-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathpic.tex
1515 lines (1384 loc) · 61.2 KB
/
pic.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Picard Schemes of Curves}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we do just enough work to construct the Picard scheme
of a projective nonsingular curve over an algebraically closed field.
See \cite{Kleiman-Picard} for a more thorough discussion as well as
historical background.
\medskip\noindent
Later in the Stacks project we will discuss Hilbert and Quot functors
in much greater generality.
\section{Hilbert scheme of points}
\label{section-hilbert-scheme-points}
\noindent
Let $X \to S$ be a morphism of schemes. Let $d \geq 0$ be an integer.
For a scheme $T$ over $S$ we let
$$
\Hilbfunctor^d_{X/S}(T) =
\left\{
\begin{matrix}
Z \subset X_T\text{ closed subscheme such that }\\
Z \to T\text{ is finite locally free of degree }d
\end{matrix}
\right\}
$$
If $T' \to T$ is a morphism of schemes over $S$ and if
$Z \in \Hilbfunctor^d_{X/S}(T)$, then the base change
$Z_{T'} \subset X_{T'}$ is an element of $\Hilbfunctor^d_{X/S}(T')$.
In this way we obtain a functor
$$
\Hilbfunctor^d_{X/S} :
(\Sch/S)^{opp} \longrightarrow \textit{Sets},\quad
T \longrightarrow \Hilbfunctor^d_{X/S}(T)
$$
In general $\Hilbfunctor^d_{X/S}$ is an algebraic space
(insert future reference here). In this section we will
show that $\Hilbfunctor^d_{X/S}$ is representable
by a scheme if any finite number of points in a fibre of
$X \to S$ are contained in an affine open.
If $\Hilbfunctor^d_{X/S}$ is representable by a scheme, we often
denote this scheme by $\underline{\Hilbfunctor}^d_{X/S}$.
\begin{lemma}
\label{lemma-hilb-d-sheaf}
Let $X \to S$ be a morphism of schemes. The functor $\Hilbfunctor^d_{X/S}$
satisfies the sheaf property for the fpqc topology
(Topologies, Definition \ref{topologies-definition-sheaf-property-fpqc}).
\end{lemma}
\begin{proof}
Let $\{T_i \to T\}_{i \in I}$ be an fpqc covering of schemes over $S$.
Set $X_i = X_{T_i} = X \times_S T_i$.
Note that $\{X_i \to X_T\}_{i \in I}$ is an fpqc covering of
$X_T$ (Topologies, Lemma \ref{topologies-lemma-fpqc})
and that $X_{T_i \times_T T_{i'}} = X_i \times_{X_T} X_{i'}$.
Suppose that $Z_i \in \Hilbfunctor^d_{X/S}(T_i)$ is a collection of
elements such that $Z_i$ and $Z_{i'}$ map to the same element of
$\Hilbfunctor^d_{X/S}(T_i \times_T T_{i'})$. By effective descent
for closed immersions (Descent, Lemma \ref{descent-lemma-closed-immersion})
there is a closed immersion $Z \to X_T$ whose base change by
$X_i \to X_T$ is equal to $Z_i \to X_i$. The morphism $Z \to T$
then has the property that its base change to $T_i$ is the morphism
$Z_i \to T_i$. Hence $Z \to T$ is finite locally free of degree $d$
by Descent, Lemma \ref{descent-lemma-descending-property-finite-locally-free}.
\end{proof}
\begin{lemma}
\label{lemma-hilb-d-limit-preserving}
Let $X \to S$ be a morphism of schemes. If $X \to S$ is
of finite presentation, then the functor $\Hilbfunctor^d_{X/S}$
is limit preserving (Limits, Remark \ref{limits-remark-limit-preserving}).
\end{lemma}
\begin{proof}
Let $T = \lim T_i$ be a limit of affine schemes over $S$. We have to show
that $\Hilbfunctor^d_{X/S}(T) = \colim \Hilbfunctor^d_{X/S}(T_i)$.
Observe that if $Z \to X_T$ is an element of $\Hilbfunctor^d_{X/S}(T)$,
then $Z \to T$ is of finite presentation. Hence by
Limits, Lemma \ref{limits-lemma-descend-finite-presentation}
there exists an $i$, a scheme $Z_i$ of finite presentation over $T_i$,
and a morphism $Z_i \to X_{T_i}$ over $T_i$ whose base change to $T$
gives $Z \to X_T$. We apply Limits, Lemma
\ref{limits-lemma-descend-closed-immersion-finite-presentation}
to see that we may assume $Z_i \to X_{T_i}$ is a closed immersion
after increasing $i$.
We apply Limits, Lemma \ref{limits-lemma-descend-finite-locally-free}
to see that $Z_i \to T_i$ is finite locally free of degree $d$
after possibly increasing $i$.
Then $Z_i \in \Hilbfunctor^d_{X/S}(T_i)$ as desired.
\end{proof}
\noindent
Let $S$ be a scheme. Let $i : X \to Y$ be a closed immersion of schemes
over $S$. Then there is a transformation of functors
$$
\Hilbfunctor^d_{X/S} \longrightarrow \Hilbfunctor^d_{Y/S}
$$
which maps an element $Z \in \Hilbfunctor^d_{X/S}(T)$ to
$i_T(Z) \subset Y_T$ in $\Hilbfunctor^d_{Y/S}$. Here $i_T : X_T \to Y_T$
is the base change of $i$.
\begin{lemma}
\label{lemma-hilb-d-of-closed}
Let $S$ be a scheme. Let $i : X \to Y$ be a closed immersion of schemes.
If $\Hilbfunctor^d_{Y/S}$ is representable by a scheme, so is
$\Hilbfunctor^d_{X/S}$ and the corresponding morphism of schemes
$\underline{\Hilbfunctor}^d_{X/S} \to \underline{\Hilbfunctor}^d_{Y/S}$
is a closed immersion.
\end{lemma}
\begin{proof}
Let $T$ be a scheme over $S$ and let $Z \in \Hilbfunctor^d_{Y/S}(T)$.
Claim: there is a closed subscheme $T_X \subset T$ such
that a morphism of schemes $T' \to T$ factors through $T_X$ if
and only if $Z_{T'} \to Y_{T'}$ factors through $X_{T'}$.
