-
Notifications
You must be signed in to change notification settings - Fork 154
/
spaces-duality.tex
2184 lines (2012 loc) · 78.9 KB
/
spaces-duality.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Duality for Spaces}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This chapter is the analogue of the corresponding chapter for
schemes, see Duality for Schemes, Section \ref{duality-section-introduction}.
The development is similar to the development in the papers
\cite{Neeman-Grothendieck}, \cite{LN},
\cite{Lipman-notes}, and \cite{Neeman-improvement}.
\section{Dualizing complexes on algebraic spaces}
\label{section-dualizing-spaces}
\noindent
Let $U$ be a locally Noetherian scheme. Let $\mathcal{O}_\etale$
be the structure sheaf of $U$ on the small \'etale site of $U$.
We will say an object $K \in D_\QCoh(\mathcal{O}_\etale)$ is
a dualizing complex on $U$ if $K = \epsilon^*(\omega_U^\bullet)$
for some dualizing complex $\omega_U^\bullet$ in the sense of
Duality for Schemes, Section \ref{duality-section-dualizing-schemes}.
Here $\epsilon^* : D_\QCoh(\mathcal{O}_U) \to D_\QCoh(\mathcal{O}_\etale)$
is the equivalence of Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-derived-quasi-coherent-small-etale-site}.
Most of the properties of $\omega_U^\bullet$ studied in
Duality for Schemes, Section \ref{duality-section-dualizing-schemes}
are inherited by $K$ via the discussion in
Derived Categories of Spaces, Sections
\ref{spaces-perfect-section-derived-quasi-coherent-etale} and
\ref{spaces-perfect-section-spell-out}.
\medskip\noindent
We define a dualizing complex on a locally Noetherian algebraic space
to be a complex which \'etale locally comes from a dualizing
complex on the corresponding scheme.
\begin{lemma}
\label{lemma-equivalent-definitions}
Let $S$ be a scheme. Let $X$ be a locally Noetherian algebraic space over $S$.
Let $K$ be an object of $D_\QCoh(\mathcal{O}_X)$. The following are equivalent
\begin{enumerate}
\item For every \'etale morphism $U \to X$ where $U$ is a scheme
the restriction $K|_U$ is a dualizing complex for $U$ (as discussed above).
\item There exists a surjective \'etale morphism $U \to X$ where $U$ is a
scheme such that $K|_U$ is a dualizing complex for $U$.
\end{enumerate}
\end{lemma}
\begin{proof}
Assume $U \to X$ is surjective \'etale where $U$ is a scheme.
Let $V \to X$ be an \'etale morphism where $V$ is a scheme.
Then
$$
U \leftarrow U \times_X V \rightarrow V
$$
are \'etale morphisms of schemes with the arrow to $V$ surjective.
Hence we can use Duality for Schemes, Lemma \ref{duality-lemma-descent-ascent}
to see that if $K|_U$ is a dualizing complex for $U$, then
$K|_V$ is a dualizing complex for $V$.
\end{proof}
\begin{definition}
\label{definition-dualizing-scheme}
Let $S$ be a scheme.
Let $X$ be a locally Noetherian algebraic space over $S$.
An object $K$ of $D_\QCoh(\mathcal{O}_X)$ is called a
{\it dualizing complex} if $K$ satisfies the equivalent conditions of
Lemma \ref{lemma-equivalent-definitions}.
\end{definition}
\begin{lemma}
\label{lemma-affine-duality}
Let $A$ be a Noetherian ring and let $X = \Spec(A)$. Let
$\mathcal{O}_\etale$ be the structure sheaf of $X$ on the
small \'etale site of $X$. Let $K, L$ be objects of $D(A)$.
If $K \in D_{\textit{Coh}}(A)$ and $L$ has finite injective
dimension, then
$$
\epsilon^*\widetilde{R\Hom_A(K, L)} =
R\SheafHom_{\mathcal{O}_\etale}(\epsilon^*\widetilde{K},
\epsilon^*\widetilde{L})
$$
in $D(\mathcal{O}_\etale)$ where
$\epsilon : (X_\etale, \mathcal{O}_\etale) \to (X, \mathcal{O}_X)$
is as in Derived Categories of Spaces, Section
\ref{spaces-perfect-section-derived-quasi-coherent-etale}.
\end{lemma}
\begin{proof}
By Duality for Schemes, Lemma \ref{duality-lemma-affine-duality}
we have a canonical isomorphism
$$
\widetilde{R\Hom_A(K, L)} =
R\SheafHom_{\mathcal{O}_X}(\widetilde{K}, \widetilde{L})
$$
in $D(\mathcal{O}_X)$. There is a canonical map
$$
\epsilon^*R\Hom_{\mathcal{O}_X}(\widetilde{K}, \widetilde{L})
\longrightarrow
R\SheafHom_{\mathcal{O}_\etale}(\epsilon^*\widetilde{K},
\epsilon^*\widetilde{L})
$$
in $D(\mathcal{O}_\etale)$, see Cohomology on Sites, Remark
\ref{sites-cohomology-remark-prepare-fancy-base-change}.
We will show the left and right hand side of this arrow
have isomorphic cohomology sheaves, but we will omit the
verification that the isomorphism is given by this arrow.
\medskip\noindent
We may assume that $L$ is given by a finite complex $I^\bullet$
of injective $A$-modules. By induction on the length of $I^\bullet$
and compatibility of the constructions with distinguished triangles,
we reduce to the case that $L = I[0]$ where $I$ is an injective $A$-module.
Recall that the cohomology sheaves of
$R\SheafHom_{\mathcal{O}_\etale}(\epsilon^*\widetilde{K},
\epsilon^*\widetilde{L}))$
are the sheafifications of the presheaf sending $U$ \'etale
over $X$ to the $i$th ext group between the restrictions of
$\epsilon^*\widetilde{K}$ and $\epsilon^*\widetilde{L}$
to $U_\etale$. See
Cohomology on Sites, Lemma
\ref{sites-cohomology-lemma-section-RHom-over-U}.
