-
Notifications
You must be signed in to change notification settings - Fork 18
/
speaker.py
767 lines (659 loc) · 35.2 KB
/
speaker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
import numbers
import numpy as np
import theano.tensor as T
import warnings
from theano.tensor.nnet import crossentropy_categorical_1hot
from lasagne.layers import InputLayer, DropoutLayer, EmbeddingLayer, NonlinearityLayer, NINLayer
from lasagne.layers import ConcatLayer, ReshapeLayer, DenseLayer, get_output, dimshuffle
from lasagne.layers.recurrent import Gate
from lasagne.init import Constant
from lasagne.nonlinearities import softmax
from lasagne.objectives import categorical_crossentropy
from lasagne.updates import rmsprop
from stanza.monitoring import progress
from stanza.research import config, iterators, instance
from stanza.research.rng import get_rng
import color_instances
from neural import NeuralLearner, SimpleLasagneModel
from neural import NONLINEARITIES, OPTIMIZERS, CELLS, sample
from vectorizers import SequenceVectorizer, SymbolVectorizer, strip_invalid_tokens, COLOR_REPRS
from vectorizers import BucketsVectorizer
parser = config.get_options_parser()
parser.add_argument('--speaker_cell_size', type=int, default=20,
help='The number of dimensions of all hidden layers and cells in '
'the speaker model. If 0 and using the AtomicSpeakerLearner, '
'remove all hidden layers and only train a linear classifier.')
parser.add_argument('--speaker_forget_bias', type=float, default=5.0,
help='The initial value of the forget gate bias in LSTM cells in '
'the speaker model. A positive initial forget gate bias '
'encourages the model to remember everything by default. '
'If speaker_cell is not LSTM, this value is ignored.')
parser.add_argument('--speaker_nonlinearity', choices=NONLINEARITIES.keys(), default='tanh',
help='The nonlinearity/activation function to use for dense and '
'recurrent layers in the speaker model.')
parser.add_argument('--speaker_cell', choices=CELLS.keys(), default='LSTM',
help='The recurrent cell to use for the speaker model.')
parser.add_argument('--speaker_dropout', type=float, default=0.2,
help='The dropout rate (probability of setting a value to zero). '
'Dropout will be disabled if nonpositive.')
parser.add_argument('--speaker_color_resolution', type=int, nargs='+', default=[4],
help='The number of buckets along each dimension of color space '
'for the input of the speaker model.')
parser.add_argument('--speaker_no_mask', type=config.boolean, default=False,
help='If `True`, disable masking of sequence inputs in training.')
parser.add_argument('--speaker_hidden_color_layers', type=int, default=0,
help='The number of dense layers after the color representation.')
parser.add_argument('--speaker_recurrent_layers', type=int, default=2,
help='The number of recurrent layers to pass the input through.')
parser.add_argument('--speaker_hidden_out_layers', type=int, default=0,
help='The number of dense layers to pass activations through '
'before the output.')
parser.add_argument('--speaker_hsv', type=config.boolean, default=False,
help='If `True`, input color buckets are in HSV space; otherwise, '
'color buckets will be in RGB. Input instances should be in HSV '
'regardless; this sets the internal representation for training '
'and prediction.')
parser.add_argument('--speaker_eval_batch_size', type=int, default=16384,
help='The number of examples per batch for evaluating the speaker '
'model. Higher means faster but more memory usage. This should '
'not affect modeling accuracy.')
parser.add_argument('--speaker_beam_size', type=int, default=1,
help='The number of choices to keep in memory at each time step '
'during prediction. Only used for recurrent speakers.')
parser.add_argument('--speaker_optimizer', choices=OPTIMIZERS.keys(), default='rmsprop',
help='The optimization (update) algorithm to use for speaker training.')
parser.add_argument('--speaker_learning_rate', type=float, default=0.1,
help='The learning rate to use for speaker training.')
parser.add_argument('--speaker_grad_clipping', type=float, default=0.0,
help='The maximum absolute value of the gradient messages for the'
'cell component of the speaker model.')
parser.add_argument('--speaker_color_repr', choices=COLOR_REPRS.keys(), default='buckets',
help='The representation of the color to use in the speaker model: a regular '
'grid of `buckets` or the `raw` RGB/HSV values.')
