-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathfunctors.tex
2149 lines (1954 loc) · 82 KB
/
functors.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Functors and Morphisms}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
Let $X$ and $Y$ be schemes. This chapter circles around the relationship
between functors $\QCoh(\mathcal{O}_Y) \to \QCoh(\mathcal{O}_X)$ and
morphisms of schemes $X \to Y$. More broadly speaking we study the
relationship between $\QCoh(\mathcal{O}_X)$ and $X$ or, if $X$ is Noetherian,
the relationship between $\textit{Coh}(\mathcal{O}_X)$ and $X$.
This relationship was studied in \cite{Gabriel}.
\section{Functors on module categories}
\label{section-preliminary}
\noindent
For a ring $A$ let us denote $\text{Mod}^{fp}_A$ the category of
finitely presented $A$-modules.
\begin{lemma}
\label{lemma-functor-on-fp-modules}
Let $A$ be a ring. Let $\mathcal{B}$ be a category having filtered
colimits. Let $F : \text{Mod}^{fp}_A \to \mathcal{B}$ be a functor. Then $F$
extends uniquely to a functor $F' : \text{Mod}_A \to \mathcal{B}$
which commutes with filtered colimits.
\end{lemma}
\begin{proof}
This follows from
Categories, Lemma \ref{categories-lemma-extend-functor-by-colim}.
To see that the lemma applies observe that
finitely presented $A$-modules are
categorically compact objects of $\text{Mod}_A$ by
Algebra, Lemma \ref{algebra-lemma-characterize-finitely-presented-module-hom}.
Also, every $A$-module is a filtered colimit
of finitely presented $A$-modules by
Algebra, Lemma \ref{algebra-lemma-module-colimit-fp}.
\end{proof}
\noindent
If a category $\mathcal{B}$ is additive and has filtered colimits,
then $\mathcal{B}$ has arbitrary direct sums: any direct sum can be written
as a filtered colimit of finite direct sums.
\begin{lemma}
\label{lemma-functor-on-fp-modules-additive}
Let $A$, $\mathcal{B}$, $F$ be as in Lemma \ref{lemma-functor-on-fp-modules}.
Assume $\mathcal{B}$ is additive and $F$ is additive. Then
$F'$ is additive and commutes with arbitrary direct sums.
\end{lemma}
\begin{proof}
To show that $F'$ is additive it suffices to show
that $F'(M) \oplus F'(M') \to F'(M \oplus M')$ is an isomorphism for
any $A$-modules $M$, $M'$, see
Homology, Lemma \ref{homology-lemma-additive-functor}.
Write $M = \colim_i M_i$ and $M' = \colim_j M'_j$ as filtered colimits
of finitely presented $A$-modules $M_i$. Then
$F'(M) = \colim_i F(M_i)$, $F'(M') = \colim_j F(M'_j)$, and
\begin{align*}
F'(M \oplus M')
& =
F'(\colim_{i, j} M_i \oplus M'_j) \\
& =
\colim_{i, j} F(M_i \oplus M'_j) \\
& =
\colim_{i, j} F(M_i) \oplus F(M'_j) \\
& =
F'(M) \oplus F'(M')
\end{align*}
as desired. To show that $F'$ commutes with direct sums, assume
we have $M = \bigoplus_{i \in I} M_i$. Then
$M = \colim_{I' \subset I\text{ finite}} \bigoplus_{i \in I'} M_i$
is a filtered colimit. We obtain
\begin{align*}
F'(M)
& =
\colim_{I' \subset I\text{ finite}}
F'(\bigoplus\nolimits_{i \in I'} M_i) \\
& =
\colim_{I' \subset I\text{ finite}}
\bigoplus\nolimits_{i \in I'} F'(M_i) \\
& =
\bigoplus\nolimits_{i \in I} F'(M_i)
\end{align*}
The second equality holds by the additivity of $F'$ already shown.
\end{proof}
\noindent
If a category $\mathcal{B}$ is additive, has filtered colimits, and
has cokernels, then $\mathcal{B}$ has arbitrary colimits, see
discussion above and Categories, Lemma
\ref{categories-lemma-colimits-coproducts-coequalizers}.
\begin{lemma}
\label{lemma-functor-on-fp-modules-right-exact}
Let $A$, $\mathcal{B}$, $F$ be as in Lemma \ref{lemma-functor-on-fp-modules}.
Assume $\mathcal{B}$ is additive, has cokernels, and $F$ is right exact. Then
$F'$ is additive, right exact, and commutes with arbitrary direct sums.
\end{lemma}
\begin{proof}
Since $F$ is right exact, $F$ commutes with coproducts of pairs, which are
represented by direct sums. Hence $F$ is additive by
Homology, Lemma \ref{homology-lemma-additive-functor}.
Hence $F'$ is additive and commutes with direct sums by
Lemma \ref{lemma-functor-on-fp-modules-additive}.
We urge the reader to prove that $F'$ is right exact themselves
instead of reading the proof below.
\medskip\noindent
To show that $F'$ is right exact, it suffices to show that $F'$ commutes
with coequalizers, see
Categories, Lemma \ref{categories-lemma-characterize-right-exact}.
Now, if $a, b : K \to L$ are maps of $A$-modules, then the
coequalizer of $a$ and $b$ is the cokernel of $a - b : K \to L$.
Thus let $K \to L \to M \to 0$ be an exact sequence
of $A$-modules. We have to show that in
$$
F'(K) \to F'(L) \to F'(M) \to 0
$$
the second arrow is a cokernel for the first arrow in $\mathcal{B}$
(if $\mathcal{B}$ were abelian we would say that the displayed sequence
is exact).
Write $M = \colim_{i \in I} M_i$ as a filtered colimit of finitely
presented $A$-modules, see
Algebra, Lemma \ref{algebra-lemma-module-colimit-fp}.
Let $L_i = L \times_M M_i$.
We obtain a system of exact sequences $K \to L_i \to M_i \to 0$ over $I$.