If $U = \Spec(B)$ is affine, then this ext group
is equal to $\text{Ext}^i_B(K \otimes_A B, L \otimes_A B)$
by the equivalence of
Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-derived-quasi-coherent-small-etale-site} and
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-affine-compare-bounded}
(this also uses the compatibilities detailed in
Derived Categories of Spaces, Remark
\ref{spaces-perfect-remark-match-total-direct-images}).
Since $A \to B$ is \'etale, we see that
$I \otimes_A B$ is an injective $B$-module
by Dualizing Complexes, Lemma \ref{dualizing-lemma-injective-goes-up}.
Hence we see that
\begin{align*}
\Ext^n_B(K \otimes_A B, I \otimes_A B)
& =
\Hom_B(H^{-n}(K \otimes_A B), I \otimes_A B) \\
& =
\Hom_{A_f}(H^{-n}(K) \otimes_A B, I \otimes_A B) \\
& =
\Hom_A(H^{-n}(K), I) \otimes_A B \\
& =
\text{Ext}^n_A(K, I) \otimes_A B
\end{align*}
The penultimate equality because $H^{-n}(K)$ is a finite $A$-module, see
More on Algebra, Lemma
\ref{more-algebra-lemma-pseudo-coherence-and-base-change-ext}.
Therefore the cohomology sheaves of the left and right hand
side of the equality in the lemma are the same.
\end{proof}
\begin{lemma}
\label{lemma-dualizing-spaces}
Let $S$ be a scheme. Let $X$ be a locally Noetherian algebraic space over $S$.
Let $K$ be a dualizing complex on $X$.
Then $K$ is an object of $D_{\textit{Coh}}(\mathcal{O}_X)$
and $D = R\SheafHom_{\mathcal{O}_X}(-, K)$ induces an anti-equivalence
$$
D :
D_{\textit{Coh}}(\mathcal{O}_X)
\longrightarrow
D_{\textit{Coh}}(\mathcal{O}_X)
$$
which comes equipped with a canonical isomorphism
$\text{id} \to D \circ D$. If $X$ is quasi-compact, then
$D$ exchanges $D^+_{\textit{Coh}}(\mathcal{O}_X)$ and
$D^-_{\textit{Coh}}(\mathcal{O}_X)$ and induces an equivalence
$D^b_{\textit{Coh}}(\mathcal{O}_X) \to D^b_{\textit{Coh}}(\mathcal{O}_X)$.
\end{lemma}
\begin{proof}
Let $U \to X$ be an \'etale morphism with $U$ affine. Say $U = \Spec(A)$ and
let $\omega_A^\bullet$ be a dualizing complex for $A$ corresponding to $K|_U$
as in Lemma \ref{lemma-equivalent-definitions} and
Duality for Schemes, Lemma \ref{duality-lemma-equivalent-definitions}.
By Lemma \ref{lemma-affine-duality} the diagram
$$
\xymatrix{
D_{\textit{Coh}}(A) \ar[r] \ar[d]_{R\Hom_A(-, \omega_A^\bullet)} &
D_{\textit{Coh}}(\mathcal{O}_\etale)
\ar[d]^{R\SheafHom_{\mathcal{O}_\etale}(-, K|_U)} \\
D_{\textit{Coh}}(A) \ar[r] &
D(\mathcal{O}_\etale)
}
$$
commutes where $\mathcal{O}_\etale$ is the structure sheaf of the
small \'etale site of $U$. Since formation of $R\SheafHom$ commutes
with restriction, we conclude that $D$ sends
$D_{\textit{Coh}}(\mathcal{O}_X)$ into
$D_{\textit{Coh}}(\mathcal{O}_X)$. Moreover, the canonical map
$$
L \longrightarrow
R\SheafHom_{\mathcal{O}_X}(R\SheafHom_{\mathcal{O}_X}(L, K), K)
$$
(Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-internal-hom-evaluate})
is an isomorphism for all $L$ in $D_{\textit{Coh}}(\mathcal{O}_X)$
because this is true over all $U$ as above by
Dualizing Complexes, Lemma \ref{dualizing-lemma-dualizing}.
The statement on boundedness properties of the functor $D$
in the quasi-compact case also follows from the corresponding
statements of Dualizing Complexes, Lemma \ref{dualizing-lemma-dualizing}.
\end{proof}
\noindent
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Recall
that an object $L$ of $D(\mathcal{O})$ is {\it invertible}
if it is an invertible object for the symmetric monoidal
structure on $D(\mathcal{O}_X)$ given by derived tensor product. In
Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-invertible-derived}
we we have seen this means $L$ is perfect and if $(\mathcal{C}, \mathcal{O})$
is a locally ringed site, then for every object $U$ of $\mathcal{C}$
there is a covering $\{U_i \to U\}$ of $U$ in $\mathcal{C}$
such that $L|_{U_i} \cong \mathcal{O}_{U_i}[-n_i]$
for some integers $n_i$.
\medskip\noindent
Let $S$ be a scheme and let $X$ be an algebraic space over $S$.
If $L$ in $D(\mathcal{O}_X)$ is invertible, then there is a
disjoint union decomposition $X = \coprod_{n \in \mathbf{Z}} X_n$
such that $L|_{X_n}$ is an invertible module sitting in degree $n$.
In particular, it follows that $L = \bigoplus H^n(L)[-n]$
which gives a well defined complex of $\mathcal{O}_X$-modules
(with zero differentials) representing $L$.
\begin{lemma}
\label{lemma-dualizing-unique-spaces}
Let $S$ be a scheme.
Let $X$ be a locally Noetherian algebraic space over $S$.
If $K$ and $K'$ are dualizing complexes on $X$, then $K'$
is isomorphic to $K \otimes_{\mathcal{O}_X}^\mathbf{L} L$
for some invertible object $L$ of $D(\mathcal{O}_X)$.