Applying this to a scheme $T_{univ}$ representing $\Hilbfunctor^d_{Y/S}$ and the
universal object\footnote{See
Categories, Section \ref{categories-section-opposite}}
$Z_{univ} \in \Hilbfunctor^d_{Y/S}(T_{univ})$
we get a closed subscheme $T_{univ, X} \subset T_{univ}$ such that
$Z_{univ, X} = Z_{univ} \times_{T_{univ}} T_{univ, X}$
is a closed subscheme of $X \times_S T_{univ, X}$ and hence
defines an element of $\Hilbfunctor^d_{X/S}(T_{univ, X})$.
A formal argument then shows that $T_{univ, X}$ is a scheme
representing $\Hilbfunctor^d_{X/S}$ with universal object $Z_{univ, X}$.
\medskip\noindent
Proof of the claim. Consider $Z' = X_T \times_{Y_T} Z$. Given $T' \to T$
we see that $Z_{T'} \to Y_{T'}$ factors through $X_{T'}$ if and
only if $Z'_{T'} \to Z_{T'}$ is an isomorphism. Thus the claim follows
from the very general
More on Flatness, Lemma \ref{flat-lemma-Weil-restriction-closed-subschemes}.
However, in this special case one can prove the statement directly as
follows: first reduce to the case $T = \Spec(A)$ and $Z = \Spec(B)$.
After shrinking $T$ further we may assume there is an isomorphism
$\varphi : B \to A^{\oplus d}$ as $A$-modules. Then $Z' = \Spec(B/J)$
for some ideal $J \subset B$. Let $g_\beta \in J$ be a collection of
generators and write $\varphi(g_\beta) = (g_\beta^1, \ldots, g_\beta^d)$.
Then it is clear that $T_X$ is given by $\Spec(A/(g_\beta^j))$.
\end{proof}
\begin{lemma}
\label{lemma-hilb-d-separated}
Let $X \to S$ be a morphism of schemes. If $X \to S$ is separated and
$\Hilbfunctor^d_{X/S}$ is representable,
then $\underline{\Hilbfunctor}^d_{X/S} \to S$ is separated.
\end{lemma}
\begin{proof}
In this proof all unadorned products are over $S$.
Let $H = \underline{\Hilbfunctor}^d_{X/S}$ and let
$Z \in \Hilbfunctor^d_{X/S}(H)$ be the universal object.
Consider the two objects $Z_1, Z_2 \in \Hilbfunctor^d_{X/S}(H \times H)$
we get by pulling back $Z$ by the two projections $H \times H \to H$.
Then $Z_1 = Z \times H \subset X_{H \times H}$ and $Z_2 = H \times Z
\subset X_{H \times H}$. Since $H$ represents the functor
$\Hilbfunctor^d_{X/S}$, the diagonal morphism $\Delta : H \to H \times H$
has the following universal property: A morphism of schemes
$T \to H \times H$ factors through $\Delta$ if and only if
$Z_{1, T} = Z_{2, T}$ as elements of $\Hilbfunctor^d_{X/S}(T)$.
Set $Z = Z_1 \times_{X_{H \times H}} Z_2$. Then we see that
$T \to H \times H$ factors through $\Delta$ if and only if
the morphisms $Z_T \to Z_{1, T}$ and $Z_T \to Z_{2, T}$ are
isomorphisms. It follows from the very general
More on Flatness, Lemma \ref{flat-lemma-Weil-restriction-closed-subschemes}
that $\Delta$ is a closed immersion. In the proof of
Lemma \ref{lemma-hilb-d-of-closed}
the reader finds an alternative easier proof of the needed result
in our special case.
\end{proof}
\begin{lemma}
\label{lemma-hilb-d-An}
Let $X \to S$ be a morphism of affine schemes. Let $d \geq 0$. Then
$\Hilbfunctor^d_{X/S}$ is representable.
\end{lemma}
\begin{proof}
Say $S = \Spec(R)$. Then we can choose a closed immersion of $X$
into the spectrum of $R[x_i; i \in I]$ for some set $I$ (of sufficiently
large cardinality. Hence by Lemma \ref{lemma-hilb-d-of-closed}
we may assume that $X = \Spec(A)$ where $A = R[x_i; i \in I]$.
We will use Schemes, Lemma \ref{schemes-lemma-glue-functors} to prove the
lemma in this case.
\medskip\noindent
Condition (1) of the lemma follows from Lemma \ref{lemma-hilb-d-sheaf}.
\medskip\noindent
For every subset $W \subset A$ of cardinality $d$ we will
construct a subfunctor $F_W$ of $\Hilbfunctor^d_{X/S}$.
(It would be enough to consider the case where $W$ consists of a
collection of monomials in the $x_i$ but we do not need this.)
Namely, we will say that $Z \in \Hilbfunctor^d_{X/S}(T)$ is in $F_W(T)$
if and only if the $\mathcal{O}_T$-linear map
$$
\bigoplus\nolimits_{f \in W} \mathcal{O}_T
\longrightarrow
(Z \to T)_*\mathcal{O}_Z,\quad
(g_f) \longmapsto \sum g_f f|_Z
$$
is surjective (equivalently an isomorphism). Here for $f \in A$
and $Z \in \Hilbfunctor^d_{X/S}(T)$ we denote $f|_Z$ the pullback of $f$
by the morphism $Z \to X_T \to X$.
\medskip\noindent
Openness, i.e., condition (2)(b) of the lemma. This follows from
Algebra, Lemma \ref{algebra-lemma-cokernel-flat}.
\medskip\noindent
Covering, i.e., condition (2)(c) of the lemma. Since
$$
A \otimes_R \mathcal{O}_T =
(X_T \to T)_*\mathcal{O}_{X_T} \to (Z \to T)_*\mathcal{O}_Z
$$
is surjective and since $(Z \to T)_*\mathcal{O}_Z$ is finite locally
free of rank $d$, for every point $t \in T$ we can find a finite
subset $W \subset A$ of cardinality $d$ whose images form a basis
of the $d$-dimensional $\kappa(t)$-vector space
$((Z \to T)_*\mathcal{O}_Z)_t \otimes_{\mathcal{O}_{T, t}} \kappa(t)$.
By Nakayama's lemma there is an open neighbourhood $V \subset T$
of $t$ such that $Z_V \in F_W(V)$.
