-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathspaces-chow.tex
5069 lines (4422 loc) · 172 KB
/
spaces-chow.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Chow Groups of Spaces}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we first discuss Chow groups of algebraic spaces.
Having defined these, we define Chern classes of vector bundles as
operators on these chow groups. The strategy will be entirely
the same as the strategy in the case of schemes. Therefore we
urge the reader to take a look at the introduction
(Chow Homology, Section \ref{chow-section-introduction})
of the corresponding chapter for schemes.
\medskip\noindent
Some related papers: \cite{edidin-graham} and \cite{kresch_cycle}.
\section{Setup}
\label{section-setup}
\noindent
We first fix the category of algebraic spaces we will be working with.
Please keep in mind throughout this chapter that
``decent $+$ locally Noetherian'' is the same as
``quasi-separated $+$ locally Noetherian'' according to
Decent Spaces, Lemma
\ref{decent-spaces-lemma-locally-Noetherian-decent-quasi-separated}.
\begin{situation}
\label{situation-setup}
Here $S$ is a scheme and $B$ is an algebraic space over $S$.
We assume $B$ is quasi-separated, locally Noetherian, and
universally catenary (Decent Spaces, Definition
\ref{decent-spaces-definition-universally-catenary}).
Moreover, we assume given a dimension function
$\delta : |B| \longrightarrow \mathbf{Z}$.
We say $X/B$ is {\it good} if $X$ is an algebraic space
over $B$ whose structure morphism $f : X \to B$ is
quasi-separated and locally of finite type.
In this case we define
$$
\delta = \delta_{X/B} : |X| \longrightarrow \mathbf{Z}
$$
as the map sending $x$ to $\delta(f(x))$ plus the transcendence degree
of $x/f(x)$ (Morphisms of Spaces, Definition
\ref{spaces-morphisms-definition-dimension-fibre}).
This is a dimension function by
More on Morphisms of Spaces, Lemma
\ref{spaces-more-morphisms-lemma-universally-catenary-dimension-function}.
\end{situation}
\noindent
A special case is when $S = B$ is a scheme and $(S, \delta)$ is as in
Chow Homology, Situation \ref{chow-situation-setup}. Thus $B$ might be
the spectrum of a field (Chow Homology, Example \ref{chow-example-field})
or $B = \Spec(\mathbf{Z})$
(Chow Homology, Example \ref{chow-example-domain-dimension-1}).
\medskip\noindent
Many lemma, proposition, theorems, definitions on algebraic spaces
are easier in the setting of Situation \ref{situation-setup} because
the algebraic spaces we are working with are quasi-separated
(and thus a fortiori decent) and locally Noetherian. We will sprinkle
this chapter with remarks such as the following to point this out.
\begin{remark}
\label{remark-sober}
In Situation \ref{situation-setup} if $X/B$ is good, then
$|X|$ is a sober topological space. See
Properties of Spaces, Lemma \ref{spaces-properties-lemma-quasi-separated-sober}
or Decent Spaces, Proposition \ref{decent-spaces-proposition-reasonable-sober}.
We will use this without further mention
to choose generic points of irreducible closed subsets of $|X|$.
\end{remark}
\begin{remark}
\label{remark-integral}
In Situation \ref{situation-setup} if $X/B$ is good, then
$X$ is integral (Spaces over Fields, Definition
\ref{spaces-over-fields-definition-integral-algebraic-space})
if and only if $X$ is reduced and $|X|$ is irreducible.
Moreover, for any point $\xi \in |X|$ there is a unique integral closed
subspace $Z \subset X$ such that $\xi$ is the generic point
of the closed subset $|Z| \subset |X|$, see
Spaces over Fields, Lemma
\ref{spaces-over-fields-lemma-decent-irreducible-closed}.
\end{remark}
\noindent
If $B$ is Jacobson and $\delta$ sends closed points to zero, then $\delta$
is the function sending a point to the dimension of its closure.
\begin{lemma}
\label{lemma-delta-is-dimension}
In Situation \ref{situation-setup} assume $B$ is Jacobson
and that $\delta(b) = 0$ for every closed point $b$ of $|B|$.
Let $X/B$ be good. If $Z \subset X$ is an integral closed subspace
with generic point $\xi \in |Z|$, then the following integers are the same:
\begin{enumerate}
\item $\delta(\xi) = \delta_{X/B}(\xi)$,
\item $\dim(|Z|)$,
\item $\text{codim}(\{z\}, |Z|)$ for $z \in |Z|$ closed,
\item the dimension of the local ring of $Z$ at $z$ for
$z \in |Z|$ closed, and
\item $\dim(\mathcal{O}_{Z, \overline{z}})$ for $z \in |Z|$ closed.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $X$, $Z$, $\xi$ be as in the lemma.
Since $X$ is locally of finite type over $B$ we see that $X$ is Jacobson, see
Decent Spaces, Lemma
\ref{decent-spaces-lemma-Jacobson-universally-Jacobson}.
Hence $X_{\text{ft-pts}} \subset |X|$ is the set of closed points
by Decent Spaces, Lemma \ref{decent-spaces-lemma-decent-Jacobson-ft-pts}.
Given a chain $T_0 \supset \ldots \supset T_e$
of irreducible closed subsets of $|Z|$ we have
$T_e \cap X_{\text{ft-pts}}$ nonempty by
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-enough-finite-type-points}.
Thus we can always assume such a chain ends
with $T_e = \{z\}$ for some $z \in |Z|$ closed.