\end{lemma}
\begin{proof}
Set
$$
L = R\SheafHom_{\mathcal{O}_X}(K, K')
$$
This is an invertible object of $D(\mathcal{O}_X)$, because affine locally
this is true. Use Lemma \ref{lemma-affine-duality} and
Dualizing Complexes, Lemma
\ref{dualizing-lemma-dualizing-unique} and its proof.
The evaluation map $L \otimes_{\mathcal{O}_X}^\mathbf{L} K \to K'$
is an isomorphism for the same reason.
\end{proof}
\begin{lemma}
\label{lemma-dimension-function-scheme}
Let $S$ be a scheme. Let $X$ be a locally Noetherian
quasi-separated algebraic space over $S$.
Let $\omega_X^\bullet$ be a dualizing complex on $X$. Then $X$ the function
$|X| \to \mathbf{Z}$ defined by
$$
x \longmapsto \delta(x)\text{ such that }
\omega_{X, \overline{x}}^\bullet[-\delta(x)]
\text{ is a normalized dualizing complex over }
\mathcal{O}_{X, \overline{x}}
$$
is a dimension function on $|X|$.
\end{lemma}
\begin{proof}
Let $U$ be a scheme and let $U \to X$ be a surjective \'etale morphism.
Let $\omega_U^\bullet$ be the dualizing complex on $U$ associated
to $\omega_X^\bullet|_U$.
If $u \in U$ maps to $x \in |X|$, then $\mathcal{O}_{X, \overline{x}}$
is the strict henselization of $\mathcal{O}_{U, u}$. By
Dualizing Complexes, Lemma \ref{dualizing-lemma-flat-unramified}
we see that if $\omega^\bullet$ is a normalized dualizing complex
for $\mathcal{O}_{U, u}$, then
$\omega^\bullet \otimes_{\mathcal{O}_{U, u}} \mathcal{O}_{X, \overline{x}}$
is a normalized dualizing complex for $\mathcal{O}_{X, \overline{x}}$.
Hence we see that the dimension function $U \to \mathbf{Z}$ of
Duality for Schemes, Lemma \ref{duality-lemma-dimension-function-scheme}
for the scheme $U$ and the complex
$\omega_U^\bullet$ is equal to the composition of $U \to |X|$ with $\delta$.
Using the specializations in $|X|$ lift to specializations in $U$
and that nontrivial specializations in $U$ map to
nontrivial specializations in $X$
(Decent Spaces, Lemmas \ref{decent-spaces-lemma-decent-specialization} and
\ref{decent-spaces-lemma-decent-no-specializations-map-to-same-point})
an easy topological argument shows that $\delta$ is a dimension function
on $|X|$.
\end{proof}
\section{Right adjoint of pushforward}
\label{section-twisted-inverse-image}
\noindent
This is the analogue of Duality for Schemes, Section
\ref{duality-section-twisted-inverse-image}.
\begin{lemma}
\label{lemma-twisted-inverse-image}
\begin{reference}
This is almost the same as \cite[Example 4.2]{Neeman-Grothendieck}.
\end{reference}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism between quasi-separated and quasi-compact
algebraic spaces over $S$. The functor $Rf_* : D_\QCoh(X) \to D_\QCoh(Y)$
has a right adjoint.
\end{lemma}
\begin{proof}
We will prove a right adjoint exists by verifying the hypotheses of
Derived Categories, Proposition \ref{derived-proposition-brown}.
First off, the category $D_\QCoh(\mathcal{O}_X)$ has direct sums, see
Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-quasi-coherence-direct-sums}.
The category $D_\QCoh(\mathcal{O}_X)$ is compactly generated by
Derived Categories of Spaces, Theorem
\ref{spaces-perfect-theorem-bondal-van-den-Bergh}.
Since $X$ and $Y$ are quasi-compact and quasi-separated, so is $f$, see
Morphisms of Spaces, Lemmas
\ref{spaces-morphisms-lemma-compose-after-separated} and
\ref{spaces-morphisms-lemma-quasi-compact-permanence}.
Hence the functor $Rf_*$ commutes with direct sums, see
Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-quasi-coherence-pushforward-direct-sums}.
This finishes the proof.
\end{proof}
\begin{lemma}
\label{lemma-twisted-inverse-image-bounded-below}
Notation and assumptions as in Lemma \ref{lemma-twisted-inverse-image}.
Let $a : D_\QCoh(\mathcal{O}_Y) \to D_\QCoh(\mathcal{O}_X)$ be the right
adjoint to $Rf_*$. Then $a$ maps
$D^+_\QCoh(\mathcal{O}_Y)$ into $D^+_\QCoh(\mathcal{O}_X)$.
In fact, there exists an integer $N$ such that
$H^i(K) = 0$ for $i \leq c$ implies $H^i(a(K)) = 0$ for $i \leq c - N$.
\end{lemma}
\begin{proof}
By Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-quasi-coherence-direct-image}
the functor $Rf_*$ has finite cohomological dimension. In other words,
there exist an integer $N$ such that
$H^i(Rf_*L) = 0$ for $i \geq N + c$ if $H^i(L) = 0$ for $i \geq c$.
Say $K \in D^+_\QCoh(\mathcal{O}_Y)$ has $H^i(K) = 0$ for $i \leq c$.
Then
$$
\Hom_{D(\mathcal{O}_X)}(\tau_{\leq c - N}a(K), a(K)) =
\Hom_{D(\mathcal{O}_Y)}(Rf_*\tau_{\leq c - N}a(K), K) = 0
$$
by what we said above. Clearly, this implies that
$H^i(a(K)) = 0$ for $i \leq c - N$.
\end{proof}
\noindent
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of quasi-separated and quasi-compact
algebraic spaces over $S$.