\medskip\noindent
Representable, i.e., condition (2)(a) of the lemma. Let $W \subset A$
have cardinality $d$. We claim that $F_W$ is representable by an affine
scheme over $R$. We will construct this affine scheme here, but we encourage
the reader to think it through for themselves. Choose a numbering
$f_1, \ldots, f_d$ of the elements of $W$. We will construct a universal
element $Z_{univ} = \Spec(B_{univ})$ of $F_W$ over $T_{univ} = \Spec(R_{univ})$
which will be the spectrum of
$$
B_{univ} = R_{univ}[e_1, \ldots, e_d]/
(e_ke_l - \sum c_{kl}^m e_m)
$$
where the $e_l$ will be the images of the $f_l$
and where the closed immersion $Z_{univ} \to X_{T_{univ}}$ is given
by the ring map
$$
A \otimes_R R_{univ} \longrightarrow B_{univ}
$$
mapping $1 \otimes 1$ to $\sum b^le_l$ and $x_i$ to $\sum b_i^le_l$.
In fact, we claim that $F_W$ is represented by the spectrum of the ring
$$
R_{univ} = R[c_{kl}^m, b^l, b_i^l]/\mathfrak a_{univ}
$$
where the ideal $\mathfrak a_{univ}$ is generated by the
following elements:
\begin{enumerate}
\item multiplication on $B_{univ}$ is commutative, i.e.,
$c_{lk}^m - c_{kl}^m \in \mathfrak a_{univ}$,
\item multiplication on $B_{univ}$ is associative, i.e.,
$c_{lk}^m c_{m n}^p - c_{lq}^p c_{kn}^q \in \mathfrak a_{univ}$,
\item $\sum b^le_l$ is a multiplicative $1$ in $B_{univ}$,
in other words, we should have $(\sum b^le_l)e_k = e_k$ for all $k$,
which means $\sum b^lc_{lk}^m - \delta_{km} \in \mathfrak a_{univ}$
(Kronecker delta).
\end{enumerate}
After dividing out by the ideal $\mathfrak a'_{univ}$ of the elements
listed sofar we obtain a well defined ring map
$$
\Psi :
A \otimes_R R[c_{kl}^m, b^l, b_i^l]/\mathfrak a'_{univ}
\longrightarrow
\left(R[c_{kl}^m, b^l, b_i^l]/\mathfrak a'_{univ}\right)
[e_1, \ldots, e_d]/(e_ke_l - \sum c_{kl}^m e_m)
$$
sending $1 \otimes 1$ to $\sum b^le_l$ and $x_i \otimes 1$ to $\sum b_i^le_l$.
We need to add some more elements to our ideal because we need
\begin{enumerate}
\item[(5)] $f_l$ to map to $e_l$ in $B_{univ}$. Write
$\Psi(f_l) - e_l = \sum h_l^me_m$ with
$h_l^m \in R[c_{kl}^m, b^l, b_i^l]/\mathfrak a'_{univ}$
then we need to set $h_l^m$ equal to zero.
\end{enumerate}
Thus setting $\mathfrak a_{univ} \subset R[c_{kl}^m, b^l, b_i^l]$
equal to $\mathfrak a'_{univ} + $ ideal generated by
lifts of $h_l^m$ to $R[c_{kl}^m, b^l, b_i^l]$, then
it is clear that $F_W$ is represented by $\Spec(R_{univ})$.
\end{proof}
\begin{proposition}
\label{proposition-hilb-d-representable}
Let $X \to S$ be a morphism of schemes. Let $d \geq 0$. Assume
for all $(s, x_1, \ldots, x_d)$ where $s \in S$ and
$x_1, \ldots, x_d \in X_s$ there exists an affine open $U \subset X$
with $x_1, \ldots, x_d \in U$. Then $\Hilbfunctor^d_{X/S}$ is
representable by a scheme.
\end{proposition}
\begin{proof}
Either using relative glueing (Constructions, Section
\ref{constructions-section-relative-glueing}) or using
the functorial point of view
(Schemes, Lemma \ref{schemes-lemma-glue-functors})
we reduce to the case where $S$ is affine. Details omitted.
\medskip\noindent
Assume $S$ is affine. For $U \subset X$ affine open, denote
$F_U \subset \Hilbfunctor^d_{X/S}$ the subfunctor such that
for a scheme $T/S$ an element $Z \in \Hilbfunctor^d_{X/S}(T)$
is in $F_U(T)$ if and only if $Z \subset U_T$. We will use
Schemes, Lemma \ref{schemes-lemma-glue-functors}
and the subfunctors $F_U$ to conclude.
\medskip\noindent
Condition (1) is Lemma \ref{lemma-hilb-d-sheaf}.
\medskip\noindent
Condition (2)(a) follows from the fact that $F_U = \Hilbfunctor^d_{U/S}$
and that this is representable by Lemma \ref{lemma-hilb-d-An}.
Namely, if $Z \in F_U(T)$, then $Z$ can be viewed as a closed subscheme
of $U_T$ which is finite locally free of degree $d$ over $T$ and hence
$Z \in \Hilbfunctor^d_{U/S}(T)$. Conversely, if $Z \in \Hilbfunctor^d_{U/S}(T)$
then $Z \to U_T \to X_T$ is a closed immersion\footnote{This is clear
if $X \to S$ is separated as in this case Morphisms, Lemma
\ref{morphisms-lemma-image-proper-scheme-closed}
tells us that the immersion $\varphi : Z \to X_T$ has closed image
and hence is a closed immersion by
Schemes, Lemma \ref{schemes-lemma-immersion-when-closed}. We suggest the
reader skip the rest of this footnote as we don't know of any instance
where the assumptions on $X \to S$ hold but $X \to S$ is not separated.
In the general case, let $x \in X_T$ be a point in the closure of
$\varphi(Z)$. We have to show that $x \in \varphi(Z)$. Let $t \in T$ be the
image of $x$. By assumption on $X \to S$ we can choose an affine open
$W \subset X_T$ containing $x$ and $\varphi(Z_t)$. Then $\varphi^{-1}(W)$
is an open containing the whole fibre $Z_t$ and since $Z \to T$ is closed,
we may after replacing $T$ by an open neighbourhood of $t$ assume that
$Z = \varphi^{-1}(W)$. Then $\varphi(Z) \subset W$ is closed by the
separated case (as $W \to T$ is separated) and we conclude $x \in \varphi(Z)$.}
and we may view $Z$ as an element of $F_U(T)$.
\medskip\noindent
Let $Z \in \Hilbfunctor^d_{X/S}(T)$ for some scheme $T$ over $S$. Let
$$
B = (Z \to T)\left((Z \to X_T \to X)^{-1}(X \setminus U)\right)
$$
This is a closed subset of $T$ and it is clear that over the open
$T_{Z, U} = T \setminus B$ the restriction $Z_{t'}$ maps into $U_{T'}$.