Since colimits commute with colimits by
Categories, Lemma \ref{categories-lemma-colimits-commute}
and since cokernels are a type of coequalizer,
it suffices to show that $F'(L_i) \to F(M_i)$ is a cokernel of
$F'(K) \to F'(L_i)$ in $\mathcal{B}$ for all $i \in I$. In other words, we may
assume $M$ is finitely presented. Write $L = \colim_{i \in I} L_i$
as a filtered colimit of finitely presented $A$-modules
with the property that each $L_i$ surjects onto $M$.
Let $K_i = K \times_L L_i$. We obtain a system of short exact sequences
$K_i \to L_i \to M \to 0$ over $I$.
Repeating the argument already given, we reduce to showing
$F(L_i) \to F(M_i)$ is a cokernel of
$F'(K) \to F(L_i)$ in $\mathcal{B}$ for all $i \in I$.
In other words, we may assume both
$L$ and $M$ are finitely presented $A$-modules.
In this case the module $\Ker(L \to M)$ is finite
(Algebra, Lemma \ref{algebra-lemma-extension}).
Thus we can write $K = \colim_{i \in I} K_i$ as a filtered colimit
of finitely presented $A$-modules each surjecting onto $\Ker(L \to M)$.
We obtain a system of short exact sequences
$K_i \to L \to M \to 0$ over $I$.
Repeating the argument already given, we reduce to showing
$F(L) \to F(M)$ is a cokernel of
$F(K_i) \to F(L)$ in $\mathcal{B}$ for all $i \in I$.
In other words, we may assume $K$, $L$, and $M$
are finitely presented $A$-modules. This final case follows
from the assumption that $F$ is right exact.
\end{proof}
\noindent
If a category $\mathcal{B}$ is additive and has kernels,
then $\mathcal{B}$ has finite limits. Namely, finite products
are direct sums which exist and the equalizer of $a, b : L \to M$
is the kernel of $a - b : K \to L$ which exists. Thus all finite
limits exist by Categories, Lemma \ref{categories-lemma-finite-limits-exist}.
\begin{lemma}
\label{lemma-functor-on-fp-modules-left-exact}
Let $A$, $\mathcal{B}$, $F$ be as in Lemma \ref{lemma-functor-on-fp-modules}.
Assume $A$ is a coherent ring (Algebra, Definition
\ref{algebra-definition-coherent}), $\mathcal{B}$ is additive, has kernels,
filtered colimits commute with taking kernels, and $F$ is left exact. Then
$F'$ is additive, left exact, and commutes with arbitrary direct sums.
\end{lemma}
\begin{proof}
Since $A$ is coherent, the category $\text{Mod}^{fp}_A$ is abelian
with same kernels and cokernels as in $\text{Mod}_A$, see
Algebra, Lemmas \ref{algebra-lemma-coherent-ring} and
\ref{algebra-lemma-coherent}. Hence all finite limits exist in
$\text{Mod}^{fp}_A$ and
Categories, Definition \ref{categories-definition-exact} applies.
Since $F$ is left exact, $F$ commutes with products of pairs, which are
represented by direct sums. Hence $F$ is additive by
Homology, Lemma \ref{homology-lemma-additive-functor}.
Hence $F'$ is additive and commutes with direct sums by
Lemma \ref{lemma-functor-on-fp-modules-additive}.
We urge the reader to prove that $F'$ is left exact themselves
instead of reading the proof below.
\medskip\noindent
To show that $F'$ is left exact, it suffices to show that $F'$ commutes
with equalizers, see
Categories, Lemma \ref{categories-lemma-characterize-left-exact}.
Now, if $a, b : L \to M$ are maps of $A$-modules, then the
equalizer of $a$ and $b$ is the kernel of $a - b : L \to M$.
Thus let $0 \to K \to L \to M$ be an exact sequence
of $A$-modules. We have to show that in
$$
0 \to F'(K) \to F'(L) \to F'(M)
$$
the arrow $F'(K) \to F'(L)$ is a kernel for $F'(L) \to F'(M)$ in $\mathcal{B}$
(if $\mathcal{B}$ were abelian we would say that the displayed sequence
is exact).
Write $M = \colim_{i \in I} M_i$ as a filtered colimit of finitely
presented $A$-modules, see
Algebra, Lemma \ref{algebra-lemma-module-colimit-fp}.
Let $L_i = L \times_M M_i$.
We obtain a system of exact sequences $0 \to K \to L_i \to M_i$
over $I$. Since filtered colimits commute with taking kernels
in $\mathcal{B}$ by assumption,
it suffices to show that $F'(K) \to F'(L_i)$ is a kernel of
$F'(L_i) \to F(M_i)$ in $\mathcal{B}$ for all $i \in I$. In other words, we may
assume $M$ is finitely presented. Write $L = \colim_{i \in I} L_i$
as a filtered colimit of finitely presented $A$-modules.
Let $K_i = K \times_L L_i$. We obtain a system of short exact sequences
$0 \to K_i \to L_i \to M$ over $I$.
Repeating the argument already given, we reduce to showing
$F'(K_i) \to F(L_i)$ is a kernel of
$F(L_i) \to F(M)$ in $\mathcal{B}$ for all $i \in I$.
In other words, we may assume both
$L$ and $M$ are finitely presented $A$-modules.
Since $A$ is coherent, the $A$-module $K = \Ker(L \to M)$ is
of finite presentation as the category of finitely presented
$A$-modules is abelian (see references given above).
In other words, all three modules $K$, $L$, and $M$
are finitely presented $A$-modules. This final case follows
from the assumption that $F$ is left exact.