rng = get_rng()
class UniformPrior(object):
'''A uniform color prior in RGB space.'''
def __init__(self, recurrent=False):
self.sampler = BucketsVectorizer([1], hsv=False)
self.recurrent = recurrent
def train(self, training_instances, listener_data='ignored'):
pass
def apply(self, input_vars):
c = input_vars[0]
if self.recurrent:
if c.ndim == 2:
ones = T.ones_like(c[:, 0])
elif c.ndim == 3:
ones = T.ones_like(c[:, 0, 0])
else:
assert False, 'need handling for higher rank color vectors (recurrent): %d' % c.ndim
else:
if c.ndim == 1:
ones = T.ones_like(c)
elif c.ndim == 2:
ones = T.ones_like(c[:, 0])
else:
assert False, 'need handling for higher rank color vectors (atomic): %d' % c.ndim
return -3.0 * np.log(256.0) * ones
def sample(self, num_samples):
'''
:return: a list of `num_samples` colors sampled uniformly in RGB space,
but expressed as HSV triples.
'''
colors = self.sampler.unvectorize_all(np.zeros(num_samples, dtype=np.int32),
random=True, hsv=True)
return [instance.Instance(c) for c in colors]
class UniformContextPrior(UniformPrior):
def __init__(self, recurrent=False):
super(UniformContextPrior, self).__init__(recurrent=recurrent)
def apply(self, input_vars):
options = config.options()
context_len = options.num_distractors
return (super(UniformContextPrior, self).apply(input_vars) -
3.0 * np.log(256.0) * context_len)
def sample(self, num_samples=1):
colors = super(UniformContextPrior, self).sample(num_samples)
insts = [instance.Instance(c.input) for c in colors]
return color_instances.reference_game(insts, color_instances.uniform, listener=False)
PRIORS = {
'Uniform': UniformPrior,
'UniformContext': UniformContextPrior,
}
parser.add_argument('--speaker_prior', choices=PRIORS.keys(), default='Uniform',
help='The prior model for the speaker (prior over colors). '
'Only used in RSA learner.')
class SpeakerLearner(NeuralLearner):
'''
An speaker with a feedforward neural net color input passed into an RNN
to generate a description.
'''
def __init__(self, id=None, context_len=1):
super(SpeakerLearner, self).__init__(id=id)
self.seq_vec = SequenceVectorizer()
color_repr = COLOR_REPRS[self.options.speaker_color_repr]
self.color_vec = color_repr(self.options.speaker_color_resolution,
hsv=self.options.speaker_hsv)
self.context_len = context_len
def predict(self, eval_instances, random=False, verbosity=0):
result = []
batches = iterators.iter_batches(eval_instances, self.options.speaker_eval_batch_size)
num_batches = (len(eval_instances) - 1) // self.options.speaker_eval_batch_size + 1
eos_index = self.seq_vec.vectorize(['</s>'])[0]
if self.options.verbosity + verbosity >= 2:
print('Predicting')
if self.options.verbosity + verbosity >= 1:
progress.start_task('Predict batch', num_batches)
for batch_num, batch in enumerate(batches):
if self.options.verbosity + verbosity >= 1:
progress.progress(batch_num)
batch = list(batch)
(c, _p, mask), (_y,) = self._data_to_arrays(batch, test=True)
assert mask.all() # We shouldn't be masking anything in prediction
beam_size = 1 if random else self.options.speaker_beam_size
done = np.zeros((len(batch), beam_size), dtype=np.bool)
beam = np.zeros((len(batch), beam_size, self.seq_vec.max_len),
dtype=np.int32)
beam[:, :, 0] = self.seq_vec.vectorize(['<s>'])[0]
beam_scores = np.log(np.zeros((len(batch), beam_size)))
beam_scores[:, 0] = 0.0
c = np.repeat(c, beam_size, axis=0)
mask = np.repeat(mask, beam_size, axis=0)
for length in range(1, self.seq_vec.max_len):
if done.all():
break
p = beam.reshape((beam.shape[0] * beam.shape[1], beam.shape[2]))[:, :-1]
