-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathsites.tex
11836 lines (10616 loc) · 413 KB
/
sites.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Sites and Sheaves}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
The notion of a site was introduced by Grothendieck to be able to study
sheaves in the \'etale topology of schemes. The basic reference for this
notion is perhaps \cite{SGA4}. Our notion of a site differs from that
in \cite{SGA4}; what we call a site is called a category endowed with
a pretopology in \cite[Expos\'e II, D\'efinition 1.3]{SGA4}.
The reason we do this is that in algebraic geometry it is often convenient to
work with a given class of coverings, for example when defining when
a property of schemes is local in a given topology, see Descent,
Section \ref{descent-section-descending-properties}.
Our exposition will closely follow \cite{ArtinTopologies}.
We will not use universes.
\section{Presheaves}
\label{section-presheaves}
\noindent
Let $\mathcal{C}$ be a category.
A {\it presheaf of sets} is a contravariant functor $\mathcal{F}$
from $\mathcal{C}$ to $\textit{Sets}$ (see Categories, Remark
\ref{categories-remark-functor-into-sets}).
So for every object $U$ of $\mathcal{C}$ we have a set
$\mathcal{F}(U)$. The elements of this set are called
the {\it sections} of $\mathcal{F}$ over $U$. For every morphism
$f : V \to U$ the map $\mathcal{F}(f) : \mathcal{F}(U) \to \mathcal{F}(V)$
is called the {\it restriction map} and is often denoted
$f^\ast : \mathcal{F}(U) \to \mathcal{F}(V)$. Another way
of expressing this is to say that $f^*(s)$ is the {\it pullback}
of $s$ via $f$. Functoriality means that $g^* f^* (s) = (f \circ g)^*(s)$.
Sometimes we use the notation $s|_V := f^\ast(s)$.
This notation is consistent with the notion of restriction
of functions from topology because if $W \to V \to U$
are morphisms in $\mathcal{C}$ and $s$ is a section of
$\mathcal{F}$ over $U$ then $s|_W = (s|_V)|_W$ by the
functorial nature of $\mathcal{F}$. Of course we have to be
careful since it may very well happen
that there is more than one morphism $V \to U$ and it is
certainly not going to be the case that the corresponding
pullback maps are equal.
\begin{definition}
\label{definition-presheaves-sets}
A {\it presheaf of sets} on $\mathcal{C}$ is a contravariant
functor from $\mathcal{C}$ to $\textit{Sets}$. {\it Morphisms
of presheaves} are transformations of functors. The category
of presheaves of sets is denoted $\textit{PSh}(\mathcal{C})$.
\end{definition}
\noindent
Note that for any object $U$ of $\mathcal{C}$ the functor of
points $h_U$, see Categories, Example \ref{categories-example-hom-functor}
is a presheaf. These are called the {\it representable presheaves}.
These presheaves have the pleasing property that for any
presheaf $\mathcal{F}$ we have
\begin{equation}
\label{equation-map-representable-into-presheaf}
\Mor_{\textit{PSh}(\mathcal{C})}(h_U, \mathcal{F})
=
\mathcal{F}(U).
\end{equation}
This is the Yoneda lemma (Categories, Lemma \ref{categories-lemma-yoneda}).
\medskip\noindent
Similarly, we can define the notion of a presheaf of abelian groups,
rings, etc. More generally we may define a presheaf with values in a
category.
\begin{definition}
\label{definition-presheaf}
Let $\mathcal{C}$, $\mathcal{A}$ be categories.
A {\it presheaf} $\mathcal{F}$ on $\mathcal{C}$
with values in $\mathcal{A}$ is a contravariant
functor from $\mathcal{C}$ to $\mathcal{A}$,
i.e., $\mathcal{F} : \mathcal{C}^{opp} \to \mathcal{A}$.
A {\it morphism} of presheaves $\mathcal{F} \to \mathcal{G}$
on $\mathcal{C}$ with values in $\mathcal{A}$ is a transformation
of functors from $\mathcal{F}$ to $\mathcal{G}$.
\end{definition}
\noindent
These form the objects and morphisms of the category of presheaves
on $\mathcal{C}$ with values in $\mathcal{A}$.
\begin{remark}
\label{remark-big-presheaves}
As already pointed out we may consider the category of
presheaves with values in any of the ``big'' categories
listed in Categories, Remark \ref{categories-remark-big-categories}.
These will be ``big'' categories as well and they will be
listed in the above mentioned remark as we go along.
\end{remark}
\section{Injective and surjective maps of presheaves}
\label{section-injective-surjective}
\begin{definition}
\label{definition-presheaves-injective-surjective}
Let $\mathcal{C}$ be a category, and let $\varphi : \mathcal{F}
\to \mathcal{G}$ be a map of presheaves of sets.
\begin{enumerate}
\item We say that $\varphi$ is {\it injective} if for every object
$U$ of $\mathcal{C}$ the map $\varphi_U : \mathcal{F}(U)
\to \mathcal{G}(U)$ is injective.
\item We say that $\varphi$ is {\it surjective} if for every object
$U$ of $\mathcal{C}$ the map $\varphi_U : \mathcal{F}(U)
\to \mathcal{G}(U)$ is surjective.