\end{proof}
\noindent
If a category $\mathcal{B}$ is additive and has cokernels,
then $\mathcal{B}$ has finite colimits. Namely, finite coproducts
are direct sums which exist and the coequalizer of $a, b : K \to L$
is the cokernel of $a - b : K \to L$ which exists. Thus all finite
colimits exist by Categories, Lemma \ref{categories-lemma-colimits-exist}.
\begin{lemma}
\label{lemma-functor-on-modules-fp}
Let $A$ be a ring. Let $\mathcal{B}$ be an additive category
with cokernels. There is an equivalence of categories between
\begin{enumerate}
\item the category of functors $F : \text{Mod}^{fp}_A \to \mathcal{B}$
which are right exact, and
\item the category of pairs $(K, \kappa)$ where $K \in \Ob(\mathcal{B})$
and $\kappa : A \to \text{End}_\mathcal{B}(K)$ is a ring homomorphism
\end{enumerate}
given by the rule sending $F$ to $F(A)$ with its natural $A$-action.
\end{lemma}
\begin{proof}
Let $(K, \kappa)$ be as in (2). We will construct a functor
$F : \text{Mod}^{fp}_A \to \mathcal{B}$ such that $F(A) = K$
endowed with the given $A$-action $\kappa$. Namely, given an
integer $n \geq 0$ let us set
$$
F(A^{\oplus n}) = K^{\oplus n}
$$
Given an $A$-linear map $\varphi : A^{\oplus m} \to A^{\oplus n}$
with matrix $(a_{ij}) \in \text{Mat}(n \times m, A)$ we define
$$
F(\varphi) :
F(A^{\oplus m}) = K^{\oplus m}
\longrightarrow
K^{\oplus n} = F(A^{\oplus n})
$$
to be the map with matrix $(\kappa(a_{ij}))$. This defines an additive
functor $F$ from the full subcategory of
$\text{Mod}^{fp}_A$ with objects $0$, $A$, $A^{\oplus 2}$, $\ldots$
to $\mathcal{B}$; we omit the verification.
\medskip\noindent
For each object $M$ of $\text{Mod}^{fp}_A$ choose a presentation
$$
A^{\oplus m_M} \xrightarrow{\varphi_M} A^{\oplus n_M} \to M \to 0
$$
of $M$ as an $A$-module. Let us use the trivial presentation
$0 \to A^{\oplus n} \xrightarrow{1} A^{\oplus n} \to 0$ if $M = A^{\oplus n}$
(this isn't necessary but simplifies the exposition).
For each morphism $f : M \to N$ of
$\text{Mod}^{fp}_A$ we can choose a commutative diagram
\begin{equation}
\label{equation-map}
\vcenter{
\xymatrix{
A^{\oplus m_M} \ar[r]_{\varphi_M} \ar[d]_{\psi_f} &
A^{\oplus n_M} \ar[r] \ar[d]_{\chi_f} &
M \ar[r] \ar[d]_f & 0 \\
A^{\oplus m_N} \ar[r]^{\varphi_N} &
A^{\oplus n_N} \ar[r] &
N \ar[r] & 0
}
}
\end{equation}
Having made these choices we can define: for an object
$M$ of $\text{Mod}^{fp}_A$ we set
$$
F(M) = \Coker(F(\varphi_M) : F(A^{\oplus m_M}) \to F(A^{\oplus n_M}))
$$
and for a morphism $f : M \to N$ of $\text{Mod}^{fp}_A$ we set
$$
F(f) = \text{the map }F(M) \to F(N)\text{ induced by }
F(\psi_f)\text{ and }F(\chi_f)\text{ on cokernels}
$$
Note that this rule extends the given functor $F$ on
the full subcategory consisting of the free modules $A^{\oplus n}$.
We still have to show that $F$ is a functor, that $F$ is additive,
and that $F$ is right exact.
\medskip\noindent
Let $f : M \to N$ be a morphism $\text{Mod}^{fp}_A$. We claim that the map
$F(f)$ defined above is independent of the choices of $\psi_f$ and $\chi_f$
in (\ref{equation-map}). Namely, say
$$
\xymatrix{
A^{\oplus m_M} \ar[r]_{\varphi_M} \ar[d]_\psi &
A^{\oplus n_M} \ar[r] \ar[d]_\chi &
M \ar[r] \ar[d]_f & 0 \\
A^{\oplus m_N} \ar[r]^{\varphi_N} &
A^{\oplus n_N} \ar[r] &
N \ar[r] & 0
}
$$
is also commutative. Denote $F(f)' : F(M) \to F(N)$ the map
induced by $F(\psi)$ and $F(\chi)$. Looking at the commutative
diagrams, by elementary commutative algebra there exists a map
$\omega : A^{\oplus n_M} \to A^{\oplus m_N}$ such that
$\chi = \chi_f + \varphi_N \circ \omega$. Applying $F$ we
find that $F(\chi) = F(\chi_f) + F(\varphi_N) \circ F(\omega)$.
As $F(N)$ is the cokernel of $F(\varphi_N)$ we find
that the map $F(A^{\oplus n_M}) \to F(M)$ equalizes $F(f)$ and $F(f)'$.
Since a cokernel is an epimorphism, we conclude that $F(f) = F(f)'$.
\medskip\noindent
Let us prove $F$ is a functor. First, observe that
$F(\text{id}_M) = \text{id}_{F(M)}$ because we may pick
the identities for $\psi_f$ and $\chi_f$ in the diagram above
in case $f = \text{id}_M$. Second, suppose we have
$f : M \to N$ and $g : L \to M$. Then we see that
$\psi = \psi_f \circ \psi_g$ and $\chi = \chi_f \circ \chi_g$
fit into (\ref{equation-map}) for $f \circ g$.
Hence these induce the correct map which exactly
says that $F(f) \circ F(g) = F(f \circ g)$.
\medskip\noindent
Let us prove that $F$ is additive. Namely, suppose we have
$f, g : M \to N$. Then we see that $\psi = \psi_f + \psi_g$ and
$\chi = \chi_f + \chi_g$ fit into (\ref{equation-map}) for $f + g$.
Hence these induce the correct map which exactly
says that $F(f) + F(g) = F(f + g)$.