probs = self.model.predict([c, p, mask])
if random:
indices = sample(probs[:, length - 1, :])
beam[:, 0, length] = indices
done = np.logical_or(done, indices == eos_index)
else:
assert probs.shape[1] == p.shape[1], (probs.shape[1], p.shape[1])
assert probs.shape[2] == len(self.seq_vec.tokens), (probs.shape[2],
len(self.seq_vec.tokens))
scores = np.log(probs)[:, length - 1, :].reshape((beam.shape[0], beam.shape[1],
probs.shape[2]))
beam_search_step(scores, length, beam, beam_scores, done, eos_index)
outputs = self.seq_vec.unvectorize_all(beam[:, 0, :])
result.extend([' '.join(strip_invalid_tokens(o)) for o in outputs])
if self.options.verbosity + verbosity >= 1:
progress.end_task()
return result
def score(self, eval_instances, verbosity=0):
result = []
batches = iterators.iter_batches(eval_instances, self.options.speaker_eval_batch_size)
num_batches = (len(eval_instances) - 1) // self.options.speaker_eval_batch_size + 1
if self.options.verbosity + verbosity >= 2:
print('Scoring')
if self.options.verbosity + verbosity >= 1:
progress.start_task('Score batch', num_batches)
for batch_num, batch in enumerate(batches):
if self.options.verbosity + verbosity >= 1:
progress.progress(batch_num)
batch = list(batch)
xs, (n,) = self._data_to_arrays(batch, test=False)
_, _, mask = xs
probs = self.model.predict(xs)
token_probs = probs[np.arange(probs.shape[0])[:, np.newaxis],
np.arange(probs.shape[1]), n]
scores_arr = np.sum(np.log(token_probs) * mask, axis=1)
scores = scores_arr.tolist()
result.extend(scores)
if self.options.verbosity + verbosity >= 1:
progress.end_task()
return result
def _data_to_arrays(self, training_instances,
init_vectorizer=False, test=False, inverted=False):
context_len = self.context_len if hasattr(self, 'context_len') else 1
use_context = context_len > 1
def get_multi(val):
if isinstance(val, tuple):
assert len(val) == 1
return val[0]
else:
return val
get_i, get_o = (lambda inst: inst.input), (lambda inst: inst.output)
get_color, get_desc_simple = (get_o, get_i) if inverted else (get_i, get_o)
get_desc = lambda inst: get_multi(get_desc_simple(inst))
get_i_ind, get_o_ind = ((lambda inst: inst.alt_inputs[get_multi(inst.input)]),
(lambda inst: inst.alt_outputs[get_multi(inst.output)]))
get_color_indexed = get_o_ind if inverted else get_i_ind
get_alt_i, get_alt_o = (lambda inst: inst.alt_inputs), (lambda inst: inst.alt_outputs)
get_alt_colors = get_alt_o if inverted else get_alt_i
if init_vectorizer:
self.seq_vec.add_all(['<s>'] + get_desc(inst).split() + ['</s>']
for inst in training_instances)
colors = []
previous = []
next_tokens = []
if self.options.verbosity >= 9:
print('%s _data_to_arrays:' % self.id)
for i, inst in enumerate(training_instances):
desc, color = get_desc(inst), get_color(inst)
if isinstance(color, numbers.Number):
color = get_color_indexed(inst)
if test:
full = ['<s>'] + ['</s>'] * (self.seq_vec.max_len - 1)
else:
desc = desc.split()
full = (['<s>'] + desc + ['</s>'] +
['<MASK>'] * (self.seq_vec.max_len - 1 - len(desc)))
prev = full[:-1]
next = full[1:]
if self.options.verbosity >= 9:
print('%s, %s -> %s' % (repr(color), repr(prev), repr(next)))
colors.append(color)
if use_context:
new_context = get_alt_colors(inst)
index = get_color(inst)
if isinstance(index, tuple):
assert len(index) == 1
index = index[0]
assert len(new_context) == context_len, \
'Inconsistent context lengths: %s' % ((context_len, len(new_context)),)
colors.extend([c for j, c in enumerate(new_context) if j != index])
previous.append(prev)
next_tokens.append(next)