\end{enumerate}
\end{definition}
\begin{lemma}
\label{lemma-mono-epi}
The injective (resp.\ surjective) maps defined above
are exactly the monomorphisms (resp.\ epimorphisms) of
$\textit{PSh}(\mathcal{C})$. A map is an isomorphism
if and only if it is both injective and surjective.
\end{lemma}
\begin{proof}
We shall show that $\varphi : \mathcal{F} \to
\mathcal{G}$ is injective if and only if it is a monomorphism
of $\textit{PSh}(\mathcal{C})$. Indeed, the ``only if''
direction is straightforward, so let us show the ``if''
direction. Assume that $\varphi$ is a monomorphism. Let
$U \in \Ob(\mathcal{C})$; we need to show that $\varphi_U$ is
injective. So let $a, b \in \mathcal{F}(U)$ be such that
$\varphi_U (a) = \varphi_U (b)$; we need to check that $a = b$.
Under the isomorphism
(\ref{equation-map-representable-into-presheaf}), the elements
$a$ and $b$ of $\mathcal{F}(U)$ correspond to two natural
transformations
$a', b' \in \Mor_{\textit{PSh}(\mathcal{C})}(h_U, \mathcal{F})$.
Similarly, under the analogous isomorphism
$\Mor_{\textit{PSh}(\mathcal{C})}(h_U, \mathcal{G})
= \mathcal{G}(U)$,
the two equal elements $\varphi_U (a)$ and $\varphi_U (b)$ of
$\mathcal{G}(U)$ correspond to the two natural transformations
$\varphi \circ a', \varphi \circ b'
\in \Mor_{\textit{PSh}(\mathcal{C})}(h_U, \mathcal{G})$,
which therefore must also be equal. So
$\varphi \circ a' = \varphi \circ b'$, and thus $a' = b'$
(since $\varphi$ is monic), whence $a = b$. This finishes (1).
\medskip\noindent
We shall show that $\varphi : \mathcal{F} \to
\mathcal{G}$ is surjective if and only if it is an epimorphism
of $\textit{PSh}(\mathcal{C})$. Indeed, the ``only if''
direction is straightforward, so let us show the ``if''
direction. Assume that $\varphi$ is an epimorphism.
\medskip\noindent
For any two morphisms $f : A \to B$ and $g : A \to C$ in the
category $\textit{Sets}$, we let $\text{inl}_{f,g}$ and
$\text{inr}_{f,g}$ denote the two canonical maps from
$B$ and $C$ to $B \coprod_A C$. (Here, the pushout is
evaluated in $\textit{Sets}$.)
\medskip\noindent
Now, we define a presheaf $\mathcal{H}$ of sets on $\mathcal{C}$
by setting $\mathcal{H}(U)
= \mathcal{G}(U) \coprod_{\mathcal{F}(U)} \mathcal{G}(U)$ (where
the pushout is evaluated in $\textit{Sets}$ and induced by
the map $\varphi_U : \mathcal{F}(U) \to \mathcal{G}(U)$) for
every $U \in \Ob(\mathcal{C})$; its action on morphisms is
defined in the obvious way (by the functoriality of pushout).
Then, there are two natural
transformations $i_1 : \mathcal{G} \to \mathcal{H}$ and
$i_2 : \mathcal{G} \to \mathcal{H}$ whose components at an object
$U \in \Ob(\mathcal{C})$ are given by the maps
$\text{inl}_{\varphi_U, \varphi_U}$ and
$\text{inr}_{\varphi_U, \varphi_U}$, respectively. The
definition of a pushout shows that $i_1 \circ \varphi
= i_2 \circ \varphi$, whence $i_1 = i_2$ (since $\varphi$ is an
epimorphism). Thus, for every $U \in \Ob(\mathcal{C})$, we have
$\text{inl}_{\varphi_U, \varphi_U}
= \text{inr}_{\varphi_U, \varphi_U}$. Thus, $\varphi_U$
must be surjective (since a simple combinatorial argument shows
that if $f : A \to B$ is a morphism in $\textit{Sets}$, then
$\text{inl}_{f,f} = \text{inr}_{f,f}$ if and
only if $f$ is surjective). In other words, $\varphi$ is
surjective, and (2) is proven.
\medskip\noindent
We shall show that $\varphi : \mathcal{F} \to
\mathcal{G}$ is both injective and surjective if and only if it
is an isomorphism of $\textit{PSh}(\mathcal{C})$. This time,
the ``if'' direction is straightforward. To prove the ``only if''
direction, it suffices to observe that if $\varphi$ is both
injective and surjective, then $\varphi_U$ is an invertible map
for every $U \in \Ob(\mathcal{C})$, and the inverses of these
maps for all $U$ can be combined to a natural transformation
$\mathcal{G} \to \mathcal{F}$ which is an inverse to $\varphi$.
\end{proof}
\begin{definition}
\label{definition-sub-presheaf}
We say $\mathcal{F}$ is a {\it subpresheaf} of $\mathcal{G}$
if for every object $U \in \Ob(\mathcal{C})$ the set
$\mathcal{F}(U)$ is a subset of $\mathcal{G}(U)$, compatibly
with the restriction mappings.