It follows that $\dim(Z) = \sup_z \text{codim}(\{z\}, |Z|)$
where $z$ runs over the closed points of $|Z|$.
We have $\text{codim}(\{z\}, Z) = \delta(\xi) - \delta(z)$
by Topology, Lemma \ref{topology-lemma-dimension-function-catenary}.
By Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-finite-type-points-morphism}
the image of $z$ is a finite type point of $B$, i.e.,
a closed point of $|B|$. By
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-jacobson-finite-type-points}
the transcendence degree of $z/b$ is $0$.
We conclude that $\delta(z) = \delta(b) = 0$ by assumption.
Thus we obtain equality
$$
\dim(|Z|) = \text{codim}(\{z\}, Z) = \delta(\xi)
$$
for all $z \in |Z|$ closed. Finally, we have that
$\text{codim}(\{z\}, Z)$ is equal to the dimension of the
local ring of $Z$ at $z$ by
Decent Spaces, Lemma \ref{decent-spaces-lemma-codimension-local-ring}
which in turn is equal to
$\dim(\mathcal{O}_{Z, \overline{z}})$ by
Properties of Spaces, Lemma \ref{spaces-properties-lemma-dimension-local-ring}.
\end{proof}
\noindent
In the situation of the lemma above the value of $\delta$
at the generic point of a closed irreducible subset
is the dimension of the irreducible closed subset.
This motivates the following definition.
\begin{definition}
\label{definition-delta-dimension}
In Situation \ref{situation-setup} for any good $X/B$
and any irreducible closed subset $T \subset |X|$ we define
$$
\dim_\delta(T) = \delta(\xi)
$$
where $\xi \in T$ is the generic point of $T$.
We will call this the {\it $\delta$-dimension of $T$}.
If $T \subset |X|$ is any closed subset, then we define
$\dim_\delta(T)$ as the supremum of the $\delta$-dimensions
of the irreducible components of $T$.
If $Z$ is a closed subspace of $X$, then we set
$\dim_\delta(Z) = \dim_\delta(|Z|)$.
\end{definition}
\noindent
Of course this just means that
$\dim_\delta(T) = \sup \{\delta(t) \mid t \in T\}$.
\section{Cycles}
\label{section-cycles}
\noindent
This is the analogue of Chow Homology, Section \ref{chow-section-cycles}
\medskip\noindent
Since we are not assuming our spaces are quasi-compact we have
to be a little careful when defining cycles. We have to allow
infinite sums because a rational function may have infinitely many
poles for example. In any case, if $X$ is quasi-compact then a
cycle is a finite sum as usual.
\begin{definition}
\label{definition-cycles}
In Situation \ref{situation-setup} let $X/B$ be good.
Let $k \in \mathbf{Z}$.
\begin{enumerate}
\item A {\it cycle on $X$} is a formal sum
$$
\alpha = \sum n_Z [Z]
$$
where the sum is over integral closed subspaces $Z \subset X$,
each $n_Z \in \mathbf{Z}$, and
$\{|Z|; n_Z \not = 0\}$ is a locally finite
collection of subsets of $|X|$
(Topology, Definition \ref{topology-definition-locally-finite}).
\item A {\it $k$-cycle} on $X$ is
a cycle
$$
\alpha = \sum n_Z [Z]
$$
where $n_Z \not = 0 \Rightarrow \dim_\delta(Z) = k$.
\item The abelian group of all $k$-cycles on $X$ is denoted $Z_k(X)$.
\end{enumerate}
\end{definition}
\noindent
In other words, a $k$-cycle on $X$ is a locally finite formal
$\mathbf{Z}$-linear combination of integral closed subspaces
(Remark \ref{remark-integral}) of $\delta$-dimension $k$.
Addition of $k$-cycles $\alpha = \sum n_Z[Z]$ and
$\beta = \sum m_Z[Z]$ is given by
$$
\alpha + \beta = \sum (n_Z + m_Z)[Z],
$$
i.e., by adding the coefficients.
\section{Multiplicities}
\label{section-multiplicities}
\noindent
A section with a few simple results on lengths and multiplicities.
\begin{lemma}
\label{lemma-length}
Let $S$ be a scheme and let $X$ be an algebraic space over $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $x \in |X|$. Let $d \in \{0, 1, 2, \ldots, \infty\}$.
The following are equivalent
\begin{enumerate}
\item
$\text{length}_{\mathcal{O}_{X, \overline{x}}} \mathcal{F}_{\overline{x}} = d$
\item for some \'etale morphism $U \to X$ with $U$ a scheme
and $u \in U$ mapping to $x$ we have
$\text{length}_{\mathcal{O}_{U, u}} (\mathcal{F}|_U)_u = d$
\item for any \'etale morphism $U \to X$ with $U$ a scheme
and $u \in U$ mapping to $x$ we have
$\text{length}_{\mathcal{O}_{U, u}} (\mathcal{F}|_U)_u = d$
\end{enumerate}
\end{lemma}
\begin{proof}
Let $U \to X$ and $u \in U$ be as in (2) or (3). Then we know that
$\mathcal{O}_{X, \overline{x}}$ is the strict henselization of
$\mathcal{O}_{U, u}$ and that
$$
\mathcal{F}_{\overline{x}} =
(\mathcal{F}|_U)_u \otimes_{\mathcal{O}_{U, u}} \mathcal{O}_{X, \overline{x}}
$$
See Properties of Spaces,
Lemmas \ref{spaces-properties-lemma-describe-etale-local-ring} and
\ref{spaces-properties-lemma-stalk-quasi-coherent}.