P = np.zeros((len(previous), self.seq_vec.max_len - 1), dtype=np.int32)
mask = np.zeros((len(previous), self.seq_vec.max_len - 1), dtype=np.int32)
N = np.zeros((len(next_tokens), self.seq_vec.max_len - 1), dtype=np.int32)
c = self.color_vec.vectorize_all(colors, hsv=True)
if len(c.shape) == 1:
c = c.reshape((len(colors) / context_len, context_len))
else:
c = c.reshape((len(colors) / context_len, context_len * c.shape[1]) +
c.shape[2:])
for i, (color, prev, next) in enumerate(zip(colors, previous, next_tokens)):
if len(prev) > P.shape[1]:
prev = prev[:P.shape[1]]
if len(next) > N.shape[1]:
next = next[:N.shape[1]]
P[i, :len(prev)] = self.seq_vec.vectorize(prev)
N[i, :len(next)] = self.seq_vec.vectorize(next)
for t, token in enumerate(next):
mask[i, t] = (token != '<MASK>')
c = np.tile(c[:, np.newaxis, ...], [1, self.seq_vec.max_len - 1] + [1] * (c.ndim - 1))
if self.options.verbosity >= 9:
print('c: %s' % (repr(c),))
print('P: %s' % (repr(P),))
print('mask: %s' % (repr(mask),))
print('N: %s' % (repr(N),))
return [c, P, mask], [N]
def _build_model(self, model_class=SimpleLasagneModel):
id_tag = (self.id + '/') if self.id else ''
input_vars = self.color_vec.get_input_vars(self.id, recurrent=True) + [
T.imatrix(id_tag + 'previous'),
T.imatrix(id_tag + 'mask')
]
target_var = T.imatrix(id_tag + 'targets')
self.l_out, self.input_layers = self._get_l_out(input_vars)
self.model = model_class(input_vars, [target_var], self.l_out, id=self.id,
loss=self.masked_loss(input_vars),
optimizer=OPTIMIZERS[self.options.speaker_optimizer],
learning_rate=self.options.speaker_learning_rate)
def train_priors(self, training_instances, listener_data=False):
prior_class = PRIORS[self.options.speaker_prior]
self.prior_emp = prior_class(recurrent=True)
self.prior_smooth = prior_class(recurrent=True)
self.prior_emp.train(training_instances, listener_data=listener_data)
self.prior_smooth.train(training_instances, listener_data=listener_data)
def _get_l_out(self, input_vars):
check_options(self.options)
id_tag = (self.id + '/') if self.id else ''
prev_output_var, mask_var = input_vars[-2:]
color_input_vars = input_vars[:-2]
context_len = self.context_len if hasattr(self, 'context_len') else 1
l_color_repr, color_inputs = self.color_vec.get_input_layer(
color_input_vars,
recurrent_length=self.seq_vec.max_len - 1,
cell_size=self.options.speaker_cell_size,
context_len=context_len,
id=self.id
)
l_hidden_color = dimshuffle(l_color_repr, (0, 2, 1))
for i in range(1, self.options.speaker_hidden_color_layers + 1):
l_hidden_color = NINLayer(
l_hidden_color, num_units=self.options.speaker_cell_size,
nonlinearity=NONLINEARITIES[self.options.speaker_nonlinearity],
name=id_tag + 'hidden_color%d' % i)
l_hidden_color = dimshuffle(l_hidden_color, (0, 2, 1))
l_prev_out = InputLayer(shape=(None, self.seq_vec.max_len - 1),
input_var=prev_output_var,
name=id_tag + 'prev_input')
l_prev_embed = EmbeddingLayer(l_prev_out, input_size=len(self.seq_vec.tokens),
output_size=self.options.speaker_cell_size,
name=id_tag + 'prev_embed')
l_in = ConcatLayer([l_hidden_color, l_prev_embed], axis=2, name=id_tag + 'color_prev')
l_mask_in = InputLayer(shape=(None, self.seq_vec.max_len - 1),
input_var=mask_var, name=id_tag + 'mask_input')
l_rec_drop = l_in
cell = CELLS[self.options.speaker_cell]
cell_kwargs = {
'mask_input': (None if self.options.speaker_no_mask else l_mask_in),
'grad_clipping': self.options.speaker_grad_clipping,
'num_units': self.options.speaker_cell_size,
}
if self.options.speaker_cell == 'LSTM':
cell_kwargs['forgetgate'] = Gate(b=Constant(self.options.speaker_forget_bias))