On the other hand, for any $b \in B$ the fibre $Z_b$ does not map
into $U$. Thus we see that given a morphism $T' \to T$ we
have $Z_{T'} \in F_U(T')$ $\Leftrightarrow$ $T' \to T$ factors through
the open $T_{Z, U}$. This proves condition (2)(b).
\medskip\noindent
Condition (2)(c) follows from our assumption on $X/S$. All we have
to do is show the following: If $T$ is the spectrum of a field
and $Z \subset X_T$ is a closed subscheme, finite flat of degree
$d$ over $T$, then $Z \to X_T \to X$ factors through an affine open
$U$ of $X$. This is clear because $Z$ will have at most $d$ points
and these will all map into the fibre of $X$ over the image point
of $T \to S$.
\end{proof}
\begin{remark}
\label{remark-when-proposition-applies}
Let $f : X \to S$ be a morphism of schemes. The assumption of
Proposition \ref{proposition-hilb-d-representable} and
hence the conclusion holds in each of the following cases:
\begin{enumerate}
\item $X$ is quasi-affine,
\item $f$ is quasi-affine,
\item $f$ is quasi-projective,
\item $f$ is locally projective,
\item there exists an ample invertible sheaf on $X$,
\item there exists an $f$-ample invertible sheaf on $X$, and
\item there exists an $f$-very ample invertible sheaf on $X$.
\end{enumerate}
Namely, in each of these cases, every finite set of points of
a fibre $X_s$ is contained in a quasi-compact open $U$ of $X$
which comes with an ample invertible sheaf, is isomorphic
to an open of an affine scheme, or is isomorphic to an open
of $\text{Proj}$ of a graded ring (in each case this follows
by unwinding the definitions). Thus the existence of suitable
affine opens by
Properties, Lemma \ref{properties-lemma-ample-finite-set-in-affine}.
\end{remark}
\section{Moduli of divisors on smooth curves}
\label{section-divisors}
\noindent
For a smooth morphism $X \to S$ of relative dimension $1$ the functor
$\Hilbfunctor^d_{X/S}$ parametrizes relative effective Cartier divisors
as defined in
Divisors, Section \ref{divisors-section-effective-Cartier-morphisms}.
\begin{lemma}
\label{lemma-divisors-on-curves}
Let $X \to S$ be a smooth morphism of schemes of relative dimension $1$.
Let $D \subset X$ be a closed subscheme. Consider the following conditions
\begin{enumerate}
\item $D \to S$ is finite locally free,
\item $D$ is a relative effective Cartier divisor on $X/S$,
\item $D \to S$ is locally quasi-finite, flat, and
locally of finite presentation, and
\item $D \to S$ is locally quasi-finite and flat.
\end{enumerate}
We always have the implications
$$
(1) \Rightarrow (2) \Leftrightarrow (3) \Rightarrow (4)
$$
If $S$ is locally Noetherian, then the last arrow is an if and only if.
If $X \to S$ is proper (and $S$ arbitrary), then the first arrow is
an if and only if.
\end{lemma}
\begin{proof}
Equivalence of (2) and (3). This follows from
Divisors, Lemma \ref{divisors-lemma-fibre-Cartier}
if we can show the equivalence of (2) and (3) when
$S$ is the spectrum of a field $k$. Let $x \in X$ be a closed point.
As $X$ is smooth of relative dimension $1$ over $k$ and we see that
$\mathcal{O}_{X, x}$ is a regular local ring of dimension $1$
(see Varieties, Lemma \ref{varieties-lemma-smooth-regular}).
Thus $\mathcal{O}_{X, x}$ is a discrete valuation ring
(Algebra, Lemma \ref{algebra-lemma-characterize-dvr})
and hence a PID. It follows that every sheaf of ideals
$\mathcal{I} \subset \mathcal{O}_X$ which is nonvanishing at all
the generic points of $X$ is invertible
(Divisors, Lemma \ref{divisors-lemma-effective-Cartier-in-points}).
In other words, every closed subscheme of $X$ which does not contain
a generic point is an effective Cartier divisor.
It follows that (2) and (3) are equivalent.
\medskip\noindent
If $S$ is Noetherian, then any locally quasi-finite morphism
$D \to S$ is locally of finite presentation (Morphisms, Lemma
\ref{morphisms-lemma-noetherian-finite-type-finite-presentation}),
whence (3) is equivalent to (4).
\medskip\noindent
If $X \to S$ is proper (and $S$ is arbitrary), then $D \to S$ is
proper as well. Since a proper locally quasi-finite morphism is finite
(More on Morphisms, Lemma \ref{more-morphisms-lemma-characterize-finite})
and a finite, flat, and finitely presented morphism is finite locally free
(Morphisms, Lemma \ref{morphisms-lemma-finite-flat}), we see that
(1) is equivalent to (2).
\end{proof}
\begin{lemma}
\label{lemma-sum-divisors-on-curves}
Let $X \to S$ be a smooth morphism of schemes of relative dimension $1$.
Let $D_1, D_2 \subset X$ be closed subschemes finite locally free of
degrees $d_1$, $d_2$ over $S$. Then $D_1 + D_2$ is finite locally free
of degree $d_1 + d_2$ over $S$.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-divisors-on-curves} we see that $D_1$
and $D_2$ are relative effective Cartier divisors on $X/S$.
Thus $D = D_1 + D_2$ is a relative effective Cartier divisor
on $X/S$ by
Divisors, Lemma \ref{divisors-lemma-sum-relative-effective-Cartier-divisor}.
Hence $D \to S$ is locally quasi-finite, flat, and
locally of finite presentation by
Lemma \ref{lemma-divisors-on-curves}.
Applying
Morphisms, Lemma \ref{morphisms-lemma-image-universally-closed-separated}
the surjective integral morphism $D_1 \amalg D_2 \to D$
we find that $D \to S$ is separated. Then
Morphisms, Lemma \ref{morphisms-lemma-image-proper-is-proper}
implies that $D \to S$ is proper.
This implies that $D \to S$ is finite
(More on Morphisms, Lemma \ref{more-morphisms-lemma-characterize-finite})
and in turn we see that $D \to S$ is finite locally free
(Morphisms, Lemma \ref{morphisms-lemma-finite-flat}).
Thus it suffice to show that the degree of $D \to S$ is $d_1 + d_2$.