Thus the equality of the lengths follows from
Algebra, Lemma \ref{algebra-lemma-pullback-module}
the fact that $\mathcal{O}_{U, u} \to \mathcal{O}_{X, \overline{x}}$
is flat and the fact that
$\mathcal{O}_{X, \overline{x}}/\mathfrak m_u\mathcal{O}_{X, \overline{x}}$
is equal to the residue field of $\mathcal{O}_{X, \overline{x}}$.
These facts about strict henselizations can be found in
More on Algebra, Lemma \ref{more-algebra-lemma-dumb-properties-henselization}.
\end{proof}
\begin{definition}
\label{definition-length-at-x}
Let $S$ be a scheme and let $X$ be an algebraic space over $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $x \in |X|$. Let $d \in \{0, 1, 2, \ldots, \infty\}$.
We say {\it $\mathcal{F}$ has length $d$ at $x$}
if the equivalent conditions of Lemma \ref{lemma-length}
are satisfied.
\end{definition}
\begin{lemma}
\label{lemma-length-closed-immersion}
Let $S$ be a scheme. Let $i : Y \to X$ be a closed immersion of
algebraic spaces over $S$. Let $\mathcal{G}$ be a quasi-coherent
$\mathcal{O}_Y$-module. Let $y \in |Y|$ with image $x \in |X|$.
Let $d \in \{0, 1, 2, \ldots, \infty\}$. The following are
equivalent
\begin{enumerate}
\item $\mathcal{G}$ has length $d$ at $y$, and
\item $i_*\mathcal{G}$ has length $d$ at $x$.
\end{enumerate}
\end{lemma}
\begin{proof}
Choose an \'etale morphism $f : U \to X$ with $U$ a scheme
and $u \in U$ mapping to $x$. Set $V = Y \times_X U$.
Denote $g : V \to Y$ and $j : V \to U$ the projections.
Then $j : V \to U$ is a closed immersion and there is a unique
point $v \in V$ mapping to $y \in |Y|$ and $u \in U$
(use Properties of Spaces, Lemma \ref{spaces-properties-lemma-points-cartesian}
and Spaces, Lemma \ref{spaces-lemma-base-change-immersions}).
We have $j_*(\mathcal{G}|_V) = (i_*\mathcal{G})|_U$ as modules
on the scheme $V$ and $j_*$ the ``usual'' pushforward of modules
for the morphism of schemes $j$, see discussion surrounding
Cohomology of Spaces, Equation
(\ref{spaces-cohomology-equation-representable-higher-direct-image}).
In this way we reduce to the case of schemes: if $i : Y \to X$
is a closed immersion of schemes, then
$$
(i_*\mathcal{G})_x = \mathcal{G}_y
$$
as modules over $\mathcal{O}_{X, x}$ where the module structure
on the right hand side is given by the surjection
$i_y^\sharp : \mathcal{O}_{X, x} \to \mathcal{O}_{Y, y}$.
Thus equality by
Algebra, Lemma \ref{algebra-lemma-length-independent}.
\end{proof}
\begin{lemma}
\label{lemma-length-finite}
Let $S$ be a scheme and let $X$ be a
locally Noetherian algebraic space over $S$.
Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module.
Let $x \in |X|$. The following are equivalent
\begin{enumerate}
\item for some \'etale morphism $U \to X$ with $U$ a scheme
and $u \in U$ mapping to $x$ we have $u$ is a generic point
of an irreducible component of $\text{Supp}(\mathcal{F}|_U)$,
\item for any \'etale morphism $U \to X$ with $U$ a scheme
and $u \in U$ mapping to $x$ we have $u$ is a generic point
of an irreducible component of $\text{Supp}(\mathcal{F}|_U)$,
\item the length of $\mathcal{F}$ at $x$ is finite and nonzero.
\end{enumerate}
If $X$ is decent (equivalently quasi-separated) then these are
also equivalent to
\begin{enumerate}
\item[(4)] $x$ is a generic point of an irreducible component of
$\text{Supp}(\mathcal{F})$.
\end{enumerate}
\end{lemma}
\begin{proof}
Assume $f : U \to X$ is an \'etale morphism with $U$ a scheme
and $u \in U$ maps to $x$. Then $\mathcal{F}|_U = f^*\mathcal{F}$
is a coherent $\mathcal{O}_U$-module on the locally Noetherian
scheme $U$ and in particular $(\mathcal{F}|_U)_u$ is a finite
$\mathcal{O}_{U, u}$-module, see Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-coherent-Noetherian}
and Cohomology of Schemes, Lemma
\ref{coherent-lemma-coherent-Noetherian}.
Recall that the support of $\mathcal{F}|_U$ is a closed subset of $U$
(Morphisms, Lemma \ref{morphisms-lemma-support-finite-type}) and
that the support of $(\mathcal{F}|_U)_u$ is the pullback
of the support of $\mathcal{F}|_U$ by the morphism
$\Spec(\mathcal{O}_{U, u}) \to U$. Thus $u$ is a generic point
of an irreducible component of $\text{Supp}(\mathcal{F}|_U)$
if and only if the support of $(\mathcal{F}|_U)_u$ is equal
to the maximal ideal of $\mathcal{O}_{U, u}$.
Now the equivalence of (1), (2), (3) follows from
by Algebra, Lemma \ref{algebra-lemma-support-point}.
\medskip\noindent
If $X$ is decent we choose an \'etale morphism $f : U \to X$ and a point
$u \in U$ mapping to $x$. The support of $\mathcal{F}$ pulls back to
the support of $\mathcal{F}|_U$, see
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-support-finite-type}.
