From ead22cc6bfa256597db4d1d3ba2fac1a50133b24 Mon Sep 17 00:00:00 2001 From: Stan Jenkins Date: Wed, 16 Oct 2024 14:40:45 -0400 Subject: [PATCH] [Jenkins] auto-formatting by clang-format version 10.0.0-4ubuntu1 --- src/stan/analyze/mcmc/mcse.hpp | 75 +++++++++++++++++----------------- 1 file changed, 37 insertions(+), 38 deletions(-) diff --git a/src/stan/analyze/mcmc/mcse.hpp b/src/stan/analyze/mcmc/mcse.hpp index 9bd9aa8341..5584e9a7d7 100644 --- a/src/stan/analyze/mcmc/mcse.hpp +++ b/src/stan/analyze/mcmc/mcse.hpp @@ -11,44 +11,43 @@ namespace stan { namespace analyze { - - /** - * Computes the mean Monte Carlo error estimate for the central 90% interval. - * See https://arxiv.org/abs/1903.08008, section 4.4. - * Follows implementation in the R posterior package. - * - * @param chains matrix of draws across all chains - * @return mcse - */ - inline double mcse_mean(const Eigen::MatrixXd& chains) { - const Eigen::Index num_draws = chains.rows(); - if (chains.rows() < 4 - || !is_finite_and_varies(chains)) - return std::numeric_limits::quiet_NaN(); - - double sd = (chains.array() - chains.mean()).square().sum() / (chains.size() - 1); - return std::sqrt(sd / ess(chains)); - } - - /** - * Computes the standard deviation of the Monte Carlo error estimate - * https://arxiv.org/abs/1903.08008, section 4.4. - * Follows implementation in the R posterior package: - * https://github.com/stan-dev/posterior/blob/98bf52329d68f3307ac4ecaaea659276ee1de8df/R/convergence.R#L478-L496 - * - * @param chains matrix of draws across all chains - * @return mcse - */ - inline double mcse_sd(const Eigen::MatrixXd& chains) { - if (chains.rows() < 4 - || !is_finite_and_varies(chains)) - return std::numeric_limits::quiet_NaN(); - - Eigen::MatrixXd diffs = (chains.array() - chains.mean()).matrix(); - double Evar = diffs.array().square().mean(); - double varvar = (math::mean(diffs.array().pow(4) - Evar * Evar)) / ess(diffs.array().abs().matrix()); - return std::sqrt(varvar / Evar / 4); - } +/** + * Computes the mean Monte Carlo error estimate for the central 90% interval. + * See https://arxiv.org/abs/1903.08008, section 4.4. + * Follows implementation in the R posterior package. + * + * @param chains matrix of draws across all chains + * @return mcse + */ +inline double mcse_mean(const Eigen::MatrixXd& chains) { + const Eigen::Index num_draws = chains.rows(); + if (chains.rows() < 4 || !is_finite_and_varies(chains)) + return std::numeric_limits::quiet_NaN(); + + double sd + = (chains.array() - chains.mean()).square().sum() / (chains.size() - 1); + return std::sqrt(sd / ess(chains)); +} + +/** + * Computes the standard deviation of the Monte Carlo error estimate + * https://arxiv.org/abs/1903.08008, section 4.4. + * Follows implementation in the R posterior package: + * https://github.com/stan-dev/posterior/blob/98bf52329d68f3307ac4ecaaea659276ee1de8df/R/convergence.R#L478-L496 + * + * @param chains matrix of draws across all chains + * @return mcse + */ +inline double mcse_sd(const Eigen::MatrixXd& chains) { + if (chains.rows() < 4 || !is_finite_and_varies(chains)) + return std::numeric_limits::quiet_NaN(); + + Eigen::MatrixXd diffs = (chains.array() - chains.mean()).matrix(); + double Evar = diffs.array().square().mean(); + double varvar = (math::mean(diffs.array().pow(4) - Evar * Evar)) + / ess(diffs.array().abs().matrix()); + return std::sqrt(varvar / Evar / 4); +} } // namespace analyze } // namespace stan