To do this we may base change to a fibre of $X \to S$, hence we may
assume that $S = \Spec(k)$ for some field $k$.
In this case, there exists a finite set of closed points
$x_1, \ldots, x_n \in X$ such that $D_1$ and $D_2$
are supported on $\{x_1, \ldots, x_n\}$.
In fact, there are nonzerodivisors $f_{i, j} \in \mathcal{O}_{X, x_i}$
such that
$$
D_1 = \coprod \Spec(\mathcal{O}_{X, x_i}/(f_{i, 1}))
\quad\text{and}\quad
D_2 = \coprod \Spec(\mathcal{O}_{X, x_i}/(f_{i, 2}))
$$
Then we see that
$$
D = \coprod \Spec(\mathcal{O}_{X, x_i}/(f_{i, 1}f_{i, 2}))
$$
From this one sees easily that $D$ has degree $d_1 + d_2$
over $k$ (if need be, use Algebra, Lemma \ref{algebra-lemma-ord-additive}).
\end{proof}
\begin{lemma}
\label{lemma-difference-divisors-on-curves}
Let $X \to S$ be a smooth morphism of schemes of relative dimension $1$.
Let $D_1, D_2 \subset X$ be closed subschemes finite locally free of
degrees $d_1$, $d_2$ over $S$. If $D_1 \subset D_2$ (as closed subschemes)
then there is a closed subscheme $D \subset X$ finite locally free of
degree $d_2 - d_1$ over $S$ such that $D_2 = D_1 + D$.
\end{lemma}
\begin{proof}
This proof is almost exactly the same as the proof of
Lemma \ref{lemma-sum-divisors-on-curves}.
By Lemma \ref{lemma-divisors-on-curves} we see that $D_1$
and $D_2$ are relative effective Cartier divisors on $X/S$.
By Divisors, Lemma
\ref{divisors-lemma-difference-relative-effective-Cartier-divisor}
there is a relative effective Cartier divisor $D \subset X$
such that $D_2 = D_1 + D$. Hence $D \to S$ is locally quasi-finite, flat, and
locally of finite presentation by
Lemma \ref{lemma-divisors-on-curves}.
Since $D$ is a closed subscheme of $D_2$, we see that
$D \to S$ is finite. It follows that $D \to S$ is finite locally free
(Morphisms, Lemma \ref{morphisms-lemma-finite-flat}).
Thus it suffice to show that the degree of $D \to S$ is $d_2 - d_1$.
This follows from Lemma \ref{lemma-sum-divisors-on-curves}.
\end{proof}
\noindent
Let $X \to S$ be a smooth morphism of schemes of relative dimension $1$.
By Lemma \ref{lemma-divisors-on-curves} for a scheme $T$ over $S$ and
$D \in \Hilbfunctor^d_{X/S}(T)$, we can view $D$ as a relative
effective Cartier divisor on $X_T/T$ such that $D \to T$ is finite
locally free of degree $d$. Hence, by
Lemma \ref{lemma-sum-divisors-on-curves} we obtain a transformation
of functors
$$
\Hilbfunctor^{d_1}_{X/S} \times \Hilbfunctor^{d_2}_{X/S}
\longrightarrow
\Hilbfunctor^{d_1 + d_2}_{X/S},\quad
(D_1, D_2) \longmapsto D_1 + D_2
$$
If $\Hilbfunctor^d_{X/S}$ is representable for all degrees $d$, then
this transformation of functors corresponds to a morphism of schemes
$$
\underline{\Hilbfunctor}^{d_1}_{X/S}
\times_S
\underline{\Hilbfunctor}^{d_2}_{X/S}
\longrightarrow
\underline{\Hilbfunctor}^{d_1 + d_2}_{X/S}
$$
over $S$. Observe that $\underline{\Hilbfunctor}^0_{X/S} = S$ and
$\underline{\Hilbfunctor}^1_{X/S} = X$.
A special case of the morphism above is the morphism
$$
\underline{\Hilbfunctor}^d_{X/S} \times_S X
\longrightarrow
\underline{\Hilbfunctor}^{d + 1}_{X/S},\quad
(D, x) \longmapsto D + x
$$
\begin{lemma}
\label{lemma-universal-object}
Let $X \to S$ be a smooth morphism of schemes of relative dimension $1$
such that the functors $\Hilbfunctor^d_{X/S}$ are representable. The morphism
$\underline{\Hilbfunctor}^d_{X/S} \times_S X \to
\underline{\Hilbfunctor}^{d + 1}_{X/S}$
is finite locally free of degree $d + 1$.
\end{lemma}
\begin{proof}
Let $D_{univ} \subset X \times_S \underline{\Hilbfunctor}^{d + 1}_{X/S}$
be the universal object. There is a commutative diagram
$$
\xymatrix{
\underline{\Hilbfunctor}^d_{X/S} \times_S X \ar[rr] \ar[rd] & &
D_{univ} \ar[ld] \ar@{^{(}->}[r] &
\underline{\Hilbfunctor}^{d + 1}_{X/S} \times_S X \\
& \underline{\Hilbfunctor}^{d + 1}_{X/S}
}
$$
where the top horizontal arrow maps $(D', x)$ to $(D' + x, x)$.
We claim this morphism is an isomorphism
which certainly proves the lemma. Namely, given a scheme $T$ over $S$,
a $T$-valued point $\xi$ of $D_{univ}$ is given by a pair $\xi = (D, x)$
where $D \subset X_T$ is a closed subscheme finite locally free
of degree $d + 1$ over $T$ and $x : T \to X$ is a morphism whose
graph $x : T \to X_T$ factors through $D$. Then by
Lemma \ref{lemma-difference-divisors-on-curves}
we can write $D = D' + x$ for some $D' \subset X_T$ finite locally
free of degree $d$ over $T$. Sending $\xi = (D, x)$ to the pair
$(D', x)$ is the desired inverse.
\end{proof}
\begin{lemma}
\label{lemma-hilb-d-smooth}
Let $X \to S$ be a smooth morphism of schemes of relative dimension $1$
such that the functors $\Hilbfunctor^d_{X/S}$ are representable. The
schemes $\underline{\Hilbfunctor}^d_{X/S}$ are smooth over $S$ of
relative dimension $d$.
\end{lemma}
\begin{proof}
We have $\underline{\Hilbfunctor}^0_{X/S} = S$ and
$\underline{\Hilbfunctor}^1_{X/S} = X$ thus the result is true for $d = 0, 1$.