Also, specializations $x' \leadsto x$ in $|X|$ lift to specializations
$u' \leadsto u$ in $U$ and any nontrivial specialization $u' \leadsto u$ in $U$
maps to a nontrivial specialization $f(u') \leadsto f(u)$ in $|X|$, see
Decent Spaces, Lemmas
\ref{decent-spaces-lemma-decent-specialization} and
\ref{decent-spaces-lemma-decent-no-specializations-map-to-same-point}.
Using that $|X|$ and $U$ are sober topological spaces
(Decent Spaces, Proposition \ref{decent-spaces-proposition-reasonable-sober}
and
Schemes, Lemma \ref{schemes-lemma-scheme-sober}) we conclude
$x$ is a generic point of the support of $\mathcal{F}$
if and only if $u$ is a generic point of the support of
$\mathcal{F}|_U$. We conclude (4) is equivalent to (1).
\medskip\noindent
The parenthetical statement follows from Decent Spaces, Lemma
\ref{decent-spaces-lemma-locally-Noetherian-decent-quasi-separated}.
\end{proof}
\begin{lemma}
\label{lemma-point-of-max-dimension}
In Situation \ref{situation-setup} let $X/B$ be good.
Let $T \subset |X|$ be a closed subset and $t \in T$.
If $\dim_\delta(T) \leq k$ and $\delta(t) = k$, then
$t$ is a generic point of an irreducible component of $T$.
\end{lemma}
\begin{proof}
We know $t$ is contained in an irreducible component $T' \subset T$.
Let $t' \in T'$ be the generic point. Then
$k \geq \delta(t') \geq \delta(t)$. Since $\delta$ is a dimension
function we see that $t = t'$.
\end{proof}
\section{Cycle associated to a closed subspace}
\label{section-cycle-of-closed-subscheme}
\noindent
This section is the analogue of
Chow Homology, Section \ref{chow-section-cycle-of-closed-subscheme}.
\begin{remark}
\label{remark-irreducible-component}
In Situation \ref{situation-setup} let $X/B$ be good.
Let $Y \subset X$ be a closed subspace. By
Remarks \ref{remark-sober} and \ref{remark-integral}
there are $1$-to-$1$ correspondences between
\begin{enumerate}
\item irreducible components $T$ of $|Y|$,
\item generic points of irreducible components of $|Y|$, and
\item integral closed subspaces $Z \subset Y$ with the property that
$|Z|$ is an irreducible component of $|Y|$.
\end{enumerate}
In this chapter we will call $Z$ as in (3) an
{\it irreducible component of $Y$}
and we will call $\xi \in |Z|$ its {\it generic point}.
\end{remark}
\begin{definition}
\label{definition-cycle-associated-to-closed-subscheme}
In Situation \ref{situation-setup} let $X/B$ be good.
Let $Y \subset X$ be a closed subspace.
\begin{enumerate}
\item For an irreducible component $Z \subset Y$ with generic point $\xi$
the length of $\mathcal{O}_Y$ at $\xi$
(Definition \ref{definition-length-at-x}) is called the
{\it multiplicity of $Z$ in $Y$}.
By Lemma \ref{lemma-length-finite} applied to $\mathcal{O}_Y$
on $Y$ this is a positive integer.
\item Assume $\dim_\delta(Y) \leq k$.
The {\it $k$-cycle associated to $Y$} is
$$
[Y]_k = \sum m_{Z, Y}[Z]
$$
where the sum is over the irreducible components $Z$ of $Y$
of $\delta$-dimension $k$ and $m_{Z, Y}$ is the multiplicity
of $Z$ in $Y$.
This is a $k$-cycle by Spaces over Fields, Lemma
\ref{spaces-over-fields-lemma-components-locally-finite}.
\end{enumerate}
\end{definition}
\noindent
It is important to note that we only define $[Y]_k$ if the $\delta$-dimension
of $Y$ does not exceed $k$. In other words, by convention, if we write
$[Y]_k$ then this implies that $\dim_\delta(Y) \leq k$.
\section{Cycle associated to a coherent sheaf}
\label{section-cycle-of-coherent-sheaf}
\noindent
This is the analogue of
Chow Homology, Section \ref{chow-section-cycle-of-coherent-sheaf}.
\begin{definition}
\label{definition-cycle-associated-to-coherent-sheaf}
In Situation \ref{situation-setup} let $X/B$ be good.
Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module.
\begin{enumerate}
\item For an integral closed subspace $Z \subset X$ with generic point $\xi$
such that $|Z|$ is an irreducible component of $\text{Supp}(\mathcal{F})$
the length of $\mathcal{F}$ at $\xi$ (Definition \ref{definition-length-at-x})
is called the {\it multiplicity of $Z$ in $\mathcal{F}$}.
By Lemma \ref{lemma-length-finite} this is a positive integer.
\item Assume $\dim_\delta(\text{Supp}(\mathcal{F})) \leq k$.
The {\it $k$-cycle associated to $\mathcal{F}$} is
$$
[\mathcal{F}]_k = \sum m_{Z, \mathcal{F}}[Z]
$$
where the sum is over the integral closed subspaces $Z \subset X$
corresponding to irreducible components of
$\text{Supp}(\mathcal{F})$ of $\delta$-dimension $k$
and $m_{Z, \mathcal{F}}$ is the multiplicity of $Z$ in $\mathcal{F}$.
This is a $k$-cycle by Spaces over Fields, Lemma
\ref{spaces-over-fields-lemma-components-locally-finite}.
