chart instance.\n","UnicodeWinLossChartSparkline":"\nUnicodeWinLossChartSparkline( [data:ArrayLike|ndarray,] [options:Object] )\n Returns a sparkline win/loss chart instance.\n","unlink":"\nunlink( path:string|Buffer|integer, clbk:Function )\n Asynchronously removes a directory entry.\n","unlink.sync":"\nunlink.sync( path:string|Buffer|integer )\n Synchronously removes a directory entry.\n","unshift":"\nunshift( collection:Array|TypedArray|Object, ...items:any )\n Adds one or more elements to the beginning of a collection.\n","until":"\nuntil( predicate:Function, fcn:Function[, thisArg:any] )\n Invokes a function until a test condition is true.\n","untilAsync":"\nuntilAsync( predicate:Function, fcn:Function, done:Function[, thisArg:any] )\n Invokes a function until a test condition is true.\n","untilEach":"\nuntilEach( collection:Array|TypedArray|Object, predicate:Function, \n fcn:Function[, thisArg:any] )\n Until a test condition is true, invokes a function for each element in a\n collection.\n","untilEachRight":"\nuntilEachRight( collection:Array|TypedArray|Object, predicate:Function, \n fcn:Function[, thisArg:any] )\n Until a test condition is true, invokes a function for each element in a\n collection, iterating from right to left.\n","unzip":"\nunzip( arr:Array[, idx:Array] )\n Unzips a zipped array (i.e., a nested array of tuples).\n","uppercase":"\nuppercase( str:string )\n Converts a string to uppercase.\n","uppercaseKeys":"\nuppercaseKeys( obj:Object )\n Converts each object key to uppercase.\n","US_STATES_ABBR":"\nUS_STATES_ABBR()\n Returns a list of US state two-letter abbreviations in alphabetical order\n according to state name.\n","US_STATES_CAPITALS":"\nUS_STATES_CAPITALS()\n Returns a list of US state capitals in alphabetical order according to state\n name.\n","US_STATES_CAPITALS_NAMES":"\nUS_STATES_CAPITALS_NAMES()\n Returns an object mapping US state capitals to state names.\n","US_STATES_NAMES":"\nUS_STATES_NAMES()\n Returns a list of US state names in alphabetical order.\n","US_STATES_NAMES_CAPITALS":"\nUS_STATES_NAMES_CAPITALS()\n Returns an object mapping US state names to state capitals.\n","utf16ToUTF8Array":"\nutf16ToUTF8Array( str:string )\n Converts a UTF-16 encoded string to an array of integers using UTF-8\n encoding.\n","vartest":"\nvartest( x:Array, y:Array[, options:Object] )\n Computes a two-sample F-test for equal variances.\n","waterfall":"\nwaterfall( fcns:Array, clbk:Function[, thisArg:any] )\n Executes functions in series, passing the results of one function as\n arguments to the next function.\n","waterfall.factory":"\nwaterfall.factory( fcns:Array, clbk:Function[, thisArg:any] )\n Returns a reusable waterfall function.\n","whileAsync":"\nwhileAsync( predicate:Function, fcn:Function, done:Function[, thisArg:any] )\n Invokes a function while a test condition is true.\n","whileEach":"\nwhileEach( collection:Array|TypedArray|Object, predicate:Function, \n fcn:Function[, thisArg:any] )\n While a test condition is true, invokes a function for each element in a\n collection.\n","whileEachRight":"\nwhileEachRight( collection:Array|TypedArray|Object, predicate:Function, \n fcn:Function[, thisArg:any] )\n While a test condition is true, invokes a function for each element in a\n collection, iterating from right to left.\n","whilst":"\nwhilst( predicate:Function, fcn:Function[, thisArg:any] )\n Invokes a function while a test condition is true.\n","wilcoxon":"\nwilcoxon( x:Array|TypedArray[, y:Array|TypedArray][, options:Object] )\n Computes a one-sample or paired Wilcoxon signed rank test.\n","writableProperties":"\nwritableProperties( value:any )\n Returns an array of an object's own writable property names and symbols.\n","writablePropertiesIn":"\nwritablePropertiesIn( value:any )\n Returns an array of an object's own and inherited writable property names\n and symbols.\n","writablePropertyNames":"\nwritablePropertyNames( value:any )\n Returns an array of an object's own writable property names.\n","writablePropertyNamesIn":"\nwritablePropertyNamesIn( value:any )\n Returns an array of an object's own and inherited writable property names.\n","writablePropertySymbols":"\nwritablePropertySymbols( value:any )\n Returns an array of an object's own writable symbol properties.\n","writablePropertySymbolsIn":"\nwritablePropertySymbolsIn( value:any )\n Returns an array of an object's own and inherited writable symbol\n properties.\n","writeFile":"\nwriteFile( file:string|Buffer|integer, data:string|Buffer[, \n options:Object|string], clbk:Function )\n Asynchronously writes data to a file.\n","writeFile.sync":"\nwriteFile.sync( file:string|Buffer|integer, data:string|Buffer[, \n options:Object|string] )\n Synchronously writes data to a file.\n","zip":"\nzip( ...arr:Array[, options:Object] )\n Generates array tuples from input arrays.\n","ztest":"\nztest( x:Array, sigma:number[, options:Object] )\n Computes a one-sample z-test.\n","ztest2":"\nztest2( x:Array, y:Array, sigmax:number, sigmay:number[, \n options:Object] )\n Computes a two-sample z-test.\n"} \ No newline at end of file