if self.options.speaker_cell != 'GRU':
cell_kwargs['nonlinearity'] = NONLINEARITIES[self.options.speaker_nonlinearity]
for i in range(1, self.options.speaker_recurrent_layers):
l_rec = cell(l_rec_drop, name=id_tag + 'rec%d' % i, **cell_kwargs)
if self.options.speaker_dropout > 0.0:
l_rec_drop = DropoutLayer(l_rec, p=self.options.speaker_dropout,
name=id_tag + 'rec%d_drop' % i)
else:
l_rec_drop = l_rec
l_rec = cell(l_rec_drop, name=id_tag + 'rec%d' % self.options.speaker_recurrent_layers,
**cell_kwargs)
l_shape = ReshapeLayer(l_rec, (-1, self.options.speaker_cell_size),
name=id_tag + 'reshape')
l_hidden_out = l_shape
for i in range(1, self.options.speaker_hidden_out_layers + 1):
l_hidden_out = DenseLayer(
l_hidden_out, num_units=self.options.speaker_cell_size,
nonlinearity=NONLINEARITIES[self.options.speaker_nonlinearity],
name=id_tag + 'hidden_out%d' % i)
l_softmax = DenseLayer(l_hidden_out, num_units=len(self.seq_vec.tokens),
nonlinearity=softmax, name=id_tag + 'softmax')
l_out = ReshapeLayer(l_softmax, (-1, self.seq_vec.max_len - 1, len(self.seq_vec.tokens)),
name=id_tag + 'out')
return l_out, color_inputs + [l_prev_out, l_mask_in]
def loss_out(self, input_vars=None, target_var=None):
if input_vars is None:
input_vars = self.model.input_vars
if target_var is None:
target_var = self.model.target_var
pred = get_output(self.l_out, dict(zip(self.input_layers, input_vars)))
loss = self.masked_loss(input_vars)
return loss(pred, target_var)
def masked_loss(self, input_vars):
return masked_seq_crossentropy(input_vars[-1])
def sample_prior_smooth(self, num_samples):
return self.prior_smooth.sample(num_samples)
class ContextSpeakerLearner(SpeakerLearner):
def __init__(self, *args, **kwargs):
self.get_options()
context = self.options.num_distractors + 1
return super(ContextSpeakerLearner, self).__init__(*args, context_len=context, **kwargs)
def check_options(options):
if options.speaker_grad_clipping:
warnings.warn('Per-dimension gradient clipping (--speaker_grad_clipping) is enabled. '
'This feature is unlikely to correctly constrain gradients and avoid '
'NaNs; use --true_grad_clipping instead.')
if options.speaker_recurrent_layers and not options.true_grad_clipping:
warnings.warn('Norm-constraint gradient clipping is disabled for a recurrent model. '
'This will likely lead to exploding gradients.')
if options.speaker_recurrent_layers and options.true_grad_clipping > 6.0:
warnings.warn('Gradient clipping norm is unusually high (%s). '
'This could lead to exploding gradients.' % options.true_grad_clipping)
if options.speaker_nonlinearity == 'rectify':
warnings.warn('Using ReLU as the output nonlinearity for a recurrent unit. This may '
'be a source of NaNs in the gradient.')
def crossentropy_categorical_1hot_nd(coding_dist, true_idx):
'''
A n-dimensional generalization of `theano.tensor.nnet.crossentropy_categorical`.
:param coding_dist: a float tensor with the last dimension equal to the number of categories
:param true_idx: an integer tensor with one fewer dimension than `coding_dist`, giving the
indices of the true targets
'''
if coding_dist.ndim != true_idx.ndim + 1:
raise ValueError('`coding_dist` must have one more dimension that `true_idx` '
'(got %s and %s)' % (coding_dist.type, true_idx.type))
coding_flattened = T.reshape(coding_dist, (-1, T.shape(coding_dist)[-1]))
scores_flattened = crossentropy_categorical_1hot(coding_flattened, true_idx.flatten())
return T.reshape(scores_flattened, true_idx.shape)
def masked_seq_crossentropy(mask):
'''
Return a loss function for sequence models.
