-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
216 lines (180 loc) · 8.06 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import torch
import torch.nn as nn
class SelfAttention(nn.Module):
def __init__(self, embed_size, heads):
super(SelfAttention, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.head_dim = embed_size // heads
assert (self.head_dim * heads == embed_size), "Embed Size needs to be Divisible by Heads"
self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.fc_out = nn.Linear(heads * self.head_dim, embed_size)
def forward(self, values, keys, query, mask):
N = query.shape[0]
value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]
"""Split Embedding into self.head pieces"""
values = values.reshape(N, value_len, self.heads, self.head_dim)
keys = keys.reshape(N, key_len, self.heads, self.head_dim)
queries = query.reshape(N, query_len, self.heads, self.head_dim)
values = self.values(values)
keys = self.keys(keys)
queries = self.queries(queries)
energy = torch.einsum("nqhd, nkhd->nhqk", [queries, keys])
# queries shape: (N, query_len, heads, heads_dim)
# keys shape: (N, key_len, heads, heads_dim)
# energy shape: (N, heads, query_len, key_len)
if mask is not None:
energy = energy.masked_fill(mask == 0, float("-1e20"))
attention = torch.softmax(energy / (self.embed_size ** (1 / 2)), dim=3)
out = torch.einsum("nhql, nlhd->nqhd", [attention, values]).reshape(
N, query_len, self.heads * self.head_dim
)
# attention shape: (N, heads, query_len, key_len)
# values shape: (N, value_len, heads, heads_dim)
# (N, query_len, heads, head_dim)
out = self.fc_out(out)
return out
class TransformerBlock(nn.Module):
def __init__(self, embed_size, heads, dropout, forward_expansion):
super(TransformerBlock, self).__init__()
self.attention = SelfAttention(embed_size=embed_size, heads=heads)
self.norm1 = nn.LayerNorm(embed_size)
self.norm2 = nn.LayerNorm(embed_size)
self.feed_forward = nn.Sequential(
nn.Linear(embed_size, forward_expansion * embed_size),
nn.ReLU(),
nn.Linear(forward_expansion * embed_size, embed_size)
)
self.dropout = nn.Dropout(dropout)
def forward(self, value, key, query, mask):
attention = self.attention(value, key, query, mask)
x = self.dropout(self.norm1(attention + query))
forward = self.feed_forward(x)
out = self.dropout(self.norm2(forward + x))
return out
class Encoder(nn.Module):
def __init__(self, src_vocab_size, embed_size, num_layers, heads, device, forward_expansion,
dropout, max_length):
super(Encoder, self).__init__()
self.embed_size = embed_size
self.device = device
self.word_embedding = nn.Embedding(src_vocab_size, embed_size)
self.position_embedding = nn.Embedding(max_length, embed_size)
self.layers = nn.ModuleList(
[
TransformerBlock(
embed_size=embed_size,
heads=heads,
dropout=dropout,
forward_expansion=forward_expansion
)
]
)
self.dropout = nn.Dropout(dropout)
def forward(self, x, mask):
N, seq_length = x.shape
positions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)
out = self.dropout(self.word_embedding(x) + self.position_embedding(positions))
for layer in self.layers:
# Query, Key and Value same in Encoder
out = layer(out, out, out, mask)
return out
class DecoderBlock(nn.Module):
def __init__(self, embed_size, heads, forward_expansion, dropout, device):
super(DecoderBlock, self).__init__()
self.attention = SelfAttention(embed_size=embed_size, heads=heads)
self.norm = nn.LayerNorm(embed_size)
self.transformer_block = TransformerBlock(embed_size=embed_size, heads=heads, dropout=dropout,
forward_expansion=forward_expansion)
self.dropout = nn.Dropout(dropout)
def forward(self, x, value, key, src_mask, trg_mask):
attention = self.attention(x, x, x, trg_mask)
query = self.dropout(self.norm(attention + x))
out = self.transformer_block(value, key, query, src_mask)
return out
class Decoder(nn.Module):
def __init__(self, trg_vocab_size, embed_size, num_layers, heads, forward_expansion,
dropout, device, max_length):
super(Decoder, self).__init__()
self.device = device
self.word_embedding = nn.Embedding(trg_vocab_size, embed_size)
self.position_embedding = nn.Embedding(max_length, embed_size)
self.layers = nn.ModuleList(
[DecoderBlock(embed_size=embed_size, heads=heads, forward_expansion=forward_expansion, dropout=dropout,
device=device)
for _ in range(num_layers)]
)
self.fc_out = nn.Linear(embed_size, trg_vocab_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, enc_out, src_mask, trg_mask):
N, seq_length = x.shape
positions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)
x = self.dropout(self.word_embedding(x) + self.position_embedding(positions))
for layer in self.layers:
x = layer(x, enc_out, enc_out, src_mask, trg_mask)
out = self.fc_out(x)
return out
class Transformer(nn.Module):
def __init__(self, src_vocab_size, trg_vocab_size, src_pad_idx, trg_pad_idx, embed_size=256,
num_layers=6, forward_expansion=4, heads=8, dropout=0, device="cuda", max_length=100):
super(Transformer, self).__init__()
self.encoder = Encoder(
src_vocab_size,
embed_size,
num_layers,
heads,
device,
forward_expansion,
dropout,
max_length
)
self.decoder = Decoder(
trg_vocab_size,
embed_size,
num_layers,
heads,
forward_expansion,
dropout,
device,
max_length
)
self.src_pad_idx = src_pad_idx
self.trg_pad_idx = trg_pad_idx
self.device = device
def make_src_mask(self, src):
src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
# (N,1,1,src_len)
return src_mask.to(self.device)
def make_trg_mask(self, trg):
N, trg_len = trg.shape
trg_mask = torch.tril(torch.ones((trg_len, trg_len))).expand(
N, 1, trg_len, trg_len
)
return trg_mask.to(self.device)
def forward(self, src, trg):
print(src.size(),'2221111111111111')
src_mask = self.make_src_mask(src)
trg_mask = self.make_trg_mask(trg)
enc_src = self.encoder(src, src_mask)
print(enc_src.size(),'333333333333')
out = self.decoder(trg, enc_src, src_mask, trg_mask)
print(out.size(),'2222222222222')
return out
if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
x = torch.tensor([[1, 5, 6, 4, 3, 9, 5, 2, 0], [1, 8, 7, 3, 4, 5, 6, 7, 2]]).to(
device
)
trg = torch.tensor([[1, 7, 4, 3, 5, 9, 2, 0], [1, 5, 6, 2, 4, 7, 6, 2]]).to(device)
src_pad_idx = 0
trg_pad_idx = 0
src_vocab_size = 10
trg_vocab_size = 10
model = Transformer(src_vocab_size, trg_vocab_size, src_pad_idx, trg_pad_idx, device=device).to(
device
)
out = model(x, trg[:, :-1])
print(out.shape)