\medskip\noindent
Finally, let us prove that $F$ is right exact. It suffices to show that $F$
commutes with coequalizers, see
Categories, Lemma \ref{categories-lemma-characterize-right-exact}.
For this, it suffices to prove that $F$ commutes with cokernels.
Let $K \to L \to M \to 0$ be an exact sequence of $A$-modules
with $K$, $L$, $M$ finitely presented. Since $F$ is an additive
functor, this certainly gives a complex
$$
F(K) \to F(L) \to F(M) \to 0
$$
and we have to show that the second arrow is the cokernel of the first
in $\mathcal{B}$. In any case, we obtain a map
$\Coker(F(K) \to F(L)) \to F(M)$.
By elementary commutative algebra there exists a commutative diagram
$$
\xymatrix{
A^{\oplus m_M} \ar[r]_{\varphi_M} \ar[d]_\psi &
A^{\oplus n_M} \ar[r] \ar[d]_\chi &
M \ar[r] \ar[d]_1 & 0 \\
K \ar[r] &
L \ar[r] &
M \ar[r] & 0
}
$$
Applying $F$ to this diagram and using the construction of $F(M)$ as
the cokernel of $F(\varphi_M)$ we find there exists a map
$F(M) \to \Coker(F(K) \to F(L))$ which is a right inverse
to the map $\Coker(F(K) \to F(L)) \to F(M)$. This first implies
that $F(L) \to F(M)$ is an epimorphism always. Next, the above shows
we have
$$
\Coker(F(K) \to F(L)) = F(M) \oplus E
$$
where the direct sum decomposition is compatible with both
$F(M) \to \Coker(F(K) \to F(L))$ and $\Coker(F(K) \to F(L)) \to F(M)$.
However, then the epimorphism $p : F(L) \to E$ becomes zero both
after composition with $F(K) \to F(L)$ and after composition
with $F(A^{n_M}) \to F(L)$. However, since $K \oplus A^{n_M} \to L$
is surjective (algebra argument omitted), we conclude that
$F(K \oplus A^{n_M}) \to F(L)$ is an epimorphism (by the above)
whence $E = 0$. This finishes the proof.
\end{proof}
\begin{lemma}
\label{lemma-functor-on-modules}
Let $A$ be a ring. Let $\mathcal{B}$ be an additive category
with arbitrary direct sums and cokernels. There is an equivalence
of categories between
\begin{enumerate}
\item the category of functors $F : \text{Mod}_A \to \mathcal{B}$
which are right exact and commute with arbitrary direct sums, and
\item the category of pairs $(K, \kappa)$ where $K \in \Ob(\mathcal{B})$
and $\kappa : A \to \text{End}_\mathcal{B}(K)$ is a ring homomorphism
\end{enumerate}
given by the rule sending $F$ to $F(A)$ with its natural $A$-action.
\end{lemma}
\begin{proof}
Combine Lemmas \ref{lemma-functor-on-modules-fp} and
\ref{lemma-functor-on-fp-modules-right-exact}.
\end{proof}
\section{Functors between categories of modules}
\label{section-functors}
\noindent
The following lemma is archetypical of the results in this chapter.
\begin{lemma}
\label{lemma-functor}
Let $A$ and $B$ be rings. Let $F : \text{Mod}_A \to \text{Mod}_B$
be a functor. The following are equivalent
\begin{enumerate}
\item $F$ is isomorphic to the functor $M \mapsto M \otimes_A K$
for some $A \otimes_\mathbf{Z} B$-module $K$,
\item $F$ is right exact and commutes with all direct sums,
\item $F$ commutes with all colimits,
\item $F$ has a right adjoint $G$.
\end{enumerate}
\end{lemma}
\begin{proof}
If (1), then (4) as a right adjoint for $M \mapsto M \otimes_A K$
is $N \mapsto \Hom_B(K, N)$, see
Differential Graded Algebra, Lemma \ref{dga-lemma-tensor-hom-adjunction}.
If (4), then (3) by Categories, Lemma \ref{categories-lemma-adjoint-exact}.
The implication (3) $\Rightarrow$ (2) is immediate from the definitions.
\medskip\noindent
Assume (2). We will prove (1). By the discussion in
Homology, Section \ref{homology-section-functors}
the functor $F$ is additive. Hence $F$ induces
a ring map $A \to \text{End}_B(F(M))$, $a \mapsto F(a \cdot \text{id}_M)$
for every $A$-module $M$. We conclude that $F(M)$ is an
$A \otimes_\mathbf{Z} B$-module functorially in $M$.
Set $K = F(A)$. Define
$$
M \otimes_A K = M \otimes_A F(A) \longrightarrow F(M),
\quad m \otimes k \longmapsto F(\varphi_m)(k)
$$
Here $\varphi_m : A \to M$ sends $a \to am$. The rule
$(m, k) \mapsto F(\varphi_m)(k)$ is $A$-bilinear (and $B$-linear
on the right) as required to obtain the displayed
$A \otimes_\mathbf{Z} B$-linear map.
This construction is functorial in $M$, hence defines a transformation
of functors $- \otimes_A K \to F(-)$ which is an isomorphism when
evaluated on $A$. For every $A$-module $M$ we can choose an exact sequence
$$
\bigoplus\nolimits_{j \in J} A \to
\bigoplus\nolimits_{i \in I} A \to
M \to 0
$$
Using the maps constructed above we find a commutative diagram
$$
\xymatrix{
(\bigoplus\nolimits_{j \in J} A) \otimes_A K \ar[r] \ar[d] &
(\bigoplus\nolimits_{i \in I} A) \otimes_A K \ar[r] \ar[d] &
M \otimes_A K \ar[r] \ar[d] &
0 \\
F(\bigoplus\nolimits_{j \in J} A) \ar[r] &
F(\bigoplus\nolimits_{i \in I} A) \ar[r] &
F(M) \ar[r] & 0
}
$$
The lower row is exact as $F$ is right exact.