:param mask: a 2-D int tensor (num_examples x max_length) with 1 in valid token locations
and 0 in locations that should be masked out
The returned function will have the following parameters and return type:
:param coding_dist: a 3-D float tensor (num_examples x max_length x num_token_types)
of log probabilities assigned to each token
:param true_idx: a 2-D int tensor (num_examples x max_length) of true token indices
:return: a 1-D float tensor of per-example cross-entropy values
'''
def msxe_loss(coding_dist, true_idx):
mask_float = T.cast(mask, 'float32')
return (crossentropy_categorical_1hot_nd(coding_dist, true_idx) * mask_float).sum(axis=1)
return msxe_loss
def beam_search_step(scores, length, beam, beam_scores, done, eos_index):
'''
Perform one step of beam search, given the matrix of probabilities
for each possible following token.
Modifies `beam`, `beam_scores`, and `done` *in place*.
:param scores: Scores (log probabilities, up to a constant) assigned by the
model to each token for each sequence on the various beams.
:type scores: float ndarray, shape `(batch_size, beam_size, vocab_size)`
:param int length: Current length of already predicted sequences.
Should equal the axis-1 index in `beam` where the next
predicted tokens will be populated.
:param beam: Token indices for the top-k sequences predicted for each
example.
:type beam: int ndarray, shape `(batch_size, beam_size, max_seq_len)`
:param beam_scores: log probabilities assigned to current candidate sequences
:type beam_scores: float ndarray, shape `(batch_size, beam_size)`
:param done: Mask of beam entries that have reached the </s> token
:type done: boolean ndarray, shape `(batch_size, beam_size)`
As an example, suppose the distribution represented by the model is:
'a cat': 0.375,
'cat': 0.25,
'cat a': 0.125,
'cat cat': 0.125,
'a': 0.0625,
'': 0.03125,
'a a': 0.03125,
>>> a_cat, cat, cat_a, cat_cat, a, null, a_a = \\
... [0.375, 0.25, 0.125, 0.125, 0.0625, 0.03125, 0.03125]
>>> vec = SequenceVectorizer(); vec.add(['<s>', 'a', 'cat', '</s>'])
>>> vec.vectorize(['<s>', 'a', 'cat', '</s>'])
array([1, 2, 3, 4], dtype=int32)
>>> eos_index = vec.vectorize(['</s>'])[0]
Initialize the beam. Note that -inf should be the initial score
for all but one item on each beam; if all scores start at 0,
the beam will be saturated with duplicates of the greedy choice.
>>> batch_size = 1; beam_size = 2; max_seq_len = 3
>>> beam = np.zeros((batch_size, beam_size, max_seq_len), dtype=np.int)
>>> beam_scores = np.log(np.zeros((batch_size, beam_size)))
>>> beam_scores[:, 0] = 0.0
>>> done = np.zeros((batch_size, beam_size), dtype=np.bool)
>>> next_scores = np.log([[[0.0, 0.0,
... a_cat + a + a_a,
... cat + cat_cat + cat_a,
... null]] * 2])
>>> beam_search_step(next_scores, 0, beam, beam_scores, done, eos_index)
>>> beam
array([[[3, 0, 0],
[2, 0, 0]]])
>>> np.exp(beam_scores).round(5)
array([[ 0.5 , 0.46875]])
>>> done
array([[False, False]], dtype=bool)
Note that 'cat' is the greedy first choice, but 'a cat' will end up
with a higher score.
>>> next_scores = np.log([[[0.0, 0.0, cat_a / 0.5, cat_cat / 0.5, cat / 0.5],
... [0.0, 0.0, a_a / 0.46875, a_cat / 0.46875, a / 0.46875]]])
>>> beam_search_step(next_scores, 1, beam, beam_scores, done, eos_index)
>>> beam
array([[[2, 3, 0],
[3, 4, 0]]])
>>> np.exp(beam_scores).round(3)
array([[ 0.375, 0.25 ]])
>>> done
array([[False, True]], dtype=bool)
The best sequences have been identified; the score for 'cat' stays constant
after it reaches the end-of-sentence token, and the beam is padded with
end-of-sentence tokens regardless of the returned scores.