Assuming the result for $d$, we see that
$\underline{\Hilbfunctor}^d_{X/S} \times_S X$ is smooth over $S$
(Morphisms, Lemma \ref{morphisms-lemma-base-change-smooth} and
\ref{morphisms-lemma-composition-smooth}). Since
$\underline{\Hilbfunctor}^d_{X/S} \times_S X \to
\underline{\Hilbfunctor}^{d + 1}_{X/S}$
is finite locally free of degree $d + 1$ by
Lemma \ref{lemma-universal-object}
the result follows from
Descent, Lemma \ref{descent-lemma-smooth-permanence}.
We omit the verification that the relative dimension is
as claimed (you can do this by looking at fibres, or by
keeping track of the dimensions in the argument above).
\end{proof}
\noindent
We collect all the information obtained sofar in the case of
a proper smooth curve over a field.
\begin{proposition}
\label{proposition-hilb-d}
Let $X$ be a geometrically irreducible smooth proper curve over a field $k$.
\begin{enumerate}
\item The functors $\Hilbfunctor^d_{X/k}$ are representable by smooth
proper varieties $\underline{\Hilbfunctor}^d_{X/k}$ of dimension
$d$ over $k$.
\item For a field extension $k'/k$ the $k'$-rational points
of $\underline{\Hilbfunctor}^d_{X/k}$ are in $1$-to-$1$ bijection
with effective Cartier divisors of degree $d$ on $X_{k'}$.
\item For $d_1, d_2 \geq 0$ there is a morphism
$$
\underline{\Hilbfunctor}^{d_1}_{X/k}
\times_k
\underline{\Hilbfunctor}^{d_2}_{X/k}
\longrightarrow
\underline{\Hilbfunctor}^{d_1 + d_2}_{X/k}
$$
which is finite locally free of degree ${d_1 + d_2 \choose d_1}$.
\end{enumerate}
\end{proposition}
\begin{proof}
The functors $\Hilbfunctor^d_{X/k}$ are representable by
Proposition \ref{proposition-hilb-d-representable}
(see also Remark \ref{remark-when-proposition-applies})
and the fact that $X$ is projective
(Varieties, Lemma \ref{varieties-lemma-dim-1-proper-projective}).
The schemes $\underline{\Hilbfunctor}^d_{X/k}$ are separated
over $k$ by Lemma \ref{lemma-hilb-d-separated}.
The schemes $\underline{\Hilbfunctor}^d_{X/k}$ are smooth
over $k$ by Lemma \ref{lemma-hilb-d-smooth}.
Starting with $X = \underline{\Hilbfunctor}^1_{X/k}$,
the morphisms of Lemma \ref{lemma-universal-object},
and induction we find a morphism
$$
X^d = X \times_k X \times_k \ldots \times_k X \longrightarrow
\underline{\Hilbfunctor}^d_{X/k},\quad
(x_1, \ldots, x_d) \longrightarrow x_1 + \ldots + x_d
$$
which is finite locally free of degree $d!$. Since $X$ is
proper over $k$, so is $X^d$, hence
$\underline{\Hilbfunctor}^d_{X/k}$ is proper over $k$ by
Morphisms, Lemma \ref{morphisms-lemma-image-proper-is-proper}.
Since $X$ is geometrically irreducible over $k$, the product
$X^d$ is irreducible
(Varieties, Lemma \ref{varieties-lemma-bijection-irreducible-components})
hence the image is irreducible (in fact geometrically irreducible).
This proves (1). Part (2) follows from the definitions. Part (3) follows
from the commutative diagram
$$
\xymatrix{
X^{d_1} \times_k X^{d_2} \ar[d] \ar@{=}[r] & X^{d_1 + d_2} \ar[d] \\
\underline{\Hilbfunctor}^{d_1}_{X/k}
\times_k
\underline{\Hilbfunctor}^{d_2}_{X/k}
\ar[r] &
\underline{\Hilbfunctor}^{d_1 + d_2}_{X/k}
}
$$
and multiplicativity of degrees of finite locally free morphisms.
\end{proof}
\begin{remark}
\label{remark-universal-object-hilb-d}
Let $X$ be a geometrically irreducible smooth proper curve over a field $k$
as in Proposition \ref{proposition-hilb-d}. Let $d \geq 0$. The universal
closed object is a relatively effective divisor
$$
D_{univ} \subset \underline{\Hilbfunctor}^{d + 1}_{X/k} \times_k X
$$
over $\underline{\Hilbfunctor}^{d + 1}_{X/k}$ by
Lemma \ref{lemma-divisors-on-curves}.
In fact, $D_{univ}$ is isomorphic as a scheme to
$\underline{\Hilbfunctor}^d_{X/k} \times_k X$, see proof of
Lemma \ref{lemma-universal-object}.
In particular, $D_{univ}$ is an effective Cartier divisor and
we obtain an invertible module
$\mathcal{O}(D_{univ})$. If $[D] \in \underline{\Hilbfunctor}^{d + 1}_{X/k}$
denotes the $k$-rational point corresponding to the effective
Cartier divisor $D \subset X$ of degree $d + 1$, then the restriction
of $\mathcal{O}(D_{univ})$ to the fibre $[D] \times X$ is
$\mathcal{O}_X(D)$.
\end{remark}
\section{The Picard functor}
\label{section-picard-functor}
\noindent
Given any scheme $X$ we denote $\Pic(X)$ the set of isomorphism
classes of invertible $\mathcal{O}_X$-modules.
See Modules, Definition \ref{modules-definition-pic}.
Given a morphism $f : X \to Y$ of schemes, pullback defines
a group homomorphism $\Pic(Y) \to \Pic(X)$.
The assignment
$X \leadsto \Pic(X)$ is a contravariant functor from the category
of schemes to the category of abelian groups. This functor is not
representable, but it turns out that a relative variant of this
construction sometimes is representable.
\medskip\noindent
Let us define the Picard functor for a morphism of schemes $f : X \to S$.
The idea behind our construction is that we'll take it to be the sheaf
$R^1f_*\mathbf{G}_m$ where we use the fppf topology to compute the higher
direct image. Unwinding the definitions this leads to the following more
direct definition.
\begin{definition}
\label{definition-picard-functor}
Let $\Sch_{fppf}$ be a big site as in
Topologies, Definition \ref{topologies-definition-big-small-fppf}.