\end{definition}
\noindent
In other words, the inclusion
maps $\mathcal{F}(U) \to \mathcal{G}(U)$
glue together to give an (injective) morphism of
presheaves $\mathcal{F} \to \mathcal{G}$.
\begin{lemma}
\label{lemma-image}
Let $\mathcal{C}$ be a category.
Suppose that $\varphi : \mathcal{F} \to \mathcal{G}$ is a
morphism of presheaves of sets on $\mathcal{C}$.
There exists a unique subpresheaf $\mathcal{G}' \subset \mathcal{G}$
such that $\varphi$ factors as
$\mathcal{F} \to \mathcal{G}' \to \mathcal{G}$
and such that the first map is surjective.
\end{lemma}
\begin{proof}
To prove existence, just set
$\mathcal{G}'(U) = \varphi_U \left(\mathcal{F}(U)\right)$
for every $U \in \Ob(C)$ (and inherit the action on morphisms
from $\mathcal{G}$), and prove that this defines a
subpresheaf of $\mathcal{G}$ and that $\varphi$ factors as
$\mathcal{F} \to \mathcal{G}' \to \mathcal{G}$ with the
first map being surjective. Uniqueness is straightforward.
\end{proof}
\begin{definition}
\label{definition-image}
Notation as in Lemma \ref{lemma-image}. We
say that $\mathcal{G}'$ is the {\it image of $\varphi$}.
\end{definition}
\section{Limits and colimits of presheaves}
\label{section-limits-colimits-PSh}
\noindent
Let $\mathcal{C}$ be a category.
Limits and colimits exist in the category
$\textit{PSh}(\mathcal{C})$. In addition, for any
$U \in \Ob(\mathcal{C})$ the functor
$$
\textit{PSh}(\mathcal{C})
\longrightarrow
\textit{Sets}, \quad
\mathcal{F}
\longmapsto
\mathcal{F}(U)
$$
commutes with limits and colimits. Perhaps the easiest way to prove
these statements is the following. Given a diagram
$
\mathcal{F} :
\mathcal{I}
\to
\textit{PSh}(\mathcal{C})
$
define presheaves
$$
\mathcal{F}_{\lim} :
U
\longmapsto
\lim_{i \in \mathcal{I}} \mathcal{F}_i(U)
\text{ and }
\mathcal{F}_{\colim} :
U
\longmapsto
\colim_{i \in \mathcal{I}} \mathcal{F}_i(U)
$$
There are clearly projection maps $\mathcal{F}_{\lim} \to \mathcal{F}_i$
and canonical maps $\mathcal{F}_i \to \mathcal{F}_{\colim}$. These
maps satisfy the requirements of the maps of a limit (resp.\ colimit)
of Categories, Definition \ref{categories-definition-limit}
(resp.\ Categories, Definition \ref{categories-definition-colimit}).
Indeed, they clearly form a cone, resp. a cocone, over $\mathcal{F}$.
Furthermore, if $(\mathcal{G}, q_i : \mathcal{G} \to \mathcal{F}_i)$
is another
system (as in the definition of a limit), then we get for every
$U$ a system of maps $\mathcal{G}(U) \to \mathcal{F}_i(U)$
with suitable functoriality requirements. And thus a unique
map $\mathcal{G}(U) \to \mathcal{F}_{\lim}(U)$. It is easy
to verify these are compatible as we vary $U$ and arise from
the desired map $\mathcal{G} \to \mathcal{F}_{\lim}$.
A similar argument works in the case of the colimit.
\section{Functoriality of categories of presheaves}
\label{section-functoriality-PSh}
\noindent
Let $u : \mathcal{C} \to \mathcal{D}$ be a functor between categories.
In this case we denote
$$
u^p :
\textit{PSh}(\mathcal{D})
\longrightarrow
\textit{PSh}(\mathcal{C})
$$
the functor that associates to $\mathcal{G}$ on $\mathcal{D}$ the presheaf
$u^p\mathcal{G} = \mathcal{G} \circ u$. Note that by the previous section
this functor commutes with all limits and colimits.
\medskip\noindent
For $V \in \Ob(\mathcal{D})$ let $\mathcal{I}^u_V$
denote the category with
\begin{equation}
\label{equation-colim-category}
\begin{matrix}
\Ob(\mathcal{I}^u_V)
&
=
&
\{
(U, \phi)
\mid
U \in \Ob(\mathcal{C}),
\phi : V \to u(U)
\}
\\
\Mor_{\mathcal{I}^u_V}((U, \phi), (U', \phi'))
&
=
&
\{
f : U \to U' \text{ in }\mathcal{C}
\mid
u(f) \circ \phi = \phi'
\}
\end{matrix}
\end{equation}
We sometimes drop the superscript ${}^u$ from the notation and we simply write
$\mathcal{I}_V$.
We will use these categories to define a left adjoint to the functor $u^p$.
Before we do so we prove a few technical lemmas.
\begin{lemma}
\label{lemma-almost-directed}
Let $u : \mathcal{C} \to \mathcal{D}$ be a functor between categories.