>>> next_scores = np.log([[[0.0, 0.0, 0.0, 0.0, 1.0],
... [0.0, 0.0, 0.25, 0.5, 0.25]]])
>>> beam_search_step(next_scores, 2, beam, beam_scores, done, eos_index)
>>> beam
array([[[2, 3, 4],
[3, 4, 4]]])
>>> np.exp(beam_scores).round(3)
array([[ 0.375, 0.25 ]])
>>> done
array([[ True, True]], dtype=bool)
'''
assert len(scores.shape) == 3, scores.shape
batch_size, beam_size, vocab_size = scores.shape
assert len(beam.shape) == 3, beam.shape
assert beam.shape[:2] == (batch_size, beam_size), \
'%s != (%s, %s, *)' % (beam.shape, batch_size, beam_size)
max_seq_len = beam.shape[2]
assert beam_scores.shape == (batch_size, beam_size), \
'%s != %s' % (beam_scores.shape, (batch_size, beam_size))
assert done.shape == (batch_size, beam_size), \
'%s != %s' % (done.shape, (batch_size, beam_size))
# Compute updated scores
new_scores = (scores * ~done[:, :, np.newaxis] +
beam_scores[:, :, np.newaxis]).reshape((batch_size, beam_size * vocab_size))
# Get indices of top k scores
topk = np.argsort(-new_scores)[:, :beam_size]
# Transform into previous beam indices and new token indices
rows, new_indices = np.unravel_index(topk, (beam_size, vocab_size))
assert rows.shape == (batch_size, beam_size), \
'%s != %s' % (rows.shape, (batch_size, beam_size))
assert new_indices.shape == (batch_size, beam_size), \
'%s != %s' % (new_indices.shape, (batch_size, beam_size))
# Extract best pre-existing rows
beam[:, :, :] = beam[np.arange(batch_size)[:, np.newaxis], rows, :]
assert beam.shape == (batch_size, beam_size, max_seq_len), \
'%s != %s' % (beam.shape, (batch_size, beam_size, max_seq_len))
# Append new token indices
beam[:, :, length] = new_indices
# Update beam scores
beam_scores[:, :] = new_scores[np.arange(batch_size)[:, np.newaxis], topk]
# Get previous done status and update it with
# which rows have newly reached </s>
done[:, :] = done[np.arange(batch_size)[:, np.newaxis], rows] | (new_indices == eos_index)
# Pad already-finished sequences with </s>
beam[done, length] = eos_index
class AtomicSpeakerLearner(NeuralLearner):
'''
A speaker that learns to produce descriptions as indivisible symbols (as
opposed to word-by-word sequences) given colors.
'''
def __init__(self, id=None):
super(AtomicSpeakerLearner, self).__init__(id=id)
self.seq_vec = SymbolVectorizer()
color_repr = COLOR_REPRS[self.options.speaker_color_repr]
self.color_vec = color_repr(self.options.speaker_color_resolution,
hsv=self.options.speaker_hsv)
def predict_and_score(self, eval_instances, random=False, verbosity=0):
predictions = []
scores = []
batches = iterators.iter_batches(eval_instances, self.options.speaker_eval_batch_size)
num_batches = (len(eval_instances) - 1) // self.options.speaker_eval_batch_size + 1
if self.options.verbosity + verbosity >= 2:
print('Testing')
if self.options.verbosity + verbosity >= 1:
progress.start_task('Eval batch', num_batches)
for batch_num, batch in enumerate(batches):
if self.options.verbosity + verbosity >= 1:
progress.progress(batch_num)
batch = list(batch)
xs, (y,) = self._data_to_arrays(batch, test=True)
probs = self.model.predict(xs)
if random:
indices = sample(probs)
else:
indices = probs.argmax(axis=1)
predictions.extend(self.seq_vec.unvectorize_all(indices))
scores_arr = np.log(probs[np.arange(len(batch)), y])
scores.extend(scores_arr.tolist())
if self.options.verbosity + verbosity >= 1:
progress.end_task()
if self.options.verbosity >= 9:
print('%s %ss:') % (self.id, 'sample' if random else 'prediction')