Let $a$ denote the right adjoint to
$Rf_* : D_\QCoh(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_Y)$. For every
$K \in D_\QCoh(\mathcal{O}_Y)$ and $L \in D_\QCoh(\mathcal{O}_X)$
we obtain a canonical map
\begin{equation}
\label{equation-sheafy-trace}
Rf_*R\SheafHom_{\mathcal{O}_X}(L, a(K))
\longrightarrow
R\SheafHom_{\mathcal{O}_Y}(Rf_*L, K)
\end{equation}
Namely, this map is constructed as the composition
$$
Rf_*R\SheafHom_{\mathcal{O}_X}(L, a(K)) \to
R\SheafHom_{\mathcal{O}_Y}(Rf_*L, Rf_*a(K)) \to
R\SheafHom_{\mathcal{O}_Y}(Rf_*L, K)
$$
where the first arrow is
Cohomology on Sites, Remark
\ref{sites-cohomology-remark-projection-formula-for-internal-hom}
and the second arrow is the counit $Rf_*a(K) \to K$ of the adjunction.
\begin{lemma}
\label{lemma-iso-on-RSheafHom}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of quasi-compact and quasi-separated
algebraic spaces over $S$.
Let $a$ be the right adjoint to
$Rf_* : D_\QCoh(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_Y)$.
Let $L \in D_\QCoh(\mathcal{O}_X)$ and
$K \in D_\QCoh(\mathcal{O}_Y)$.
Then the map (\ref{equation-sheafy-trace})
$$
Rf_*R\SheafHom_{\mathcal{O}_X}(L, a(K))
\longrightarrow
R\SheafHom_{\mathcal{O}_Y}(Rf_*L, K)
$$
becomes an isomorphism after applying the functor
$DQ_Y : D(\mathcal{O}_Y) \to D_\QCoh(\mathcal{O}_Y)$
discussed in Derived Categories of Spaces, Section
\ref{spaces-perfect-section-better-coherator}.
\end{lemma}
\begin{proof}
The statement makes sense as $DQ_Y$ exists by
Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-better-coherator}.
Since $DQ_Y$ is the right adjoint to the inclusion
functor $D_\QCoh(\mathcal{O}_Y) \to D(\mathcal{O}_Y)$
to prove the lemma we have to show that for any
$M \in D_\QCoh(\mathcal{O}_Y)$
the map (\ref{equation-sheafy-trace}) induces an bijection
$$
\Hom_Y(M, Rf_*R\SheafHom_{\mathcal{O}_X}(L, a(K)))
\longrightarrow
\Hom_Y(M, R\SheafHom_{\mathcal{O}_Y}(Rf_*L, K))
$$
To see this we use the following string of equalities
\begin{align*}
\Hom_Y(M, Rf_*R\SheafHom_{\mathcal{O}_X}(L, a(K)))
& =
\Hom_X(Lf^*M, R\SheafHom_{\mathcal{O}_X}(L, a(K))) \\
& =
\Hom_X(Lf^*M \otimes_{\mathcal{O}_X}^\mathbf{L} L, a(K)) \\
& =
\Hom_Y(Rf_*(Lf^*M \otimes_{\mathcal{O}_X}^\mathbf{L} L), K) \\
& =
\Hom_Y(M \otimes_{\mathcal{O}_Y}^\mathbf{L} Rf_*L, K) \\
& =
\Hom_Y(M, R\SheafHom_{\mathcal{O}_Y}(Rf_*L, K))
\end{align*}
The first equality holds by Cohomology on Sites, Lemma
\ref{sites-cohomology-lemma-adjoint}.
The second equality by Cohomology on Sites, Lemma
\ref{sites-cohomology-lemma-internal-hom}.
The third equality by construction of $a$.
The fourth equality by Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-cohomology-base-change} (this is the important step).
The fifth by Cohomology on Sites, Lemma
\ref{sites-cohomology-lemma-internal-hom}.
\end{proof}
\begin{example}
\label{example-iso-on-RSheafHom}
The statement of Lemma \ref{lemma-iso-on-RSheafHom} is not true without
applying the ``coherator'' $DQ_Y$. See
Duality for Schemes, Example \ref{duality-example-iso-on-RSheafHom}.
\end{example}
\begin{remark}
\label{remark-iso-on-RSheafHom}
In the situation of Lemma \ref{lemma-iso-on-RSheafHom} we have
$$
DQ_Y(Rf_*R\SheafHom_{\mathcal{O}_X}(L, a(K))) =
Rf_* DQ_X(R\SheafHom_{\mathcal{O}_X}(L, a(K)))
$$
by Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-pushforward-better-coherator}.
Thus if $R\SheafHom_{\mathcal{O}_X}(L, a(K)) \in D_\QCoh(\mathcal{O}_X)$,
then we can ``erase'' the $DQ_Y$ on the left hand side of the arrow.
On the other hand, if we know that
$R\SheafHom_{\mathcal{O}_Y}(Rf_*L, K) \in D_\QCoh(\mathcal{O}_Y)$,
then we can ``erase'' the $DQ_Y$ from the right hand side of the arrow.
If both are true then we see that (\ref{equation-sheafy-trace})
is an isomorphism. Combining this with
Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-quasi-coherence-internal-hom}
we see that $Rf_*R\SheafHom_{\mathcal{O}_X}(L, a(K)) \to
R\SheafHom_{\mathcal{O}_Y}(Rf_*L, K)$ is an isomorphism if
\begin{enumerate}
\item $L$ and $Rf_*L$ are perfect, or
\item $K$ is bounded below and $L$ and $Rf_*L$ are pseudo-coherent.
\end{enumerate}
For (2) we use that $a(K)$ is bounded below if $K$
is bounded below, see Lemma \ref{lemma-twisted-inverse-image-bounded-below}.
\end{remark}
\begin{example}
\label{example-iso-on-RSheafHom-noetherian}
Let $S$ be a scheme.