Let $f : X \to S$ be a morphism of this site. The {\it Picard functor}
$\Picardfunctor_{X/S}$ is the fppf sheafification of the functor
$$
(\Sch/S)_{fppf} \longrightarrow \textit{Sets},\quad
T \longmapsto \Pic(X_T)
$$
If this functor is representable, then we denote
$\underline{\Picardfunctor}_{X/S}$ a scheme representing it.
\end{definition}
\noindent
An often used remark is that if $T \in \Ob((\Sch/S)_{fppf})$, then
$\Picardfunctor_{X_T/T}$ is the restriction of $\Picardfunctor_{X/S}$ to
$(\Sch/T)_{fppf}$.
It turns out to be nontrivial to see what the value of $\Picardfunctor_{X/S}$
is on schemes $T$ over $S$. Here is a lemma that helps with this
task.
\begin{lemma}
\label{lemma-flat-geometrically-connected-fibres}
Let $f : X \to S$ be as in Definition \ref{definition-picard-functor}.
If $\mathcal{O}_T \to f_{T, *}\mathcal{O}_{X_T}$ is an isomorphism
for all $T \in \Ob((\Sch/S)_{fppf})$, then
$$
0 \to \Pic(T) \to \Pic(X_T) \to \Picardfunctor_{X/S}(T)
$$
is an exact sequence for all $T$.
\end{lemma}
\begin{proof}
We may replace $S$ by $T$ and $X$ by $X_T$ and assume that $S = T$
to simplify the notation. Let $\mathcal{N}$ be an invertible
$\mathcal{O}_S$-module. If $f^*\mathcal{N} \cong \mathcal{O}_X$, then
we see that $f_*f^*\mathcal{N} \cong f_*\mathcal{O}_X \cong \mathcal{O}_S$
by assumption. Since $\mathcal{N}$ is locally trivial, we see that
the canonical map $\mathcal{N} \to f_*f^*\mathcal{N}$ is locally
an isomorphism (because $\mathcal{O}_S \to f_*f^*\mathcal{O}_S$
is an isomorphism by assumption). Hence we conclude that
$\mathcal{N} \to f_*f^*\mathcal{N} \to \mathcal{O}_S$ is an isomorphism
and we see that $\mathcal{N}$ is trivial. This proves the first arrow
is injective.
\medskip\noindent
Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module which is in
the kernel of $\Pic(X) \to \Picardfunctor_{X/S}(S)$. Then there exists
an fppf covering $\{S_i \to S\}$ such that $\mathcal{L}$ pulls back
to the trivial invertible sheaf on $X_{S_i}$. Choose a trivializing
section $s_i$. Then $\text{pr}_0^*s_i$ and $\text{pr}_1^*s_j$ are both
trivialising sections of $\mathcal{L}$ over $X_{S_i \times_S S_j}$
and hence differ by a multiplicative unit
$$
f_{ij} \in
\Gamma(X_{S_i \times_S S_j}, \mathcal{O}_{X_{S_i \times_S S_j}}^*) =
\Gamma(S_i \times_S S_j, \mathcal{O}_{S_i \times_S S_j}^*)
$$
(equality by our assumption on pushforward of structure sheaves).
Of course these elements satisfy the cocycle condition on
$S_i \times_S S_j \times_S S_k$, hence they define a descent datum
on invertible sheaves for the fppf covering $\{S_i \to S\}$.
By Descent, Proposition \ref{descent-proposition-fpqc-descent-quasi-coherent}
there is an invertible $\mathcal{O}_S$-module $\mathcal{N}$
with trivializations over $S_i$ whose associated descent datum is
$\{f_{ij}\}$. Then $f^*\mathcal{N} \cong \mathcal{L}$ as the
functor from descent data to modules is fully faithful (see proposition
cited above).
\end{proof}
\begin{lemma}
\label{lemma-flat-geometrically-connected-fibres-with-section}
Let $f : X \to S$ be as in Definition \ref{definition-picard-functor}.
Assume $f$ has a section $\sigma$ and that
$\mathcal{O}_T \to f_{T, *}\mathcal{O}_{X_T}$ is an isomorphism
for all $T \in \Ob((\Sch/S)_{fppf})$. Then
$$
0 \to \Pic(T) \to \Pic(X_T) \to \Picardfunctor_{X/S}(T) \to 0
$$
is a split exact sequence with splitting given by
$\sigma_T^* : \Pic(X_T) \to \Pic(T)$.
\end{lemma}
\begin{proof}
Denote $K(T) = \Ker(\sigma_T^* : \Pic(X_T) \to \Pic(T))$.
Since $\sigma$ is a section of $f$ we see that $\Pic(X_T)$ is the direct
sum of $\Pic(T)$ and $K(T)$.
Thus by Lemma \ref{lemma-flat-geometrically-connected-fibres} we see that
$K(T) \subset \Picardfunctor_{X/S}(T)$ for all $T$. Moreover, it is clear
from the construction that $\Picardfunctor_{X/S}$ is the sheafification
of the presheaf $K$. To finish the proof it suffices to show that
$K$ satisfies the sheaf condition for fppf coverings which we do
in the next paragraph.
\medskip\noindent
Let $\{T_i \to T\}$ be an fppf covering. Let $\mathcal{L}_i$ be
elements of $K(T_i)$ which map to the same elements of $K(T_i \times_T T_j)$
for all $i$ and $j$. Choose an isomorphism
$\alpha_i : \mathcal{O}_{T_i} \to \sigma_{T_i}^*\mathcal{L}_i$
for all $i$. Choose an isomorphism
$$
\varphi_{ij} :
\mathcal{L}_i|_{X_{T_i \times_T T_j}}
\longrightarrow
\mathcal{L}_j|_{X_{T_i \times_T T_j}}
$$
If the map
$$
\alpha_j|_{T_i \times_T T_j} \circ
\sigma_{T_i \times_T T_j}^*\varphi_{ij} \circ
\alpha_i|_{T_i \times_T T_j} :
\mathcal{O}_{T_i \times_T T_j} \to \mathcal{O}_{T_i \times_T T_j}
$$
is not equal to multiplication by $1$ but some $u_{ij}$, then we can scale
$\varphi_{ij}$ by $u_{ij}^{-1}$ to correct this. Having done this, consider
the self map
$$
\varphi_{ki}|_{X_{T_i \times_T T_j \times_T T_k}} \circ
\varphi_{jk}|_{X_{T_i \times_T T_j \times_T T_k}} \circ
\varphi_{ij}|_{X_{T_i \times_T T_j \times_T T_k}}
\quad\text{on}\quad
\mathcal{L}_i|_{X_{T_i \times_T T_j \times_T T_k}}
$$
which is given by multiplication by some regular function $f_{ijk}$
on the scheme $X_{T_i \times_T T_j \times_T T_k}$.