Suppose that $\mathcal{C}$ has fibre products and equalizers, and that
$u$ commutes with them. Then the categories $(\mathcal{I}_V)^{opp}$
satisfy the hypotheses of
Categories, Lemma \ref{categories-lemma-split-into-directed}.
\end{lemma}
\begin{proof}
There are two conditions to check.
\medskip\noindent
First, suppose we are given three objects
$\phi : V \to u(U)$, $\phi' : V \to u(U')$, and $\phi'' : V \to u(U'')$
and morphisms $a : U' \to U$, $b : U'' \to U$ such that
$u(a) \circ \phi' = \phi$ and $u(b) \circ \phi'' = \phi$.
We have to show there exists another object $\phi''' : V \to u(U''')$
and morphisms $c : U''' \to U'$ and $d : U''' \to U''$ such that
$u(c) \circ \phi''' = \phi'$, $u(d) \circ \phi''' = \phi''$ and
$a \circ c = b \circ d$. We take $U''' = U' \times_U U''$
with $c$ and $d$ the projection morphisms. This works as $u$ commutes
with fibre products; we omit the verification.
\medskip\noindent
Second, suppose we are given two objects
$\phi : V \to u(U)$ and $\phi' : V \to u(U')$
and morphisms $a, b : (U, \phi) \to (U', \phi')$.
We have to find a morphism $c : (U'', \phi'') \to (U, \phi)$
which equalizes $a$ and $b$. Let $c : U'' \to U$ be the equalizer of
$a$ and $b$ in the category $\mathcal{C}$. As $u$ commutes
with equalizers and since $u(a) \circ \phi = u(b) \circ \phi = \phi'$
we obtain a morphism $\phi'' : V \to u(U'')$.
\end{proof}
\begin{lemma}
\label{lemma-directed}
Let $u : \mathcal{C} \to \mathcal{D}$ be a functor between categories.
Assume
\begin{enumerate}
\item the category $\mathcal{C}$ has a final object $X$ and
$u(X)$ is a final object of $\mathcal{D}$ , and
\item the category $\mathcal{C}$ has fibre products and
$u$ commutes with them.
\end{enumerate}
Then the index categories $(\mathcal{I}^u_V)^{opp}$ are filtered (see
Categories, Definition \ref{categories-definition-directed}).
\end{lemma}
\begin{proof}
The assumptions imply that the assumptions of
Lemma \ref{lemma-almost-directed}
are satisfied (see the discussion in
Categories, Section \ref{categories-section-finite-limits}).
By
Categories, Lemma \ref{categories-lemma-split-into-directed}
we see that $\mathcal{I}_V$ is a (possibly empty) disjoint union of
directed categories.
Hence it suffices to show that $\mathcal{I}_V$ is connected.
\medskip\noindent
First, we show that $\mathcal{I}_V$ is nonempty.
Namely, let $X$ be the final object of $\mathcal{C}$,
which exists by assumption.
Let $V \to u(X)$ be the morphism coming from the fact
that $u(X)$ is final in $\mathcal{D}$ by assumption.
This gives an object of $\mathcal{I}_V$.
\medskip\noindent
Second, we show that $\mathcal{I}_V$ is connected.
Let $\phi_1 : V \to u(U_1)$ and $\phi_2 : V \to u(U_2)$ be
in $\Ob(\mathcal{I}_V)$. By assumption $U_1\times U_2$
exists and $u(U_1\times U_2) = u(U_1)\times u(U_2)$.
Consider the morphism $\phi : V \to u(U_1\times U_2)$
corresponding to $(\phi_1, \phi_2)$ by the universal property
of products. Clearly the object $\phi : V \to u(U_1\times U_2)$
maps to both $\phi_1 : V \to u(U_1)$ and $\phi_2 : V \to u(U_2)$.
\end{proof}
\noindent
Given $g : V' \to V$ in $\mathcal{D}$ we get a functor
$\overline{g} : \mathcal{I}_V \to \mathcal{I}_{V'}$
by setting $\overline{g}(U, \phi) = (U, \phi \circ g)$
on objects. Given a presheaf $\mathcal{F}$ on $\mathcal{C}$
we obtain a functor
$$
\mathcal{F}_V :
\mathcal{I}_V^{opp}
\longrightarrow
\textit{Sets}, \quad
(U, \phi)
\longmapsto
\mathcal{F}(U).
$$
In other words, $\mathcal{F}_V$ is a presheaf of sets on $\mathcal{I}_V$.
Note that we have $\mathcal{F}_{V'} \circ \overline{g} = \mathcal{F}_V$.
We define
$$
u_p\mathcal{F}(V) =
\colim_{\mathcal{I}_V^{opp}} \mathcal{F}_V
$$
As a colimit we obtain for each $(U, \phi) \in \Ob(\mathcal{I}_V)$
a canonical map $\mathcal{F}(U)\xrightarrow{c(\phi)}u_p\mathcal{F}(V)$.