Let $f : X \to Y$ be a proper morphism of Noetherian algebraic spaces
over $S$, $L \in D^-_{\textit{Coh}}(X)$ and $K \in D^+_{\QCoh}(\mathcal{O}_Y)$.
Then the map $Rf_*R\SheafHom_{\mathcal{O}_X}(L, a(K)) \to
R\SheafHom_{\mathcal{O}_Y}(Rf_*L, K)$ is an isomorphism.
Namely, the complexes $L$ and $Rf_*L$ are pseudo-coherent by
Derived Categories of Spaces, Lemmas
\ref{spaces-perfect-lemma-identify-pseudo-coherent-noetherian} and
\ref{spaces-perfect-lemma-direct-image-coherent}
and the discussion in Remark \ref{remark-iso-on-RSheafHom} applies.
\end{example}
\begin{lemma}
\label{lemma-iso-global-hom}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of quasi-separated and quasi-compact
algebraic spaces over $S$.
For all $L \in D_\QCoh(\mathcal{O}_X)$ and $K \in D_\QCoh(\mathcal{O}_Y)$
(\ref{equation-sheafy-trace}) induces an isomorphism
$R\Hom_X(L, a(K)) \to R\Hom_Y(Rf_*L, K)$ of global derived homs.
\end{lemma}
\begin{proof}
By construction (Cohomology on Sites, Section
\ref{sites-cohomology-section-global-RHom}) the complexes
$$
R\Hom_X(L, a(K)) =
R\Gamma(X, R\SheafHom_{\mathcal{O}_X}(L, a(K))) =
R\Gamma(Y, Rf_*R\SheafHom_{\mathcal{O}_X}(L, a(K)))
$$
and
$$
R\Hom_Y(Rf_*L, K) = R\Gamma(Y, R\SheafHom_{\mathcal{O}_X}(Rf_*L, a(K)))
$$
Thus the lemma is a consequence of Lemma \ref{lemma-iso-on-RSheafHom}.
Namely, a map $E \to E'$ in $D(\mathcal{O}_Y)$ which induces
an isomorphism $DQ_Y(E) \to DQ_Y(E')$ induces a quasi-isomorphism
$R\Gamma(Y, E) \to R\Gamma(Y, E')$. Indeed we have
$H^i(Y, E) = \Ext^i_Y(\mathcal{O}_Y, E) = \Hom(\mathcal{O}_Y[-i], E) =
\Hom(\mathcal{O}_Y[-i], DQ_Y(E))$ because $\mathcal{O}_Y[-i]$
is in $D_\QCoh(\mathcal{O}_Y)$ and $DQ_Y$ is the right adjoint
to the inclusion functor $D_\QCoh(\mathcal{O}_Y) \to D(\mathcal{O}_Y)$.
\end{proof}
\section{Right adjoint of pushforward and base change, I}
\label{section-base-change-map}
\noindent
Let us define the base change map between right adjoints of pushforward.
Let $S$ be a scheme. Consider a cartesian diagram
\begin{equation}
\label{equation-base-change}
\vcenter{
\xymatrix{
X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^f \\
Y' \ar[r]^g & Y
}
}
\end{equation}
where $Y'$ and $X$ are {\bf Tor independent} over $Y$. Denote
$$
a : D_\QCoh(\mathcal{O}_Y) \to D_\QCoh(\mathcal{O}_X)
\quad\text{and}\quad
a' : D_\QCoh(\mathcal{O}_{Y'}) \to D_\QCoh(\mathcal{O}_{X'})
$$
the right adjoints to $Rf_*$ and $Rf'_*$
(Lemma \ref{lemma-twisted-inverse-image}).
The base change map of
Cohomology on Sites, Remark \ref{sites-cohomology-remark-base-change}
gives a transformation of functors
$$
Lg^* \circ Rf_* \longrightarrow Rf'_* \circ L(g')^*
$$
on derived categories of sheaves with quasi-coherent cohomology.
Hence a transformation between the right adjoints in the opposite direction
$$
a \circ Rg_* \longleftarrow Rg'_* \circ a'
$$
\begin{lemma}
\label{lemma-flat-precompose-pus}
In diagram (\ref{equation-base-change}) the map
$a \circ Rg_* \leftarrow Rg'_* \circ a'$ is an isomorphism.
\end{lemma}
\begin{proof}
The base change map $Lg^* \circ Rf_* K \to Rf'_* \circ L(g')^*K$
is an isomorphism for every $K$ in $D_\QCoh(\mathcal{O}_X)$ by
Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-compare-base-change}
(this uses the assumption of Tor independence).
Thus the corresponding transformation between adjoint functors
is an isomorphism as well.
\end{proof}
\noindent
Then we can consider the
morphism of functors
$D_\QCoh(\mathcal{O}_Y) \to D_\QCoh(\mathcal{O}_{X'})$
given by the composition
\begin{equation}
\label{equation-base-change-map}
L(g')^* \circ a \to
L(g')^* \circ a \circ Rg_* \circ Lg^* \leftarrow
L(g')^* \circ Rg'_* \circ a' \circ Lg^* \to a' \circ Lg^*
\end{equation}
The first arrow comes from the adjunction map $\text{id} \to Rg_* Lg^*$
and the last arrow from the adjunction map $L(g')^*Rg'_* \to \text{id}$.
We need the assumption on Tor independence to invert the arrow
in the middle, see Lemma \ref{lemma-flat-precompose-pus}.