for inst, prediction in zip(eval_instances, predictions):
print('%s -> %s' % (repr(inst.input), repr(prediction)))
return predictions, scores
def _data_to_arrays(self, training_instances,
init_vectorizer=False, test=False, inverted=False):
get_i, get_o = (lambda inst: inst.input), (lambda inst: inst.output)
get_color, get_desc = (get_o, get_i) if inverted else (get_i, get_o)
if init_vectorizer:
self.seq_vec.add_all(get_desc(inst) for inst in training_instances)
sentences = []
colors = []
if self.options.verbosity >= 9:
print('%s _data_to_arrays:' % self.id)
for i, inst in enumerate(training_instances):
desc = get_desc(inst)
if desc is None:
assert test
desc = '<unk>'
color = get_color(inst)
assert color
if self.options.verbosity >= 9:
print('%s -> %s' % (repr(desc), repr(color)))
sentences.append(desc)
colors.append(color)
x = self.color_vec.vectorize_all(colors, hsv=True)
if len(x.shape) == 1:
x = x[:, np.newaxis]
y = self.seq_vec.vectorize_all(sentences)
if self.options.verbosity >= 9:
print('%s x: %s' % (self.id, x))
print('%s y: %s' % (self.id, y))
return [x], [y]
def _build_model(self, model_class=SimpleLasagneModel):
id_tag = (self.id + '/') if self.id else ''
input_vars = self.color_vec.get_input_vars(self.id)
target_var = T.ivector(id_tag + 'targets')
self.l_out, self.input_layers = self._get_l_out(input_vars)
self.loss = categorical_crossentropy
self.model = model_class(input_vars, [target_var], self.l_out,
loss=self.loss, optimizer=rmsprop, id=self.id)
def train_priors(self, training_instances, listener_data=False):
prior_class = PRIORS[self.options.speaker_prior]
self.prior_emp = prior_class()
self.prior_smooth = prior_class()
self.prior_emp.train(training_instances, listener_data=listener_data)
self.prior_smooth.train(training_instances, listener_data=listener_data)
def _get_l_out(self, input_vars):
id_tag = (self.id + '/') if self.id else ''
cell_size = self.options.speaker_cell_size or self.seq_vec.num_types
l_color_repr, color_inputs = self.color_vec.get_input_layer(
input_vars,
recurrent_length=0,
cell_size=cell_size,
id=self.id
)
l_hidden_color = l_color_repr
for i in range(1, self.options.speaker_hidden_color_layers + 1):
l_hidden_color = NINLayer(
l_hidden_color, num_units=cell_size,
nonlinearity=NONLINEARITIES[self.options.speaker_nonlinearity],
name=id_tag + 'hidden_color%d' % i)
l_hidden_color = l_hidden_color
if self.options.speaker_cell_size == 0:
l_scores = l_color_repr # BiasLayer(l_color_repr, name=id_tag + 'bias')
else:
if self.options.speaker_dropout > 0.0:
l_color_drop = DropoutLayer(l_hidden_color, p=self.options.speaker_dropout,
name=id_tag + 'color_drop')
else:
l_color_drop = l_hidden_color
l_hidden = DenseLayer(l_color_drop, num_units=self.options.speaker_cell_size,
nonlinearity=NONLINEARITIES[self.options.speaker_nonlinearity],
name=id_tag + 'hidden')
if self.options.speaker_dropout > 0.0:
l_hidden_drop = DropoutLayer(l_hidden, p=self.options.speaker_dropout,
name=id_tag + 'hidden_drop')
else:
l_hidden_drop = l_hidden
l_scores = DenseLayer(l_hidden_drop, num_units=self.seq_vec.num_types,
nonlinearity=None, name=id_tag + 'scores')
l_out = NonlinearityLayer(l_scores, nonlinearity=softmax,
name=id_tag + 'softmax')
return l_out, color_inputs
def sample_prior_smooth(self, num_samples):
return self.prior_smooth.sample(num_samples)
SPEAKERS = {
'Speaker': SpeakerLearner,
'ContextSpeaker': ContextSpeakerLearner,
'AtomicSpeaker': AtomicSpeakerLearner,
}