The upper row is exact as tensor product with $K$ is right exact.
Since $F$ commutes with direct sums the left two vertical arrows
are bijections. Hence we conclude.
\end{proof}
\begin{example}
\label{example-functor-modules}
Let $R$ be a ring. Let $A$ and $B$ be $R$-algebras. Let $K$ be a
$A \otimes_R B$-module. Then we can consider the functor
\begin{equation}
\label{equation-FM-modules}
F : \text{Mod}_A \longrightarrow \text{Mod}_B,\quad
M \longmapsto M \otimes_A K
\end{equation}
This functor is $R$-linear, right exact,
commutes with arbitrary direct sums, commutes
with all colimits, has a right adjoint (Lemma \ref{lemma-functor}).
\end{example}
\begin{lemma}
\label{lemma-functor-modules}
Let $R$ be a ring. Let $A$ and $B$ be $R$-algebras. There is an
equivalence of categories between
\begin{enumerate}
\item the category of $R$-linear functors
$F : \text{Mod}_A \to \text{Mod}_B$ which
are right exact and commute with arbitrary direct sums, and
\item the category $\text{Mod}_{A \otimes_R B}$.
\end{enumerate}
given by sending $K$ to the functor $F$ in (\ref{equation-FM-modules}).
\end{lemma}
\begin{proof}
Let $F$ be an object of the first category. By
Lemma \ref{lemma-functor} we may assume $F(M) = M \otimes_A K$
functorially in $M$ for some $A \otimes_\mathbf{Z} B$-module $K$.
The $R$-linearity of $F$ immediately implies that the
$A \otimes_\mathbf{Z} B$-module structure on $K$ comes
from a (unique) $A \otimes_R B$-module structure on $K$.
Thus we see that sending $K$ to $F$ as in (\ref{equation-FM-modules})
is essentially surjective.
\medskip\noindent
To prove that our functor is fully faithful, we have to show that
given $A \otimes_R B$-modules $K$ and $K'$ any transformation
$t : F \to F'$ between the corresponding functors, comes from
a unique $\varphi : K \to K'$. Since $K = F(A)$ and $K' = F'(A)$
we can take $\varphi$ to be the value $t_A : F(A) \to F'(A)$
of $t$ at $A$. This maps is $A \otimes_R B$-linear by the
definition of the $A \otimes B$-module structure on $F(A)$
and $F'(A)$ given in the proof of Lemma \ref{lemma-functor}.
\end{proof}
\begin{remark}
\label{remark-composition}
Let $R$ be a ring. Let $A$, $B$, $C$ be $R$-algebras.
Let $F : \text{Mod}_A \to \text{Mod}_B$ and
$F' : \text{Mod}_B \to \text{Mod}_C$ be
$R$-linear, right exact functors which commute with arbitrary direct sums.
If by the equivalence of Lemma \ref{lemma-functor-modules} the object
$K$ in $\text{Mod}_{A \otimes_R B}$ corresponds to $F$ and the object
$K'$ in $\text{Mod}_{B \otimes_R C}$ corresponds to $F'$, then
$K \otimes_B K'$ viewed as an object of
$\text{Mod}_{A \otimes_R C}$ corresponds to $F' \circ F$.
\end{remark}
\begin{remark}
\label{remark-exact-flat}
In the situation of Lemma \ref{lemma-functor-modules}
suppose that $F$ corresponds to $K$. Then
$F$ is exact $\Leftrightarrow$ $K$ is flat over $A$.
\end{remark}
\begin{remark}
\label{remark-finite}
In the situation of Lemma \ref{lemma-functor-modules}
suppose that $F$ corresponds to $K$. Then
$F$ sends finite $A$-modules to finite $B$-modules
$\Leftrightarrow$ $K$ is finite as a $B$-module.
\end{remark}
\begin{remark}
\label{remark-finite-presentation}
In the situation of Lemma \ref{lemma-functor-modules}
suppose that $F$ corresponds to $K$. Then
$F$ sends finitely presented $A$-modules to finitely presented $B$-modules
$\Leftrightarrow$ $K$ is finitely presented as a $B$-module.
\end{remark}
\begin{lemma}
\label{lemma-functor-equivalence}
Let $A$ and $B$ be rings. If
$$
F : \text{Mod}_A \longrightarrow \text{Mod}_B
$$
is an equivalence of categories, then there exists an isomorphism
$A \to B$ of rings and an invertible $B$-module $L$ such that
$F$ is isomorphic to the functor $M \mapsto (M \otimes_A B) \otimes_B L$.
\end{lemma}
\begin{proof}
Since an equivalence commutes with all colimits, we see that
Lemmas \ref{lemma-functor} applies. Let $K$ be the
$A \otimes_\mathbf{Z} B$-module such that $F$ is
isomorphic to the functor $M \mapsto M \otimes_A K$.
Let $K'$ be the $B \otimes_\mathbf{Z} A$-module such that
a quasi-inverse of $F$ is
isomorphic to the functor $N \mapsto N \otimes_B K'$.
By Remark \ref{remark-composition} and
Lemma \ref{lemma-functor-modules} we have an isomorphism
$$
\psi : K \otimes_B K' \longrightarrow A
$$
of $A \otimes_\mathbf{Z} A$-modules.
Similarly, we have an isomorphism
$$
\psi' : K' \otimes_A K \longrightarrow B
$$
of $B \otimes_\mathbf{Z} B$-modules. Choose an element
$\xi = \sum_{i = 1, \ldots, n} x_i \otimes y_i \in K \otimes_B K'$
such that $\psi(\xi) = 1$. Consider the isomorphisms
$$
K \xrightarrow{\psi^{-1} \otimes \text{id}_K}
K \otimes_B K' \otimes_A K \xrightarrow{\text{id}_K \otimes \psi'} K
$$
The composition is an isomorphism and given by
$$
k \longmapsto \sum x_i \psi'(y_i \otimes k)
$$
We conclude this automorphism factors as
$$
K \to B^{\oplus n} \to K
$$
as a map of $B$-modules. It follows that $K$ is finite
projective as a $B$-module.