\end{enumerate}
\end{definition}
\noindent
It is important to note that we only define $[\mathcal{F}]_k$
if $\mathcal{F}$ is coherent and the $\delta$-dimension
of $\text{Supp}(\mathcal{F})$ does not exceed $k$. In other words,
by convention, if we write $[\mathcal{F}]_k$ then this implies that
$\mathcal{F}$ is coherent on $X$ and
$\dim_\delta(\text{Supp}(\mathcal{F})) \leq k$.
\begin{lemma}
\label{lemma-reformulate-coeff-coherent}
In Situation \ref{situation-setup} let $X/B$ be good.
Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module
with $\dim_\delta(\text{Supp}(\mathcal{F})) \leq k$.
Let $Z$ be an integral closed subspace of $X$ with $\dim_\delta(Z) = k$.
Let $\xi \in |Z|$ be the generic point.
Then the coefficient of $Z$ in $[\mathcal{F}]_k$
is the length of $\mathcal{F}$ at $\xi$.
\end{lemma}
\begin{proof}
Observe that $|Z|$ is an irreducible component of $\text{Supp}(\mathcal{F})$
if and only if $\xi \in \text{Supp}(\mathcal{F})$, see
Lemma \ref{lemma-point-of-max-dimension}.
Moreover, the length of $\mathcal{F}$ at $\xi$ is zero if
$\xi \not \in \text{Supp}(\mathcal{F})$. Combining this
with Definition \ref{definition-cycle-associated-to-coherent-sheaf}
we conclude.
\end{proof}
\begin{lemma}
\label{lemma-cycle-closed-coherent}
In Situation \ref{situation-setup} let $X/B$ be good.
Let $Y \subset X$ be a closed subspace.
If $\dim_\delta(Y) \leq k$, then $[Y]_k = [i_*\mathcal{O}_Y]_k$
where $i : Y \to X$ is the inclusion morphism.
\end{lemma}
\begin{proof}
Let $Z$ be an integral closed subspace of $X$ with $\dim_\delta(Z) = k$.
If $Z \not \subset Y$ the $Z$ has coefficient zero in both
$[Y]_k$ and $[i_*\mathcal{O}_Y]_k$. If $Z \subset Y$, then
the generic point of $Z$ may be viewed as a point $y \in |Y|$
whose image $x \in |X|$. Then the coefficient of $Z$ in
$[Y]_k$ is the length of $\mathcal{O}_Y$ at $y$ and the
coefficient of $Z$ in $[i_*\mathcal{O}_Y]_k$ is the length
of $i_*\mathcal{O}_Y$ at $x$. Thus the equality of the coefficients
follows from Lemma \ref{lemma-length-closed-immersion}.
\end{proof}
\begin{lemma}
\label{lemma-additivity-sheaf-cycle}
In Situation \ref{situation-setup} let $X/B$ be good.
Let $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$
be a short exact sequence of coherent $\mathcal{O}_X$-modules.
Assume that the $\delta$-dimension of the supports
of $\mathcal{F}$, $\mathcal{G}$, and $\mathcal{H}$ are $\leq k$.
Then $[\mathcal{G}]_k = [\mathcal{F}]_k + [\mathcal{H}]_k$.
\end{lemma}
\begin{proof}
Let $Z$ be an integral closed subspace of $X$ with $\dim_\delta(Z) = k$.
It suffices to show that the coefficients of
$Z$ in $[\mathcal{G}]_k$, $[\mathcal{F}]_k$, and $[\mathcal{H}]_k$
satisfy the corresponding additivity. By
Lemma \ref{lemma-reformulate-coeff-coherent}
it suffices to show
$$
\text{the length of }\mathcal{G}\text{ at }x =
\text{the length of }\mathcal{F}\text{ at }x +
\text{the length of }\mathcal{H}\text{ at }x
$$
for any $x \in |X|$. Looking at Definition \ref{definition-length-at-x}
this follows immediately from additivity of lengths, see
Algebra, Lemma \ref{algebra-lemma-length-additive}.
\end{proof}
\section{Preparation for proper pushforward}
\label{section-preparation-pushforward}
\noindent
This section is the analogue of
Chow Homology, Section \ref{chow-section-preparation-pushforward}.
\begin{lemma}
\label{lemma-proper-image}
In Situation \ref{situation-setup} let $X,Y/B$ be good and let $f : X \to Y$
be a morphism over $B$. If $Z \subset X$ is an integral closed subspace, then
there exists a unique integral closed subspace $Z' \subset Y$ such that there
is a commutative diagram
$$
\xymatrix{
Z \ar[r] \ar[d] & X \ar[d]^f \\
Z' \ar[r] & Y
}
$$
with $Z \to Z'$ dominant. If $f$ is proper, then $Z \to Z'$ is proper
and surjective.
\end{lemma}
\begin{proof}
Let $\xi \in |Z|$ be the generic point. Let $Z' \subset Y$ be the integral
closed subspace whose generic point is $\xi' = f(\xi)$, see
Remark \ref{remark-integral}. Since $\xi \in |f^{-1}(Z')| = |f|^{-1}(|Z'|)$
by Properties of Spaces, Lemma \ref{spaces-properties-lemma-points-cartesian}
and since $Z$ is the reduced with $|Z| = \overline{\{\xi\}}$
we see that $Z \subset f^{-1}(Z')$ as closed subspaces of $X$ (see
Properties of Spaces, Lemma \ref{spaces-properties-lemma-map-into-reduction}).
Thus we obtain our morphism $Z \to Z'$.