Alternatively, we can think of (\ref{equation-base-change-map}) by
adjointness of $L(g')^*$ and $R(g')_*$ as a natural transformation
$$
a \to a \circ Rg_* \circ Lg^* \leftarrow Rg'_* \circ a' \circ Lg^*
$$
were again the second arrow is invertible. If $M \in D_\QCoh(\mathcal{O}_X)$
and $K \in D_\QCoh(\mathcal{O}_Y)$
then on Yoneda functors this map is given by
\begin{align*}
\Hom_X(M, a(K))
& =
\Hom_Y(Rf_*M, K) \\
& \to
\Hom_Y(Rf_*M, Rg_* Lg^*K) \\
& =
\Hom_{Y'}(Lg^*Rf_*M, Lg^*K) \\
& \leftarrow
\Hom_{Y'}(Rf'_* L(g')^*M, Lg^*K) \\
& =
\Hom_{X'}(L(g')^*M, a'(Lg^*K)) \\
& =
\Hom_X(M, Rg'_*a'(Lg^*K))
\end{align*}
(were the arrow pointing left is invertible by the base
change theorem given in
Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-compare-base-change})
which makes things a little bit more explicit.
\medskip\noindent
In this section we first prove that the base change map satisfies
some natural compatibilities with regards to stacking squares as in
Cohomology on Sites, Remarks
\ref{sites-cohomology-remark-compose-base-change} and
\ref{sites-cohomology-remark-compose-base-change-horizontal}
for the usual base change map.
We suggest the reader skip the rest of this section on a first reading.
\begin{lemma}
\label{lemma-compose-base-change-maps}
Let $S$ be a scheme. Consider a commutative diagram
$$
\xymatrix{
X' \ar[r]_k \ar[d]_{f'} & X \ar[d]^f \\
Y' \ar[r]^l \ar[d]_{g'} & Y \ar[d]^g \\
Z' \ar[r]^m & Z
}
$$
of quasi-compact and quasi-separated algebraic spaces over $S$ where
both diagrams are cartesian and where $f$ and $l$
as well as $g$ and $m$ are Tor independent.
Then the maps (\ref{equation-base-change-map})
for the two squares compose to give the base
change map for the outer rectangle (see proof for a precise statement).
\end{lemma}
\begin{proof}
It follows from the assumptions that $g \circ f$ and $m$ are Tor
independent (details omitted), hence the statement makes sense.
In this proof we write $k^*$ in place of $Lk^*$ and $f_*$ instead
of $Rf_*$. Let $a$, $b$, and $c$ be the right adjoints of
Lemma \ref{lemma-twisted-inverse-image}
for $f$, $g$, and $g \circ f$ and similarly for the primed versions.
The arrow corresponding to the top square is the composition
$$
\gamma_{top} :
k^* \circ a \to k^* \circ a \circ l_* \circ l^*
\xleftarrow{\xi_{top}} k^* \circ k_* \circ a' \circ l^* \to a' \circ l^*
$$
where $\xi_{top} : k_* \circ a' \to a \circ l_*$
is an isomorphism (hence can be inverted)
and is the arrow ``dual'' to the base change map
$l^* \circ f_* \to f'_* \circ k^*$. The outer arrows come
from the canonical maps $1 \to l_* \circ l^*$ and $k^* \circ k_* \to 1$.
Similarly for the second square we have
$$
\gamma_{bot} :
l^* \circ b \to l^* \circ b \circ m_* \circ m^*
\xleftarrow{\xi_{bot}} l^* \circ l_* \circ b' \circ m^* \to b' \circ m^*
$$
For the outer rectangle we get
$$
\gamma_{rect} :
k^* \circ c \to k^* \circ c \circ m_* \circ m^*
\xleftarrow{\xi_{rect}} k^* \circ k_* \circ c' \circ m^* \to c' \circ m^*
$$
We have $(g \circ f)_* = g_* \circ f_*$ and hence
$c = a \circ b$ and similarly $c' = a' \circ b'$.
The statement of the lemma is that $\gamma_{rect}$
is equal to the composition
$$
k^* \circ c = k^* \circ a \circ b \xrightarrow{\gamma_{top}}
a' \circ l^* \circ b \xrightarrow{\gamma_{bot}}
a' \circ b' \circ m^* = c' \circ m^*
$$
To see this we contemplate the following diagram:
$$
\xymatrix{
& & k^* \circ a \circ b \ar[d] \ar[lldd] \\
& & k^* \circ a \circ l_* \circ l^* \circ b \ar[ld] \\
k^* \circ a \circ b \circ m_* \circ m^* \ar[r] &
k^* \circ a \circ l_* \circ l^* \circ b \circ m_* \circ m^* &
k^* \circ k_* \circ a' \circ l^* \circ b \ar[u]_{\xi_{top}} \ar[d] \ar[ld] \\
& k^*\circ k_* \circ a' \circ l^* \circ b \circ m_* \circ m^*
\ar[u]_{\xi_{top}} \ar[rd] &
a' \circ l^* \circ b \ar[d] \\
k^* \circ k_* \circ a' \circ b' \circ m^* \ar[uu]_{\xi_{rect}} \ar[ddrr] &
k^*\circ k_* \circ a' \circ l^* \circ l_* \circ b' \circ m^*
\ar[u]_{\xi_{bot}} \ar[l] \ar[dr] &
a' \circ l^* \circ b \circ m_* \circ m^* \\
& & a' \circ l^* \circ l_* \circ b' \circ m^* \ar[u]_{\xi_{bot}} \ar[d] \\
& & a' \circ b' \circ m^*
}
$$
Going down the right hand side we have the composition and going
down the left hand side we have $\gamma_{rect}$.
All the quadrilaterals on the right hand side of this diagram commute
by Categories, Lemma \ref{categories-lemma-properties-2-cat-cats}
or more simply the discussion preceding
Categories, Definition \ref{categories-definition-horizontal-composition}.