\medskip\noindent
We claim that $K$ is invertible as a $B$-module. This is equivalent
to asking the rank of $K$ as a $B$-module to have the constant value $1$,
see More on Algebra, Lemma \ref{more-algebra-lemma-invertible} and
Algebra, Lemma \ref{algebra-lemma-finite-projective}.
If not, then there exists a maximal ideal $\mathfrak m \subset B$
such that either (a) $K \otimes_B B/\mathfrak m = 0$ or
(b) there is a surjection $K \to (B/\mathfrak m)^{\oplus 2}$ of
$B$-modules. Case (a) is absurd as $K' \otimes_A K \otimes_B N = N$
for all $B$-modules $N$. Case (b) would imply we get a surjection
$$
A = K \otimes_B K' \longrightarrow (B/\mathfrak m \otimes_B K')^{\oplus 2}
$$
of (right) $A$-modules. This is impossible as the target is an $A$-module
which needs at least two generators: $B/\mathfrak m \otimes_B K'$
is nonzero as the image of the nonzero module $B/\mathfrak m$ under
the quasi-inverse of $F$.
\medskip\noindent
Since $K$ is invertible as a $B$-module we see that $\Hom_B(K, K) = B$.
Since $K = F(A)$ the action of $A$ on $K$ defines a ring isomorphism
$A \to B$. The lemma follows.
\end{proof}
\begin{lemma}
\label{lemma-functor-equivalence-linear}
Let $R$ be a ring. Let $A$ and $B$ be $R$-algebras. If
$$
F : \text{Mod}_A \longrightarrow \text{Mod}_B
$$
is an $R$-linear equivalence of categories, then there exists an isomorphism
$A \to B$ of $R$-algebras and an invertible $B$-module $L$ such that
$F$ is isomorphic to the functor $M \mapsto (M \otimes_A B) \otimes_B L$.
\end{lemma}
\begin{proof}
We get $A \to B$ and $L$ from Lemma \ref{lemma-functor-equivalence}.
To finish the proof, we need to show that the $R$-linearity
of $F$ forces $A \to B$ to be an $R$-algebra map. We omit the details.
\end{proof}
\begin{remark}
\label{remark-monoidal}
Let $A$ and $B$ be rings. Let us endow $\text{Mod}_A$ and $\text{Mod}_B$
with the usual monoidal structure given by tensor products of modules.
Let $F : \text{Mod}_A \to \text{Mod}_B$ be a functor of
monoidal categories, see
Categories, Definition \ref{categories-definition-functor-monoidal-categories}.
Here are some comments:
\begin{enumerate}
\item Since $F(A)$ is a unit (by our definitions) we have $F(A) = B$.
\item We obtain a multiplicative map $\varphi : A \to B$
by sending $a \in A$ to its action on $F(A) = B$.
\item Take $A = B$ and $F(M) = M \otimes_A M$. In this case $\varphi(a) = a^2$.
\item If $F$ is additive, then $\varphi$ is a ring map.
\item Take $A = B = \mathbf{Z}$ and $F(M) = M/\text{torsion}$. Then
$\varphi = \text{id}_\mathbf{Z}$ but $F$ is not the identity functor.
\item If $F$ is right exact and commutes with direct sums,
then $F(M) = M \otimes_{A, \varphi} B$ by Lemma \ref{lemma-functor}.
\end{enumerate}
In other words, ring maps $A \to B$ are in bijection with isomorphism classes
of functors of monoidal categories $\text{Mod}_A \to \text{Mod}_B$
which commute with all colimits.
\end{remark}
\section{Extending functors on categories of modules}
\label{section-functors-extend}
\noindent
For a ring $A$ let us denote $\text{Mod}^{fp}_A$ the category of
finitely presented $A$-modules.
\begin{lemma}
\label{lemma-functor-fp-modules}
Let $A$ and $B$ be rings. Let
$F : \text{Mod}^{fp}_A \to \text{Mod}^{fp}_B$ be a functor.
Then $F$ extends uniquely to a functor
$F' : \text{Mod}_A \to \text{Mod}_B$
which commutes with filtered colimits.
\end{lemma}
\begin{proof}
Special case of Lemma \ref{lemma-functor-on-fp-modules}.
\end{proof}
\begin{remark}
\label{remark-monoidal-extension}
With $A$, $B$, $F$, and $F'$ as in Lemma \ref{lemma-functor-fp-modules}.
Observe that the tensor product of two finitely presented modules is
finitely presented, see Algebra, Lemma \ref{algebra-lemma-tensor-finiteness}.
Thus we may endow $\text{Mod}^{fp}_A$, $\text{Mod}^{fp}_B$,
$\text{Mod}_A$, and $\text{Mod}_B$ with the usual monoidal structure
given by tensor products of modules. In this case, if $F$ is
a functor of monoidal categories, so is $F'$. This follows immediately
from the fact that tensor products of modules commutes with filtered
colimits.
\end{remark}
\begin{lemma}
\label{lemma-functor-fp-modules-exact}
With $A$, $B$, $F$, and $F'$ as in Lemma \ref{lemma-functor-fp-modules}.
\begin{enumerate}
\item If $F$ is additive, then $F'$ is additive and
commutes with arbitrary direct sums, and
\item if $F$ is right exact, then $F'$ is right exact.
\end{enumerate}
\end{lemma}
\begin{proof}
Follows from Lemmas \ref{lemma-functor-on-fp-modules-additive} and
\ref{lemma-functor-on-fp-modules-right-exact}.
\end{proof}
\begin{remark}
\label{remark-monoidal-extension-exact}
Combining Remarks \ref{remark-monoidal} and \ref{remark-monoidal-extension}
and Lemma \ref{lemma-functor-fp-modules-exact}
we find the following. Given rings $A$ and $B$ the set of ring maps $A \to B$
is in bijection with the set of isomorphism classes
of functors of monoidal categories $\text{Mod}^{fp}_A \to \text{Mod}^{fp}_B$
which are right exact.