This morphism is dominant as the generic point of $Z$
maps to the generic point of $Z'$. Uniqueness of $Z'$ is clear.
If $f$ is proper, then $Z \to Y$ is proper as a composition
of proper morphisms (Morphisms of Spaces, Lemmas
\ref{spaces-morphisms-lemma-base-change-proper} and
\ref{spaces-morphisms-lemma-closed-immersion-proper}).
Then we conclude that $Z \to Z'$ is proper by
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-universally-closed-permanence}.
Surjectivity then follows as the image of a proper morphism is closed.
\end{proof}
\begin{remark}
\label{remark-residue-field}
In Situation \ref{situation-setup} let $X/B$ be good. Every $x \in |X|$
can be represented by a (unique) monomorphism $\Spec(k) \to X$ where
$k$ is a field, see
Decent Spaces, Lemma \ref{decent-spaces-lemma-decent-points-monomorphism}.
Then $k$ is the {\it residue field of} $x$ and is denoted $\kappa(x)$.
Recall that $X$ has a dense open subscheme $U \subset X$
(Properties of Spaces, Proposition
\ref{spaces-properties-proposition-locally-quasi-separated-open-dense-scheme}).
If $x \in U$, then $\kappa(x)$ agrees with the residue
field of $x$ on $U$ as a scheme. See Decent Spaces, Section
\ref{decent-spaces-section-residue-fields-henselian-local-rings}.
\end{remark}
\begin{remark}
\label{remark-function-field}
In Situation \ref{situation-setup} let $X/B$ be good. Assume $X$ is integral.
In this case the {\it function field} $R(X)$ of $X$ is defined and
is equal to the residue field of $X$ at its generic point.
See Spaces over Fields, Definition
\ref{spaces-over-fields-definition-function-field}.
Combining this with Remark \ref{remark-integral}
we find that for any $x \in X$ the residue field
$\kappa(x)$ is the function field of the
unique integral closed subspace $Z \subset X$
whose generic point is $x$.
\end{remark}
\begin{lemma}
\label{lemma-equal-dimension}
In Situation \ref{situation-setup} let $X, Y/B$ be good and let
$f : X \to Y$ be a morphism over $B$.
Assume $X$, $Y$ integral and $\dim_\delta(X) = \dim_\delta(Y)$.
Then either $f$ factors through a proper closed subspace
of $Y$, or $f$ is dominant and the extension of function fields
$R(X) / R(Y)$ is finite.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-proper-image} there is a unique integral closed
subspace $Z \subset Y$ such that $f$ factors through a dominant
morphism $X \to Z$. Then $Z = Y$ if and only if
$\dim_\delta(Z) = \dim_\delta(Y)$. On the other hand, by
our construction of dimension functions (see Situation \ref{situation-setup})
we have $\dim_\delta(X) = \dim_\delta(Z) + r$ where $r$ the
transcendence degree of the extension $R(X)/R(Z)$. Combining this with
Spaces over Fields, Lemma \ref{spaces-over-fields-lemma-finite-degree}
the lemma follows.
\end{proof}
\begin{lemma}
\label{lemma-quasi-compact-locally-finite}
In Situation \ref{situation-setup} let $X, Y/B$ be good.
Let $f : X \to Y$ be a morphism over $B$.
Assume $f$ is quasi-compact, and $\{T_i\}_{i \in I}$ is a locally
finite collection of closed subsets of $|X|$.
Then $\{\overline{|f|(T_i)}\}_{i \in I}$ is a locally finite
collection of closed subsets of $|Y|$.
\end{lemma}
\begin{proof}
Let $V \subset |Y|$ be a quasi-compact open subset.
Then $|f|^{-1}(V) \subset |X|$ is quasi-compact
by Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-quasi-compact-is-quasi-compact}.
Hence the set
$\{i \in I : T_i \cap |f|^{-1}(V) \not = \emptyset \}$
is finite by a simple topological argument which we omit.
Since this is the same as the set
$$
\{i \in I : |f|(T_i) \cap V \not = \emptyset \} =
\{i \in I : \overline{|f|(T_i)} \cap V \not = \emptyset \}
$$
the lemma is proved.
\end{proof}
\section{Proper pushforward}
\label{section-proper-pushforward}
\noindent
This section is the analogue of
Chow Homology, Section \ref{chow-section-proper-pushforward}.
\begin{definition}
\label{definition-proper-pushforward}
In Situation \ref{situation-setup} let $X, Y/B$ be good.
Let $f : X \to Y$ be a morphism over $B$.
Assume $f$ is proper.
\begin{enumerate}
\item Let $Z \subset X$ be an integral closed subspace
with $\dim_\delta(Z) = k$. Let $Z' \subset Y$ be the
image of $Z$ as in Lemma \ref{lemma-proper-image}.
We define
$$
f_*[Z] =
\left\{
\begin{matrix}
0 & \text{if} & \dim_\delta(Z')< k, \\
\deg(Z/Z') [Z'] & \text{if} & \dim_\delta(Z') = k.
\end{matrix}
\right.
$$
The degree of $Z$ over $Z'$ is defined and finite if
$\dim_\delta(Z') = \dim_\delta(Z)$ by Lemma \ref{lemma-equal-dimension} and
Spaces over Fields, Definition \ref{spaces-over-fields-definition-degree}.
\item Let $\alpha = \sum n_Z [Z]$ be a $k$-cycle on $X$. The
{\it pushforward} of $\alpha$ as the sum
$$
f_* \alpha = \sum n_Z f_*[Z]
$$
where each $f_*[Z]$ is defined as above. The sum is locally finite
by Lemma \ref{lemma-quasi-compact-locally-finite} above.