Hence we see that it suffices to show the diagram
$$
\xymatrix{
a \circ l_* \circ l^* \circ b \circ m_* &
a \circ b \circ m_* \ar[l] \\
k_* \circ a' \circ l^* \circ b \circ m_* \ar[u]_{\xi_{top}} & \\
k_* \circ a' \circ l^* \circ l_* \circ b' \ar[u]_{\xi_{bot}} \ar[r] &
k_* \circ a' \circ b' \ar[uu]_{\xi_{rect}}
}
$$
becomes commutative if we invert the arrows $\xi_{top}$, $\xi_{bot}$,
and $\xi_{rect}$ (note that this is different from asking the
diagram to be commutative). However, the diagram
$$
\xymatrix{
& a \circ l_* \circ l^* \circ b \circ m_* \\
a \circ l_* \circ l^* \circ l_* \circ b'
\ar[ru]^{\xi_{bot}} & &
k_* \circ a' \circ l^* \circ b \circ m_* \ar[ul]_{\xi_{top}} \\
& k_* \circ a' \circ l^* \circ l_* \circ b'
\ar[ul]^{\xi_{top}} \ar[ur]_{\xi_{bot}}
}
$$
commutes by Categories, Lemma \ref{categories-lemma-properties-2-cat-cats}.
Since the diagrams
$$
\vcenter{
\xymatrix{
a \circ l_* \circ l^* \circ b \circ m_* & a \circ b \circ m \ar[l] \\
a \circ l_* \circ l^* \circ l_* \circ b' \ar[u] &
a \circ l_* \circ b' \ar[l] \ar[u]
}
}
\quad\text{and}\quad
\vcenter{
\xymatrix{
a \circ l_* \circ l^* \circ l_* \circ b' \ar[r] & a \circ l_* \circ b' \\
k_* \circ a' \circ l^* \circ l_* \circ b' \ar[u] \ar[r] &
k_* \circ a' \circ b' \ar[u]
}
}
$$
commute (see references cited) and since the composition of
$l_* \to l_* \circ l^* \circ l_* \to l_*$ is the identity,
we find that it suffices to prove that
$$
k \circ a' \circ b' \xrightarrow{\xi_{bot}} a \circ l_* \circ b
\xrightarrow{\xi_{top}} a \circ b \circ m_*
$$
is equal to $\xi_{rect}$ (via the identifications $a \circ b = c$
and $a' \circ b' = c'$). This is the statement dual to
Cohomology on Sites, Remark \ref{sites-cohomology-remark-compose-base-change}
and the proof is complete.
\end{proof}
\begin{lemma}
\label{lemma-compose-base-change-maps-horizontal}
Let $S$ be a scheme. Consider a commutative diagram
$$
\xymatrix{
X'' \ar[r]_{g'} \ar[d]_{f''} & X' \ar[r]_g \ar[d]_{f'} & X \ar[d]^f \\
Y'' \ar[r]^{h'} & Y' \ar[r]^h & Y
}
$$
of quasi-compact and quasi-separated algebraic spaces over $S$ where
both diagrams are cartesian and where $f$ and $h$
as well as $f'$ and $h'$ are Tor independent.
Then the maps (\ref{equation-base-change-map})
for the two squares compose to give the base
change map for the outer rectangle (see proof for a precise statement).
\end{lemma}
\begin{proof}
It follows from the assumptions that $f$ and $h \circ h'$ are Tor
independent (details omitted), hence the statement makes sense.
In this proof we write $g^*$ in place of $Lg^*$ and $f_*$ instead
of $Rf_*$. Let $a$, $a'$, and $a''$ be the right adjoints of
Lemma \ref{lemma-twisted-inverse-image}
for $f$, $f'$, and $f''$. The arrow corresponding to the right
square is the composition
$$
\gamma_{right} :
g^* \circ a \to g^* \circ a \circ h_* \circ h^*
\xleftarrow{\xi_{right}} g^* \circ g_* \circ a' \circ h^* \to a' \circ h^*
$$
where $\xi_{right} : g_* \circ a' \to a \circ h_*$
is an isomorphism (hence can be inverted)
and is the arrow ``dual'' to the base change map
$h^* \circ f_* \to f'_* \circ g^*$. The outer arrows come
from the canonical maps $1 \to h_* \circ h^*$ and $g^* \circ g_* \to 1$.
Similarly for the left square we have
$$
\gamma_{left} :
(g')^* \circ a' \to (g')^* \circ a' \circ (h')_* \circ (h')^*
\xleftarrow{\xi_{left}}
(g')^* \circ (g')_* \circ a'' \circ (h')^* \to a'' \circ (h')^*
$$
For the outer rectangle we get
$$
\gamma_{rect} :
k^* \circ a \to
k^* \circ a \circ m_* \circ m^* \xleftarrow{\xi_{rect}}
k^* \circ k_* \circ a'' \circ m^* \to
a'' \circ m^*
$$
where $k = g \circ g'$ and $m = h \circ h'$.
We have $k^* = (g')^* \circ g^*$ and $m^* = (h')^* \circ h^*$.
The statement of the lemma is that $\gamma_{rect}$
is equal to the composition
$$
k^* \circ a =
(g')^* \circ g^* \circ a \xrightarrow{\gamma_{right}}
(g')^* \circ a' \circ h^* \xrightarrow{\gamma_{left}}
a'' \circ (h')^* \circ h^* = a'' \circ m^*
$$
To see this we contemplate the following diagram
$$
\xymatrix{
& (g')^* \circ g^* \circ a \ar[d] \ar[ddl] \\
& (g')^* \circ g^* \circ a \circ h_* \circ h^* \ar[ld] \\
(g')^* \circ g^* \circ a \circ h_* \circ (h')_* \circ (h')^* \circ h^* &
(g')^* \circ g^* \circ g_* \circ a' \circ h^*
\ar[u]_{\xi_{right}} \ar[d] \ar[ld] \\
(g')^* \circ g^* \circ g_* \circ a' \circ (h')_* \circ (h')^* \circ h^*
\ar[u]_{\xi_{right}} \ar[dr] &
(g')^* \circ a' \circ h^* \ar[d] \\
(g')^* \circ g^* \circ g_* \circ (g')_* \circ a'' \circ (h')^* \circ h^*
\ar[u]_{\xi_{left}} \ar[ddr] \ar[dr] &
(g')^* \circ a' \circ (h')_* \circ (h')^* \circ h^* \\
& (g')^*\circ (g')_* \circ a'' \circ (h')^* \circ h^*
\ar[u]_{\xi_{left}} \ar[d] \\
& a'' \circ (h')^* \circ h^*
}
$$
Going down the right hand side we have the composition and going
down the left hand side we have $\gamma_{rect}$.