\end{remark}
\begin{lemma}
\label{lemma-functor-fp-modules-left-exact}
With $A$, $B$, $F$, and $F'$ as in Lemma \ref{lemma-functor-fp-modules}.
Assume $A$ is a coherent ring
(Algebra, Definition \ref{algebra-definition-coherent}).
If $F$ is left exact, then $F'$ is left exact.
\end{lemma}
\begin{proof}
Special case of Lemma \ref{lemma-functor-on-fp-modules-left-exact}.
\end{proof}
\noindent
For a ring $A$ let us denote $\text{Mod}^{fg}_A$ the category of
finitely generated $A$-modules (AKA finite $A$-modules).
\begin{lemma}
\label{lemma-functor-finite-modules}
Let $A$ and $B$ be Noetherian rings. Let
$F : \text{Mod}^{fg}_A \to \text{Mod}^{fg}_B$ be a functor.
Then $F$ extends uniquely to a functor $F' : \text{Mod}_A \to \text{Mod}_B$
which commutes with filtered colimits. If $F$ is additive, then
$F'$ is additive and commutes with arbitrary direct sums.
If $F$ is exact, left exact, or right exact, so is $F'$.
\end{lemma}
\begin{proof}
See Lemmas \ref{lemma-functor-fp-modules-exact} and
\ref{lemma-functor-fp-modules-left-exact}.
Also, use the finite $A$-modules are finitely presented $A$-modules,
see Algebra, Lemma
\ref{algebra-lemma-Noetherian-finite-type-is-finite-presentation},
and use that Noetherian rings are coherent, see
Algebra, Lemma \ref{algebra-lemma-Noetherian-coherent}.
\end{proof}
\section{Functors between categories of quasi-coherent modules}
\label{section-functor-quasi-coherent}
\noindent
In this section we briefly study functors between categories of
quasi-coherent modules.
\begin{example}
\label{example-functor-quasi-coherent}
Let $R$ be a ring. Let $X$ and $Y$ be
schemes over $R$ with $X$ quasi-compact and quasi-separated.
Let $\mathcal{K}$ be a quasi-coherent $\mathcal{O}_{X \times_R Y}$-module.
Then we can consider the functor
\begin{equation}
\label{equation-FM-QCoh}
F : \QCoh(\mathcal{O}_X) \longrightarrow \QCoh(\mathcal{O}_Y),\quad
\mathcal{F} \longmapsto
\text{pr}_{2, *}(\text{pr}_1^*\mathcal{F}
\otimes_{\mathcal{O}_{X \times_R Y}} \mathcal{K})
\end{equation}
The morphism $\text{pr}_2$ is quasi-compact and quasi-separated
(Schemes, Lemmas \ref{schemes-lemma-quasi-compact-preserved-base-change}
and \ref{schemes-lemma-separated-permanence}). Hence pushforward along
this morphism preserves quasi-coherent modules, see
Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent}.
Moreover, our functor is $R$-linear and commutes with arbitrary direct sums,
see Cohomology of Schemes, Lemma \ref{coherent-lemma-colimit-cohomology}.
\end{example}
\noindent
The following lemma is a natural generalization of
Lemma \ref{lemma-functor-modules}.
\begin{lemma}
\label{lemma-functor-quasi-coherent-from-affine}
Let $R$ be a ring. Let $X$ and $Y$ be schemes over $R$ with $X$ affine.
There is an equivalence of categories between
\begin{enumerate}
\item the category of $R$-linear functors
$F : \QCoh(\mathcal{O}_X) \to \QCoh(\mathcal{O}_Y)$
which are right exact and commute with arbitrary direct sums, and
\item the category $\QCoh(\mathcal{O}_{X \times_R Y})$
\end{enumerate}
given by sending $\mathcal{K}$ to the functor $F$ in (\ref{equation-FM-QCoh}).
\end{lemma}
\begin{proof}
Let $\mathcal{K}$ be an object of $\QCoh(\mathcal{O}_{X \times_R Y})$
and $F_\mathcal{K}$ the functor (\ref{equation-FM-QCoh}). By the discussion in
Example \ref{example-functor-quasi-coherent} we already know that
$F$ is $R$-linear and commutes with arbitrary direct sums.
Since $\text{pr}_2 : X \times_R Y \to Y$ is affine
(Morphisms, Lemma \ref{morphisms-lemma-base-change-affine}) the functor
$\text{pr}_{2, *}$ is exact, see Cohomology of Schemes, Lemma
\ref{coherent-lemma-relative-affine-vanishing}.
Hence $F$ is right exact as well, in other words $F$ is as in (1).
\medskip\noindent
Let $F$ be as in (1). Say $X = \Spec(A)$. Consider the quasi-coherent
$\mathcal{O}_Y$-module $\mathcal{G} = F(\mathcal{O}_X)$.
The functor $F$ induces an $R$-linear map
$A \to \text{End}_{\mathcal{O}_Y}(\mathcal{G})$,
$a \mapsto F(a \cdot \text{id})$. Thus $\mathcal{G}$ is a sheaf of modules over
$$
A \otimes_R \mathcal{O}_Y = \text{pr}_{2, *}\mathcal{O}_{X \times_R Y}
$$
By Morphisms, Lemma \ref{morphisms-lemma-affine-equivalence-modules}
we find that there is a unique quasi-coherent module $\mathcal{K}$
on $X \times_R Y$ such that $F(\mathcal{O}_X) = \mathcal{G} =
\text{pr}_{2, *}\mathcal{K}$ compatible with action
of $A$ and $\mathcal{O}_Y$. Denote $F_\mathcal{K}$ the functor
given by (\ref{equation-FM-QCoh}). There is an equivalence
$\text{Mod}_A \to \QCoh(\mathcal{O}_X)$ sending $A$ to $\mathcal{O}_X$, see
Schemes, Lemma \ref{schemes-lemma-equivalence-quasi-coherent}.