For $g : V' \to V$ as above there is a
canonical restriction map
$g^* : u_p\mathcal{F}(V) \to u_p\mathcal{F}(V')$
compatible with
$\mathcal{F}_{V'} \circ \overline{g} = \mathcal{F}_V$
by Categories, Lemma \ref{categories-lemma-functorial-colimit}.
It is the unique map so that for all $(U, \phi) \in \Ob(\mathcal{I}_V)$
the diagram
$$
\xymatrix{
\mathcal{F}(U) \ar[r]^{c(\phi)} \ar[d]_{\text{id}}
&
u_p\mathcal{F}(V) \ar[d]^{g^*}
\\
\mathcal{F}(U) \ar[r]^{c(\phi \circ g)}
&
u_p\mathcal{F}(V')
}
$$
commutes. The uniqueness of these maps implies that we obtain a
presheaf. This presheaf will be denoted $u_p\mathcal{F}$.
\begin{lemma}
\label{lemma-recover}
There is a canonical map
$\mathcal{F}(U) \to u_p\mathcal{F}(u(U))$,
which is compatible with restriction maps
(on $\mathcal{F}$ and on $u_p\mathcal{F}$).
\end{lemma}
\begin{proof}
This is just the map $c(\text{id}_{u(U)})$ introduced above.
\end{proof}
\noindent
Note that any map of presheaves $\mathcal{F} \to \mathcal{F}'$
gives rise to compatible systems of maps between functors
$\mathcal{F}_V \to \mathcal{F}'_V$, and hence to a map
of presheaves $u_p\mathcal{F} \to u_p\mathcal{F}'$. In other
words, we have defined a functor
$$
u_p :
\textit{PSh}(\mathcal{C})
\longrightarrow
\textit{PSh}(\mathcal{D})
$$
\begin{lemma}
\label{lemma-adjoints-u}
The functor $u_p$ is a left adjoint to the functor $u^p$.
In other words the formula
$$
\Mor_{\textit{PSh}(\mathcal{C})}(\mathcal{F}, u^p\mathcal{G})
=
\Mor_{\textit{PSh}(\mathcal{D})}(u_p\mathcal{F}, \mathcal{G})
$$
holds bifunctorially in $\mathcal{F}$ and $\mathcal{G}$.
\end{lemma}
\begin{proof}
Let $\mathcal{G}$ be a presheaf on $\mathcal{D}$ and let
$\mathcal{F}$ be a presheaf on $\mathcal{C}$.
We will show that the displayed formula holds
by constructing maps either way. We will leave
it to the reader to verify they are each others inverse.
\medskip\noindent
Given a map $\alpha : u_p \mathcal{F} \to \mathcal{G}$
we get $u^p\alpha : u^p u_p \mathcal{F} \to u^p \mathcal{G}$.
Lemma \ref{lemma-recover} says that there is a
map $\mathcal{F} \to u^p u_p \mathcal{F}$. The composition
of the two gives the desired map. (The good thing about this construction
is that it is clearly functorial in everything in sight.)
\medskip\noindent
Conversely, given a map $\beta : \mathcal{F} \to u^p\mathcal{G}$
we get a map $u_p\beta : u_p\mathcal{F} \to u_p u^p\mathcal{G}$.
Let $V \in \Ob(\mathcal{D})$.
We claim that the functor $u^p\mathcal{G}_V$ on $\mathcal{I}_V$
has a canonical map to the constant functor with value $\mathcal{G}(V)$.
Namely, for every object $(U, \phi)$ of $\mathcal{I}_V$,
the value of $u^p\mathcal{G}_V$ on this object is $\mathcal{G}(u(U))$
which maps to $\mathcal{G}(V)$ by $\mathcal{G}(\phi) = \phi^*$.
This is a transformation of functors because $\mathcal{G}$ is a functor
itself. This leads to a map $u_p u^p \mathcal{G}(V) \to \mathcal{G}(V)$.
Another trivial verification shows that this is functorial in $V$
leading to a map of presheaves $u_p u^p \mathcal{G} \to \mathcal{G}$.
The composition $u_p\mathcal{F} \to u_p u^p\mathcal{G} \to
\mathcal{G}$ is the desired map.
\end{proof}
\begin{remark}
\label{remark-functoriality-presheaves-values}
Suppose that $\mathcal{A}$ is a category such that
any diagram $\mathcal{I}_Y \to \mathcal{A}$ has a
colimit in $\mathcal{A}$. In this case it is clear
that there are functors $u^p$ and $u_p$, defined in
exactly the same way as above, on the categories
of presheaves with values in $\mathcal{A}$.
Moreover, the adjointness of the pair
$u^p$ and $u_p$ continues to hold in this setting.
\end{remark}
\begin{lemma}
\label{lemma-pullback-representable-presheaf}
Let $u : \mathcal{C} \to \mathcal{D}$ be a functor between categories.
For any object $U$ of $\mathcal{C}$ we have $u_ph_U = h_{u(U)}$.