All the quadrilaterals on the right hand side of this diagram commute
by Categories, Lemma \ref{categories-lemma-properties-2-cat-cats}
or more simply the discussion preceding
Categories, Definition \ref{categories-definition-horizontal-composition}.
Hence we see that it suffices to show that
$$
g_* \circ (g')_* \circ a'' \xrightarrow{\xi_{left}}
g_* \circ a' \circ (h')_* \xrightarrow{\xi_{right}}
a \circ h_* \circ (h')_*
$$
is equal to $\xi_{rect}$. This is the statement dual to
Cohomology, Remark \ref{cohomology-remark-compose-base-change-horizontal}
and the proof is complete.
\end{proof}
\begin{remark}
\label{remark-going-around}
Let $S$ be a scheme. Consider a commutative diagram
$$
\xymatrix{
X'' \ar[r]_{k'} \ar[d]_{f''} & X' \ar[r]_k \ar[d]_{f'} & X \ar[d]^f \\
Y'' \ar[r]^{l'} \ar[d]_{g''} & Y' \ar[r]^l \ar[d]_{g'} & Y \ar[d]^g \\
Z'' \ar[r]^{m'} & Z' \ar[r]^m & Z
}
$$
of quasi-compact and quasi-separated algebraic spaces over $S$ where
all squares are cartesian and where
$(f, l)$, $(g, m)$, $(f', l')$, $(g', m')$ are
Tor independent pairs of maps.
Let $a$, $a'$, $a''$, $b$, $b'$, $b''$ be the
right adjoints of Lemma \ref{lemma-twisted-inverse-image}
for $f$, $f'$, $f''$, $g$, $g'$, $g''$.
Let us label the squares of the diagram $A$, $B$, $C$, $D$
as follows
$$
\begin{matrix}
A & B \\
C & D
\end{matrix}
$$
Then the maps (\ref{equation-base-change-map})
for the squares are (where we use $k^* = Lk^*$, etc)
$$
\begin{matrix}
\gamma_A : (k')^* \circ a' \to a'' \circ (l')^* &
\gamma_B : k^* \circ a \to a' \circ l^* \\
\gamma_C : (l')^* \circ b' \to b'' \circ (m')^* &
\gamma_D : l^* \circ b \to b' \circ m^*
\end{matrix}
$$
For the $2 \times 1$ and $1 \times 2$ rectangles we have four further
base change maps
$$
\begin{matrix}
\gamma_{A + B} : (k \circ k')^* \circ a \to a'' \circ (l \circ l')^* \\
\gamma_{C + D} : (l \circ l')^* \circ b \to b'' \circ (m \circ m')^* \\
\gamma_{A + C} : (k')^* \circ (a' \circ b') \to (a'' \circ b'') \circ (m')^* \\
\gamma_{A + C} : k^* \circ (a \circ b) \to (a' \circ b') \circ m^*
\end{matrix}
$$
By Lemma \ref{lemma-compose-base-change-maps-horizontal} we have
$$
\gamma_{A + B} = \gamma_A \circ \gamma_B, \quad
\gamma_{C + D} = \gamma_C \circ \gamma_D
$$
and by Lemma \ref{lemma-compose-base-change-maps} we have
$$
\gamma_{A + C} = \gamma_C \circ \gamma_A, \quad
\gamma_{B + D} = \gamma_D \circ \gamma_B
$$
Here it would be more correct to write
$\gamma_{A + B} = (\gamma_A \star \text{id}_{l^*}) \circ
(\text{id}_{(k')^*} \star \gamma_B)$ with notation as in
Categories, Section \ref{categories-section-formal-cat-cat}
and similarly for the others. However, we continue the
abuse of notation used in the proofs of
Lemmas \ref{lemma-compose-base-change-maps} and
\ref{lemma-compose-base-change-maps-horizontal}
of dropping $\star$ products with identities as one can figure
out which ones to add as long as the source and target of the
transformation is known.
Having said all of this we find (a priori) two transformations
$$
(k')^* \circ k^* \circ a \circ b
\longrightarrow
a'' \circ b'' \circ (m')^* \circ m^*
$$
namely
$$
\gamma_C \circ \gamma_A \circ \gamma_D \circ \gamma_B =
\gamma_{A + C} \circ \gamma_{B + D}
$$
and
$$
\gamma_C \circ \gamma_D \circ \gamma_A \circ \gamma_B =
\gamma_{C + D} \circ \gamma_{A + B}
$$
The point of this remark is to point out that these transformations
are equal. Namely, to see this it suffices to show that
$$
\xymatrix{
(k')^* \circ a' \circ l^* \circ b \ar[r]_{\gamma_D} \ar[d]_{\gamma_A} &
(k')^* \circ a' \circ b' \circ m^* \ar[d]^{\gamma_A} \\
a'' \circ (l')^* \circ l^* \circ b \ar[r]^{\gamma_D} &
a'' \circ (l')^* \circ b' \circ m^*
}
$$
commutes. This is true by
Categories, Lemma \ref{categories-lemma-properties-2-cat-cats}
or more simply the discussion preceding
Categories, Definition \ref{categories-definition-horizontal-composition}.
\end{remark}
\section{Right adjoint of pushforward and base change, II}
\label{section-base-change-II}
\noindent
In this section we prove that the base change map of
Section \ref{section-base-change-map} is an isomorphism
in some cases.
\begin{lemma}
\label{lemma-more-base-change}