By our choice of $\varphi_{ij}$ we see that the pullback of
this map by $\sigma$ is equal to multiplication by $1$. By
our assumption on functions on $X$, we see that $f_{ijk} = 1$.
Thus we obtain a descent datum for the fppf covering
$\{X_{T_i} \to X\}$. By
Descent, Proposition \ref{descent-proposition-fpqc-descent-quasi-coherent}
there is an invertible $\mathcal{O}_{X_T}$-module $\mathcal{L}$
and an isomorphism $\alpha : \mathcal{O}_T \to \sigma_T^*\mathcal{L}$
whose pullback to $X_{T_i}$ recovers $(\mathcal{L}_i, \alpha_i)$
(small detail omitted). Thus $\mathcal{L}$ defines an object
of $K(T)$ as desired.
\end{proof}
\section{A representability criterion}
\label{section-representability}
\noindent
To prove the Picard functor is representable we will use the following
criterion.
\begin{lemma}
\label{lemma-criterion}
Let $k$ be a field. Let $G : (\Sch/k)^{opp} \to \textit{Groups}$ be a
functor. With terminology as in
Schemes, Definition \ref{schemes-definition-representable-by-open-immersions},
assume that
\begin{enumerate}
\item $G$ satisfies the sheaf property for the Zariski topology,
\item there exists a subfunctor $F \subset G$ such that
\begin{enumerate}
\item $F$ is representable,
\item $F \subset G$ is representable by open immersion,
\item for every field extension $K$ of $k$ and $g \in G(K)$
there exists a $g' \in G(k)$ such that $g'g \in F(K)$.
\end{enumerate}
\end{enumerate}
Then $G$ is representable by a group scheme over $k$.
\end{lemma}
\begin{proof}
This follows from Schemes, Lemma \ref{schemes-lemma-glue-functors}.
Namely, take $I = G(k)$ and for $i = g' \in I$ take $F_i \subset G$
the subfunctor which associates to $T$ over $k$ the set of elements
$g \in G(T)$ with $g'g \in F(T)$. Then $F_i \cong F$ by multiplication
by $g'$. The map $F_i \to G$ is isomorphic to the map $F \to G$
by multiplication by $g'$, hence is representable by open immersions.
Finally, the collection $(F_i)_{i \in I}$ covers $G$ by assumption (2)(c).
Thus the lemma mentioned above applies and the proof is complete.
\end{proof}
\section{The Picard scheme of a curve}
\label{section-picard-curve}
\noindent
In this section we will apply Lemma \ref{lemma-criterion} to show that
$\Picardfunctor_{X/k}$ is representable, when $k$ is an algebraically
closed field and $X$ is a smooth projective curve over $k$. To make this
work we use a bit of cohomology and base change developed in
the chapter on derived categories of schemes.
\begin{lemma}
\label{lemma-check-conditions}
Let $k$ be a field. Let $X$ be a smooth projective curve over $k$
which has a $k$-rational point. Then the hypotheses of
Lemma \ref{lemma-flat-geometrically-connected-fibres-with-section}
are satisfied.
\end{lemma}
\begin{proof}
The meaning of the phrase ``has a $k$-rational point'' is exactly that
the structure morphism $f : X \to \Spec(k)$ has a section, which
verifies the first condition.
By Varieties, Lemma \ref{varieties-lemma-regular-functions-proper-variety}
we see that $k' = H^0(X, \mathcal{O}_X)$ is a field extension of $k$.
Since $X$ has a $k$-rational point there is a $k$-algebra homomorphism
$k' \to k$ and we conclude $k' = k$.
Since $k$ is a field, any morphism $T \to \Spec(k)$ is flat.
Hence we see by cohomology and base change
(Cohomology of Schemes, Lemma \ref{coherent-lemma-flat-base-change-cohomology})
that $\mathcal{O}_T \to f_{T, *}\mathcal{O}_{X_T}$ is an isomorphism.
This finishes the proof.
\end{proof}
\noindent
Let $X$ be a smooth projective curve over a field $k$ with a
$k$-rational point $\sigma$. Then the functor
$$
\Picardfunctor_{X/k, \sigma} : (\Sch/k)^{opp} \longrightarrow \textit{Ab},\quad
T \longmapsto \Ker(\Pic(X_T) \xrightarrow{\sigma_T^*} \Pic(T))
$$
is isomorphic to $\Picardfunctor_{X/k}$ on $(\Sch/k)_{fppf}$
by Lemmas \ref{lemma-check-conditions} and
\ref{lemma-flat-geometrically-connected-fibres-with-section}.
Hence it will suffice to prove that $\Picardfunctor_{X/k, \sigma}$
is representable. We will use the notation
``$\mathcal{L} \in \Picardfunctor_{X/k, \sigma}(T)$'' to signify that
$T$ is a scheme over $k$ and $\mathcal{L}$ is an invertible
$\mathcal{O}_{X_T}$-module whose restriction to $T$ via $\sigma_T$
is isomorphic to $\mathcal{O}_T$.
\begin{lemma}
\label{lemma-define-open}
Let $k$ be a field. Let $X$ be a smooth projective curve over $k$
with a $k$-rational point $\sigma$. For a scheme $T$ over $k$,
consider the subset $F(T) \subset \Picardfunctor_{X/k, \sigma}(T)$ consisting of
$\mathcal{L}$ such that $Rf_{T, *}\mathcal{L}$ is isomorphic to an invertible
$\mathcal{O}_T$-module placed in degree $0$. Then
$F \subset \Picardfunctor_{X/k, \sigma}$ is a subfunctor and the inclusion is
representable by open immersions.
\end{lemma}
\begin{proof}
Immediate from Derived Categories of Schemes, Lemma
\ref{perfect-lemma-open-where-cohomology-in-degree-i-rank-r-geometric}
applied with $i = 0$ and $r = 1$ and
Schemes, Definition \ref{schemes-definition-representable-by-open-immersions}.
\end{proof}
\noindent
To continue it is convenient to make the following definition.
\begin{definition}
\label{definition-genus}
Let $k$ be a field. Let $X$ be a smooth projective geometrically irreducible
curve over $k$. The {\it genus} of $X$ is $g = \dim_k H^1(X, \mathcal{O}_X)$.
\end{definition}