\end{lemma}
\begin{proof}
By adjointness of $u_p$ and $u^p$ we have
$$
\Mor_{\textit{PSh}(\mathcal{D})}(u_ph_U, \mathcal{G})
=
\Mor_{\textit{PSh}(\mathcal{C})}(h_U, u^p\mathcal{G})
=
u^p\mathcal{G}(U) =
\mathcal{G}(u(U))
$$
and hence by Yoneda's lemma we see that $u_ph_U = h_{u(U)}$ as
presheaves.
\end{proof}
\section{Sites}
\label{section-sites-definitions}
\noindent
Our notion of a site uses the following type of structures.
\begin{definition}
\label{definition-family-morphisms-fixed-target}
Let $\mathcal{C}$ be a category, see
Conventions, Section \ref{conventions-section-categories}.
A {\it family of morphisms with fixed target} in $\mathcal{C}$ is
given by an object $U \in \Ob(\mathcal{C})$, a set $I$ and
for each $i\in I$ a morphism $U_i \to U$ of $\mathcal{C}$ with target $U$.
We use the notation $\{U_i \to U\}_{i\in I}$ to indicate this.
\end{definition}
\noindent
It can happen that the set $I$ is empty! This
notation is meant to suggest an open covering as in topology.
\begin{definition}
\label{definition-site}
A {\it site}\footnote{This notation differs from that of \cite{SGA4}, as
explained in the introduction.} is given by a category $\mathcal{C}$ and a set
$\text{Cov}(\mathcal{C})$ of families of morphisms with fixed target
$\{U_i \to U\}_{i \in I}$, called {\it coverings of $\mathcal{C}$},
satisfying the following axioms
\begin{enumerate}
\item If $V \to U$ is an isomorphism then $\{V \to U\} \in
\text{Cov}(\mathcal{C})$.
\item If $\{U_i \to U\}_{i\in I} \in \text{Cov}(\mathcal{C})$ and for each
$i$ we have $\{V_{ij} \to U_i\}_{j\in J_i} \in \text{Cov}(\mathcal{C})$, then
$\{V_{ij} \to U\}_{i \in I, j\in J_i} \in \text{Cov}(\mathcal{C})$.
\item If $\{U_i \to U\}_{i\in I}\in \text{Cov}(\mathcal{C})$
and $V \to U$ is a morphism of $\mathcal{C}$ then $U_i \times_U V$
exists for all $i$ and
$\{U_i \times_U V \to V \}_{i\in I} \in \text{Cov}(\mathcal{C})$.
\end{enumerate}
\end{definition}
\noindent
Clarifications. In axiom (1) we require there should be a covering
$\{U_i \to U\}_{i \in I}$ of $\mathcal{C}$ such that $I = \{i\}$
is a singleton set and such that the morphism $U_i \to U$ is equal to
the morphism $V \to U$ given in (1). In the following we often denote
$\{V \to U\}$ a family of morphisms with fixed target whose index set
is a singleton. In axiom (3) we require the existence of the covering
for some choice of the fibre products $U_i \times_U V$ for $i \in I$.
\begin{remark}
\label{remark-no-big-sites}
(On set theoretic issues -- skip on a first reading.)
The main reason for introducing sites is to study the
category of sheaves on a site, because it is the generalization
of the category of sheaves on a topological space that has
been so important in algebraic geometry. In order to avoid thinking
about things like ``classes of classes'' and so on, we will
not allow sites to be ``big'' categories, in contrast to what
we do for categories and $2$-categories.
\medskip\noindent
Suppose that $\mathcal{C}$ is a category and that
$\text{Cov}(\mathcal{C})$ is a proper class of coverings
satisfying (1), (2) and (3) above. We will not allow this as a
site either, mainly because we are going to take limits over coverings.
However, there are several natural
ways to replace $\text{Cov}(\mathcal{C})$ by a set of coverings
or a slightly different structure
that give rise to the same category of sheaves. For example:
\begin{enumerate}
\item In Sets, Section \ref{sets-section-coverings-site}
we show how to pick a suitable set of
coverings that gives the same category of sheaves.
\item Another thing we can do is to take the associated topology
(see Definition \ref{definition-topology-associated-site}).
The resulting topology on $\mathcal{C}$ has the same category of sheaves.
Two topologies have the same categories of sheaves if and only if
they are equal, see Theorem \ref{theorem-topology-and-topos}.
A topology on a category is given by a choice of sieves on objects.
The collection of all possible sieves and even all possible
topologies on $\mathcal{C}$ is a set.
\item We could also slightly modify the notion of a site, see
Remark \ref{remark-shrink-coverings} below, and end up with a
canonical set of coverings.
\end{enumerate}
Each of these solutions has some minor drawback. For the first, one has
to check that constructions later on do not depend on the choice
of the set of coverings. For the second, one has to learn about topologies
and redo many of the arguments for sites. For the third, see
the last sentence of Remark \ref{remark-shrink-coverings}.
\medskip\noindent
Our approach will be to work with sites as in Definition \ref{definition-site}
above. Given a category $\mathcal{C}$ with a proper class of coverings
as above, we will replace this by a set of coverings producing a site using
Sets, Lemma \ref{sets-lemma-coverings-site}. It is shown in
Lemma \ref{lemma-choice-set-coverings-immaterial} below that the resulting
category of sheaves (the topos) is independent of this choice. We leave it to
the reader to use one of the other two strategies to deal with these issues if
he/she so desires.
