forked from aliyun/aicb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmegatron_workload_with_aiob.sh
executable file
·212 lines (200 loc) · 5.95 KB
/
megatron_workload_with_aiob.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/bin/sh
frame=Megatron
world_size=32
tensor_model_parallel_size=8
pipeline_model_parallel=1
global_batch=1024
micro_batch=1
num_layers=40
seq_length=4096
hidden_size=5120
epoch_num=1
num_attention_heads=40
aiob_enable=
use_flash_attn=
swiglu=
sp_enable=
ffn_hidden_size=
comp_filepath=
model_size=13
max_position_embeddings=4096
vocab_size=50257
num_experts=1
moe_enable=
recompute_activations=
gpu_type=None
usage() {
echo "Usage: \$0 [options]
options:
--frame communication framework, defaults to $frame
--world_size world size, defaults to $world_size
--tensor_model_parallel_size tensor parallelism size, defaults to $tensor_model_parallel_size
--pipeline_model_parallel pipeline parallelism size, defaults to $pipeline_model_parallel
--global_batch global batch size, defaults to $global_batch
--micro_batch micro batch size, defaults to $micro_batch
--num_layers number of layers, defaults to $num_layers
--seq_length sequence length, defaults to $seq_length
--hidden_size hidden size, defaults to $hidden_size
--epoch_num number of epochs, defaults to $epoch_num
--use_distributed_optimizer use distributed optimizer
--num_attention_heads number of attention heads, defaults to $num_attention_heads
--aiob_enable enable AIOB
--use_flash_attn use flash attention
--swiglu use swiglu
--ffn_hidden_size FFN hidden size
--comp_filepath computation file path
--max_position_embeddings max position embeddings, defaults to $max_position_embeddings
-m, --model_size model size, defaults to $model_size (possible values: 175, 22, 13, 7, moe)
--moe_enable enable moe
--moe_router_topk Number of experts to route to for each token.
--expert_model_parallel_size Degree of expert model parallelism
--num_experts Number of experts in the MoE model.
--moe_grouped_gemm apply grouped gemm
-h, --help display this help and exit" 1>&2; exit 1;
}
while [ $# -gt 0 ]
do
case $1 in
--gpu_type)
gpu_type=$2; shift;;
--frame)
frame=$2; shift;;
--world_size)
world_size=$2; shift;;
--tensor_model_parallel_size|--tp)
tensor_model_parallel_size=$2; shift;;
--pipeline_model_parallel|--pp)
pipeline_model_parallel=$2; shift;;
--global_batch)
global_batch=$2; shift;;
--micro_batch)
micro_batch=$2; shift;;
--num_layers)
num_layers=$2; shift;;
--seq_length)
seq_length=$2; shift;;
--hidden_size)
hidden_size=$2; shift;;
--epoch_num)
epoch_num=$2; shift;;
--num_attention_heads)
num_attention_heads=$2; shift;;
--aiob_enable|--aiob)
aiob_enable=--aiob_enable;;
--use_flash_attn|--flash_attn)
use_flash_attn=--use_flash_attn;;
--swiglu)
swiglu=--swiglu;;
--ffn_hidden_size)
ffn_hidden_size=$2; shift;;
--sp|--sp-enable)
sp_enable=--enable_sequence_parallel;;
--comp_filepath)
comp_filepath=$2; shift;;
-m|--model_size)
model_size=$2; shift;;
--max_position_embeddings)
max_position_embeddings=$2; shift;;
--moe_enable)
moe_enable=--moe_enable;;
--moe_router_topk|--topk)
moe_router_topk=$2; shift;;
--num_experts|--experts)
num_experts=$2; shift;;
--expert_model_parallel_size|--ep)
expert_model_parallel_size=$2; shift;;
--grouped_gemm|--moe_grouped_gemm)
grouped_gemm=--moe_grouped_gemm;;
--recompute_activations|--recompute)
recompute_activations=--recompute_activations;;
-h|--help)
usage;;
(*)
break;;
esac
shift
done
case $model_size in
175)
model_name=gpt_175B
num_layers=96
hidden_size=12288
num_attention_heads=96
tensor_model_parallel_size=8
;;
22)
model_name=gpt_22B
num_layers=48
hidden_size=6144
num_attention_heads=64
tensor_model_parallel_size=8
;;
13)
model_name=gpt_13B
num_layers=40
hidden_size=5120
num_attention_heads=40
;;
7)
model_name=gpt_7B
num_layers=36
hidden_size=4096
num_attention_heads=32
tensor_model_parallel_size=4
;;
405)
model_name=llama_405B
num_layers=128
hidden_size=16384
ffn_hidden_size=53248
num_attention_heads=128
;;
moe)
model_name=Mixtral_8*7B
num_layers=32
hidden_size=4096
num_attention_heads=32
ffn_hidden_size=14336
tensor_model_parallel_size=4
moe_enable=--moe_enable
grouped_gemm=--moe_grouped_gemm
;;
(*)
echo "Only support model size 175, 22,13 or 7; using default size 13"
model_name=gpt_13B
num_layers=40
hidden_size=5120
num_attention_heads=40
;;
esac
cmd="python -m workload_generator.AIOB_simAI_workload_generator \
--gpu_type=$gpu_type \
--frame=$frame \
--world_size=$world_size \
--tensor_model_parallel_size=$tensor_model_parallel_size \
--pipeline_model_parallel=$pipeline_model_parallel \
--global_batch=$global_batch \
--micro_batch=$micro_batch \
--num_layers=$num_layers \
--seq_length=$seq_length \
--hidden_size=$hidden_size \
--epoch_num=$epoch_num \
--num_attention_heads=$num_attention_heads \
--model_name=$model_name \
--max_position_embeddings=$max_position_embeddings \
--vocab_size=$vocab_size \
--use-distributed-optimizer
${aiob_enable} \
${use_flash_attn} \
${swiglu} \
${sp_enable} \
${recompute_activations} \
${ffn_hidden_size:+--ffn_hidden_size=$ffn_hidden_size} \
${comp_filepath:+--comp_filepath=$comp_filepath} \
${moe_enable} \
${moe_router_topk:+--moe_router_topk=$moe_router_topk} \
${num_experts:+--num_experts=$num_experts} \
${expert_model_parallel_size:+--expert_model_parallel_size=$expert_model_parallel_size} \
${grouped_gemm} " \
echo $cmd
$cmd