\end{enumerate}
\end{definition}
\noindent
By definition the proper pushforward of cycles
$$
f_* : Z_k(X) \longrightarrow Z_k(Y)
$$
is a homomorphism of abelian groups. It turns $X \mapsto Z_k(X)$
into a covariant functor on the category whose object are good
algebraic spaces over $B$ and whose morphisms are proper morphisms
over $B$.
\begin{lemma}
\label{lemma-compose-pushforward}
In Situation \ref{situation-setup} let $X, Y, Z/B$ be good.
Let $f : X \to Y$ and $g : Y \to Z$ be proper morphisms over $B$.
Then $g_* \circ f_* = (g \circ f)_*$ as maps $Z_k(X) \to Z_k(Z)$.
\end{lemma}
\begin{proof}
Let $W \subset X$ be an integral closed subspace of dimension $k$.
Consider the integral closed subspaces
$W' \subset Y$ and $W'' \subset Z$
we get by applying Lemma \ref{lemma-proper-image}
to $f$ and $W$ and then to $g$ and $W'$.
Then $W \to W'$ and $W' \to W''$ are surjective and proper.
We have to show that $g_*(f_*[W]) = (f \circ g)_*[W]$.
If $\dim_\delta(W'') < k$, then both sides are zero.
If $\dim_\delta(W'') = k$, then we see $W \to W'$ and $W' \to W''$
both satisfy the hypotheses of Lemma \ref{lemma-equal-dimension}.
Hence
$$
g_*(f_*[W]) = \deg(W/W')\deg(W'/W'')[W''],
\quad
(f \circ g)_*[W] = \deg(W/W'')[W''].
$$
Then we can apply
Spaces over Fields, Lemma \ref{spaces-over-fields-lemma-degree-composition}
to conclude.
\end{proof}
\begin{lemma}
\label{lemma-cycle-push-sheaf}
In Situation \ref{situation-setup} let $f : X \to Y$ be a proper morphism
of good algebraic spaces over $B$.
\begin{enumerate}
\item Let $Z \subset X$ be a closed subspace with $\dim_\delta(Z) \leq k$.
Then
$$
f_*[Z]_k = [f_*{\mathcal O}_Z]_k.
$$
\item Let $\mathcal{F}$ be a coherent sheaf on $X$ such that
$\dim_\delta(\text{Supp}(\mathcal{F})) \leq k$. Then
$$
f_*[\mathcal{F}]_k = [f_*{\mathcal F}]_k.
$$
\end{enumerate}
Note that the statement makes sense since $f_*\mathcal{F}$ and
$f_*\mathcal{O}_Z$ are coherent $\mathcal{O}_Y$-modules by
Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-proper-pushforward-coherent}.
\end{lemma}
\begin{proof}
Part (1) follows from (2) and Lemma \ref{lemma-cycle-closed-coherent}.
Let $\mathcal{F}$ be a coherent sheaf on $X$.
Assume that $\dim_\delta(\text{Supp}(\mathcal{F})) \leq k$.
By Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-coherent-support-closed}
there exists a closed immersion $i : Z \to X$ and a coherent
$\mathcal{O}_Z$-module $\mathcal{G}$ such that
$i_*\mathcal{G} \cong \mathcal{F}$ and such that the support
of $\mathcal{F}$ is $Z$. Let $Z' \subset Y$ be the scheme theoretic image
of $f|_Z : Z \to Y$, see Morphisms of Spaces, Definition
\ref{spaces-morphisms-definition-scheme-theoretic-image}.
Consider the commutative diagram
$$
\xymatrix{
Z \ar[r]_i \ar[d]_{f|_Z} &
X \ar[d]^f \\
Z' \ar[r]^{i'} & Y
}
$$
of algebraic spaces over $B$. Observe that $f|_Z$ is surjective
(follows from Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-quasi-compact-scheme-theoretic-image}
and the fact that $|f|$ is closed) and proper
(follows from Morphisms of Spaces, Lemmas
\ref{spaces-morphisms-lemma-base-change-proper},
\ref{spaces-morphisms-lemma-closed-immersion-proper}, and
\ref{spaces-morphisms-lemma-universally-closed-permanence}).
We have $f_*\mathcal{F} = f_*i_*\mathcal{G} = i'_*(f|_Z)_*\mathcal{G}$
by going around the diagram in two ways. Suppose we know the result holds
for closed immersions and for $f|_Z$. Then we see that
$$
f_*[\mathcal{F}]_k = f_*i_*[\mathcal{G}]_k
= (i')_*(f|_Z)_*[\mathcal{G}]_k =
(i')_*[(f|_Z)_*\mathcal{G}]_k =
[(i')_*(f|_Z)_*\mathcal{G}]_k = [f_*\mathcal{F}]_k
$$
as desired. The case of a closed immersion follows from
Lemma \ref{lemma-length-closed-immersion} and the definitions.
Thus we have reduced to the case where
$\dim_\delta(X) \leq k$ and $f : X \to Y$ is proper and surjective.
\medskip\noindent
Assume $\dim_\delta(X) \leq k$ and $f : X \to Y$ is proper and surjective.
For every irreducible component $Z \subset Y$
with generic point $\eta$ there exists a point $\xi \in X$ such
that $f(\xi) = \eta$. Hence $\delta(\eta) \leq \delta(\xi) \leq k$.