\end{remark}
\begin{example}
\label{example-site-topological}
Let $X$ be a topological space. Let $X_{Zar}$ be the category whose
objects consist of all the open sets $U$ in $X$ and whose morphisms
are just the inclusion maps. That is, there is at most one morphism
between any two objects in $X_{Zar}$. Now define
$\{U_i \to U\}_{i \in I}\in \text{Cov}(X_{Zar})$ if
and only if $\bigcup U_i = U$.
Conditions (1) and (2) above are clear, and (3) is also
clear once we realize that in $X_{Zar}$ we have
$U \times V = U \cap V$. Note that in particular the empty
set has to be an element of $X_{Zar}$ since otherwise
this would not work in general. Furthermore, it is equally important,
as we will see later, to allow the {\it empty covering of the empty
set as a covering}!
We turn $X_{Zar}$ into a site
by choosing a suitable set of coverings
$\text{Cov}(X_{Zar})_{\kappa, \alpha}$ as in
Sets, Lemma \ref{sets-lemma-coverings-site}.
Presheaves and sheaves (as defined below)
on the site $X_{Zar}$ agree exactly with the usual notion of
a presheaves and sheaves on a topological space, as defined
in Sheaves, Section \ref{sheaves-section-introduction}.
\end{example}
\begin{example}
\label{example-site-on-group}
Let $G$ be a group. Consider the category $G\textit{-Sets}$
whose objects are sets $X$ with a left $G$-action, with
$G$-equivariant maps as the morphisms. An important example
is ${}_GG$ which is the $G$-set whose underlying set is $G$ and
action given by left multiplication. This category has
fiber products, see Categories, Section
\ref{categories-section-example-fibre-products}.
We declare $\{\varphi_i : U_i \to U\}_{i\in I}$ to be
a covering if $\bigcup_{i\in I} \varphi_i(U_i) = U$.
This gives a class of coverings on $G\textit{-Sets}$
which is easily seen to satisfy conditions (1), (2), and (3)
of Definition \ref{definition-site}. The result is not a
site since both the collection of objects of the underlying category and
the collection of coverings form a proper class.
We first replace by $G\textit{-Sets}$ by a
full subcategory $G\textit{-Sets}_\alpha$ as in Sets,
Lemma \ref{sets-lemma-sets-with-group-action}.
After this the site
$(G\textit{-Sets}_\alpha,
\text{Cov}_{\kappa, \alpha'}(G\textit{-Sets}_\alpha))$
gotten by suitably restricting the collection of coverings
as in Sets, Lemma \ref{sets-lemma-coverings-site} will be
denoted $\mathcal{T}_G$.
\medskip\noindent
As a special case, if the group $G$ is countable, then we can let
$\mathcal{T}_G$ be the category of countable $G$-sets and coverings
those jointly surjective families of morphisms
$\{\varphi_i : U_i \to U\}_{i \in I}$ such that $I$ is countable.
\end{example}
\begin{example}
\label{example-indiscrete}
Let $\mathcal{C}$ be a category. There is a canonical way to turn this
into a site where $\{f : V \to U \mid f\text{ is an isomorphism}\}$
are the coverings of $U$.
Sheaves on this site are the presheaves on $\mathcal{C}$.
This corresponding topology is called the {\it chaotic} or
{\it indiscrete topology}.
\end{example}
\section{Sheaves}
\label{section-sheaves}
\noindent
Let $\mathcal{C}$ be a site. Before we introduce the notion of
a sheaf with values in a category we explain what it means
for a presheaf of sets to be a sheaf. Let $\mathcal{F}$ be
a presheaf of sets on $\mathcal{C}$ and let
$\{U_i \to U\}_{i\in I}$ be an element of $\text{Cov}(\mathcal{C})$.
By assumption all the fibre products $U_i \times_U U_j$ exist
in $\mathcal{C}$. There are two natural maps
$$
\xymatrix{
\prod\nolimits_{i\in I}
\mathcal{F}(U_i)
\ar@<1ex>[r]^-{\text{pr}_0^*} \ar@<-1ex>[r]_-{\text{pr}_1^*}
&
\prod\nolimits_{(i_0, i_1) \in I \times I}
\mathcal{F}(U_{i_0} \times_U U_{i_1})
}
$$
which we will denote $\text{pr}^*_i$, $i = 0, 1$ as indicated
in the displayed equation.
Namely, an element of the left hand side corresponds to a
family $(s_i)_{i\in I}$, where each $s_i$ is a section of
$\mathcal{F}$ over $U_i$. For each pair $(i_0, i_1) \in I \times I$
we have the projection morphisms
$$
\text{pr}^{(i_0, i_1)}_{i_0} :
U_{i_0} \times_U U_{i_1}
\longrightarrow
U_{i_0}
\text{ and }
\text{pr}^{(i_0, i_1)}_{i_1} :
U_{i_0} \times_U U_{i_1}
\longrightarrow
U_{i_1}.
$$
Thus we may pull back either the section $s_{i_0}$ via
the first of these maps or the section $s_{i_1}$ via the
second. Explicitly the maps we referred to above are
$$
\text{pr}_0^* :
(s_i)_{i\in I}
\longmapsto
\Big(
\text{pr}^{(i_0, i_1), *}_{i_0}(s_{i_0})
\Big)_{(i_0, i_1) \in I \times I}
$$
and
$$
\text{pr}_1^* :
(s_i)_{i\in I}
\longmapsto
\Big(
\text{pr}^{(i_0, i_1), *}_{i_1}(s_{i_1})
\Big)_{(i_0, i_1) \in I \times I}.
$$
Finally consider the natural map
$$
\mathcal{F}(U)
\longrightarrow
\prod\nolimits_{i\in I}
\mathcal{F}(U_i), \quad
s
\longmapsto
(s|_{U_i})_{i \in I}
$$
where we have used the notation $s|_{U_i}$ to indicate the
pullback of $s$ via the map $U_i \to U$. It is clear from the
functorial nature of $\mathcal{F}$ and the commutativity
of the fibre product diagrams that
$\text{pr}_0^*( (s|_{U_i})_{i \in I} ) =
\text{pr}_1^*( (s|_{U_i})_{i \in I} )$.
\begin{definition}
\label{definition-sheaf-sets}
Let $\mathcal{C}$ be a site, and let $\mathcal{F}$ be a presheaf of sets
on $\mathcal{C}$. We say $\mathcal{F}$ is a {\it sheaf} if
for every covering $\{U_i \to U\}_{i \in I} \in \text{Cov}(\mathcal{C})$
the diagram
\begin{equation}
\label{equation-sheaf-condition}
\xymatrix{
\mathcal{F}(U) \ar[r]
&
\prod\nolimits_{i\in I}
\mathcal{F}(U_i)
\ar@<1ex>[r]^-{\text{pr}_0^*} \ar@<-1ex>[r]_-{\text{pr}_1^*}
&
\prod\nolimits_{(i_0, i_1) \in I \times I}
\mathcal{F}(U_{i_0} \times_U U_{i_1})
}
\end{equation}
represents the first arrow as the equalizer of $\text{pr}_0^*$
and $\text{pr}_1^*$.
\end{definition}
\noindent
Loosely speaking this means that given sections $s_i \in \mathcal{F}(U_i)$
such that
$$
s_i|_{U_i \times_U U_j} = s_j|_{U_i \times_U U_j}
$$
in $\mathcal{F}(U_i \times_U U_j)$ for all pairs $(i, j) \in I \times I$
then there exists a unique $s \in \mathcal{F}(U)$ such
that $s_i = s|_{U_i}$.
\begin{remark}
\label{remark-sheaf-condition-empty-covering}
If the covering $\{U_i \to U\}_{i \in I}$ is the empty family (this means
that $I = \emptyset$), then the sheaf condition signifies that
$\mathcal{F}(U) = \{*\}$ is a singleton set. This is because
in (\ref{equation-sheaf-condition}) the second and third sets
are empty products in the category of sets, which are final objects
in the category of sets, hence singletons.
\end{remark}
\begin{example}
\label{example-sheaves-topological}
Let $X$ be a topological space. Let $X_{Zar}$ be the
site constructed in Example \ref{example-site-topological}.
The notion of a sheaf on $X_{Zar}$ coincides
with the notion of a sheaf on $X$ introduced in
Sheaves, Definition \ref{sheaves-definition-sheaf}.
\end{example}
\begin{example}
\label{example-topological-wrong}
Let $X$ be a topological space. Let us consider the site $X'_{Zar}$ which is
the same as the site $X_{Zar}$ of
Example \ref{example-site-topological} except that
we disallow the empty covering of the empty set.
In other words, we do allow the covering $\{\emptyset \to \emptyset\}$
but we do not allow the covering whose index set is empty.
It is easy to show that this still defines a site. However,
we claim that the sheaves on $X'_{Zar}$ are different
from the sheaves on $X_{Zar}$. For example, as an extreme
case consider the situation where $X = \{p\}$ is a singleton.
Then the objects of $X'_{Zar}$ are $\emptyset, X$
and every covering of $\emptyset$ can be refined by
$\{\emptyset \to \emptyset\}$ and every covering of $X$ by $\{X \to X\}$.
Clearly, a sheaf on this is given by any choice of
a set $\mathcal{F}(\emptyset)$ and any choice of a
set $\mathcal{F}(X)$, together with any restriction map
$\mathcal{F}(X) \to \mathcal{F}(\emptyset)$. Thus sheaves
on $X'_{Zar}$ are the same as usual sheaves on the two point space
$\{\eta, p\}$ with open sets $\{\emptyset, \{\eta\}, \{p, \eta\}\}$.
In general sheaves on $X'_{Zar}$ are the same as sheaves
on the space $X \amalg \{\eta\}$, with opens given by
the empty set and any set of the form $U \cup \{\eta\}$ for
$U \subset X$ open.
\end{example}
\begin{definition}
\label{definition-category-sheaves-sets}
The category {\it $\Sh(\mathcal{C})$}
of sheaves of sets is the full subcategory of the category