Thus we see that in the expressions
$$
f_*[\mathcal{F}]_k = \sum n_Z[Z],
\quad
\text{and}
\quad
[f_*\mathcal{F}]_k = \sum m_Z[Z].
$$
whenever $n_Z \not = 0$, or $m_Z \not = 0$ the integral closed
subspace $Z$ is actually an irreducible component of $Y$ of
$\delta$-dimension $k$ (see Lemma \ref{lemma-point-of-max-dimension}).
Pick such an integral closed subspace $Z \subset Y$ and denote $\eta$
its generic point.
Note that for any $\xi \in X$ with $f(\xi) = \eta$ we have $\delta(\xi) \geq k$
and hence $\xi$ is a generic point of an irreducible component
of $X$ of $\delta$-dimension $k$ as well
(see Lemma \ref{lemma-point-of-max-dimension}).
By Spaces over Fields, Lemma \ref{spaces-over-fields-lemma-finite-in-codim-1}
there exists an open subspace $\eta \in V \subset Y$
such that $f^{-1}(V) \to V$ is finite.
Since $\eta$ is a generic point of an irreducible component of
$|Y|$ we may assume $V$ is an affine scheme, see
Properties of Spaces, Proposition
\ref{spaces-properties-proposition-locally-quasi-separated-open-dense-scheme}.
Replacing $Y$ by $V$ and $X$ by $f^{-1}(V)$ we reduce to the
case where $Y$ is affine, and $f$ is finite.
In particular $X$ and $Y$ are schemes and we reduce to
the corresponding result for schemes, see
Chow Homology, Lemma \ref{chow-lemma-cycle-push-sheaf}
(applied with $S = Y$).
\end{proof}
\section{Preparation for flat pullback}
\label{section-preparation-flat-pullback}
\noindent
This section is the analogue of
Chow Homology, Section \ref{chow-section-preparation-flat-pullback}.
\medskip\noindent
Recall that a morphism of algebraic spaces is said to have
relative dimension $r$ if \'etale locally on the source
and the target we get a morphism of schemes which has relative dimension $r$.
The precise definition is equivalent, but in fact slightly different, see
Morphisms of Spaces, Definition
\ref{spaces-morphisms-definition-relative-dimension}.
\begin{lemma}
\label{lemma-flat-inverse-image-dimension}
In Situation \ref{situation-setup} let $X, Y/B$ be good.
Let $f : X \to Y$ be a morphism over $B$.
Assume $f$ is flat of relative dimension $r$.
For any closed subset $T \subset |Y|$ we have
$$
\dim_\delta(|f|^{-1}(T)) = \dim_\delta(T) + r.
$$
provided $|f|^{-1}(T)$ is nonempty.
If $Z \subset Y$ is an integral closed subscheme and
$Z' \subset f^{-1}(Z)$ is an irreducible component, then
$Z'$ dominates $Z$ and $\dim_\delta(Z') = \dim_\delta(Z) + r$.
\end{lemma}
\begin{proof}
Since the $\delta$-dimension of a closed subset is the supremum of
the $\delta$-dimensions of the irreducible components, it suffices
to prove the final statement. We may replace $Y$ by the
integral closed subscheme $Z$ and $X$ by $f^{-1}(Z) = Z \times_Y X$.
Hence we may assume $Z = Y$ is integral and $f$ is a flat morphism
of relative dimension $r$. Since $Y$ is locally Noetherian the
morphism $f$ which is locally of finite type,
is actually locally of finite presentation. Hence
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-fppf-open}
applies and we see that $f$ is open.
Let $\xi \in X$ be a generic point of an irreducible component
of $X$. By the openness of $f$ we see that $f(\xi)$ is the
generic point $\eta$ of $Z = Y$. Thus $Z'$ dominates $Z = Y$.
Finally, we see that $\xi$ and $\eta$ are in the schematic
locus of $X$ and $Y$ by
Properties of Spaces, Proposition
\ref{spaces-properties-proposition-locally-quasi-separated-open-dense-scheme}.
Since $\xi$ is a generic point of $X$ we see that
$\mathcal{O}_{X, \xi} = \mathcal{O}_{X_\eta, \xi}$ has only one
prime ideal and hence has dimension $0$ (we may use usual
local rings as $\xi$ and $\eta$ are in the schematic loci
of $X$ and $Y$). Thus by Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-dimension-fibre-at-a-point}
(and the definition of morphisms of given relative dimension)
we conclude that the transcendence
degree of $\kappa(\xi)$ over $\kappa(\eta)$ is $r$.
In other words, $\delta(\xi) = \delta(\eta) + r$ as desired.
\end{proof}
\noindent
Here is the lemma that we will use to prove that the flat pullback
of a locally finite collection of closed subschemes is locally finite.
\begin{lemma}
\label{lemma-inverse-image-locally-finite}
In Situation \ref{situation-setup} let $X, Y/B$ be good.
Let $f : X \to Y$ be a morphism over $B$.
Assume $\{T_i\}_{i \in I}$ is a locally
finite collection of closed subsets of $|Y|$.
Then $\{|f|^{-1}(T_i)\}_{i \in I}$ is a locally finite
collection of closed subsets of $X$.
\end{lemma}
\begin{proof}
Let $U \subset |X|$ be a quasi-compact open subset.
Since the image $|f|(U) \subset |Y|$ is a quasi-compact subset
there exists a quasi-compact open $V \subset |Y|$ such that
$|f|(U) \subset V$. Note that
$$
\{i \in I : |f|^{-1}(T_i) \cap U \not = \emptyset \}
\subset
\{i \in I : T_i \cap V \not = \emptyset \}.
$$
Since the right hand side is finite by assumption we win.