Hence we find an isomorphism $F \cong F_\mathcal{K}$ by
Lemma \ref{lemma-functor-on-modules} because we have an isomorphism
$F(\mathcal{O}_X) \cong F_\mathcal{K}(\mathcal{O}_X)$ compatible with
$A$-action by construction.
\medskip\noindent
This shows that the functor sending $\mathcal{K}$ to $F_\mathcal{K}$
is essentially surjective. We omit the verification of fully faithfulness.
\end{proof}
\begin{remark}
\label{remark-affine-morphism}
Below we will use that for an affine morphism
$h : T \to S$ we have $h_*\mathcal{G} \otimes_{\mathcal{O}_S} \mathcal{H} =
h_*(\mathcal{G} \otimes_{\mathcal{O}_T} h^*\mathcal{H})$ for
$\mathcal{G} \in \QCoh(\mathcal{O}_T)$ and
$\mathcal{H} \in \QCoh(\mathcal{O}_S)$. This follows
immediately on translating into algebra.
\end{remark}
\begin{lemma}
\label{lemma-functor-quasi-coherent-from-affine-compose}
In Lemma \ref{lemma-functor-quasi-coherent-from-affine} let $F$
correspond to $\mathcal{K}$ in $\QCoh(\mathcal{O}_{X \times_R Y})$.
We have
\begin{enumerate}
\item If $f : X' \to X$ is an affine morphism, then $F \circ f_*$
corresponds to $(f \times \text{id}_Y)^*\mathcal{K}$.
\item If $g : Y' \to Y$ is a flat morphism, then $g^* \circ F$ corresponds to
$(\text{id}_X \times g)^*\mathcal{K}$.
\item If $j : V \to Y$ is an open immersion, then $j^* \circ F$
corresponds to $\mathcal{K}|_{X \times_R V}$.
\end{enumerate}
\end{lemma}
\begin{proof}
Proof of (1). Consider the commutative diagram
$$
\xymatrix{
X' \times_R Y \ar[rrd]^{\text{pr}'_2} \ar[rd]_{f \times \text{id}_Y}
\ar[dd]_{\text{pr}'_1} \\
& X \times_R Y \ar[r]_{\text{pr}_2} \ar[d]_{\text{pr}_1} & Y \\
X' \ar[r]^f & X
}
$$
Let $\mathcal{F}'$ be a quasi-coherent module on $X'$. We have
\begin{align*}
\text{pr}_{2, *}(\text{pr}_1^*f_*\mathcal{F}'
\otimes_{\mathcal{O}_{X \times_R Y}} \mathcal{K})
& =
\text{pr}_{2, *}((f \times \text{id}_Y)_*
(\text{pr}'_1)^*\mathcal{F}'
\otimes_{\mathcal{O}_{X \times_R Y}} \mathcal{K}) \\
& =
\text{pr}_{2, *}(f \times \text{id}_Y)_*
\left((\text{pr}'_1)^*\mathcal{F}'
\otimes_{\mathcal{O}_{X' \times_R Y}}
(f \times \text{id}_Y)^*\mathcal{K})\right) \\
& =
\text{pr}'_{2, *}((\text{pr}'_1)^*\mathcal{F}'
\otimes_{\mathcal{O}_{X' \times_R Y}} (f \times \text{id}_Y)^*\mathcal{K})
\end{align*}
Here the first equality is affine base change for the left hand
square in the diagram, see
Cohomology of Schemes, Lemma \ref{coherent-lemma-affine-base-change}.
The second equality hold by Remark \ref{remark-affine-morphism}.
The third equality is functoriality of pushforwards for modules.
This proves (1).
\medskip\noindent
Proof of (2). Consider the commutative diagram
$$
\xymatrix{
X \times_R Y' \ar[rr]_-{\text{pr}'_2} \ar[rd]^{\text{id}_X \times g}
\ar[rdd]_{\text{pr}'_1} & & Y' \ar[d]^g \\
& X \times_R Y \ar[r]_-{\text{pr}_2} \ar[d]^{\text{pr}_1} & Y \\
& X
}
$$
We have
\begin{align*}
g^*\text{pr}_{2, *}(\text{pr}_1^*\mathcal{F}
\otimes_{\mathcal{O}_{X \times_R Y}} \mathcal{K})
& =
\text{pr}'_{2, *}(
(\text{id}_X \times g)^*(
\text{pr}_1^*\mathcal{F} \otimes_{\mathcal{O}_{X \times_R Y}} \mathcal{K})) \\
& =
\text{pr}'_{2, *}((\text{pr}'_1)^*\mathcal{F}
\otimes_{\mathcal{O}_{X \times_R Y'}}
(\text{id}_X \times g)^*\mathcal{K})
\end{align*}
The first equality by flat base change for the square in the diagram, see
Cohomology of Schemes, Lemma \ref{coherent-lemma-flat-base-change-cohomology}.
The second equality by functoriality of pullback and the fact that
a pullback of tensor products it the tensor product of the pullbacks.
\medskip\noindent
Part (3) is a special case of (2).
\end{proof}
\begin{lemma}
\label{lemma-functor-quasi-coherent-from-affine-diagonal-pre}
Let $R$ be a ring. Let $X$ and $Y$ be schemes over $R$. Assume $X$
is quasi-compact with affine diagonal. Let
$F : \QCoh(\mathcal{O}_X) \to \QCoh(\mathcal{O}_Y)$
be an $R$-linear, right exact functor which commutes
with arbitrary direct sums. Then we can construct
\begin{enumerate}
\item a quasi-coherent module $\mathcal{K}$ on $X \times_R Y$, and
\item a natural transformation $t : F \to F_\mathcal{K}$
where $F_\mathcal{K}$ denotes the functor (\ref{equation-FM-QCoh})
\end{enumerate}
such that $t : F \circ f_* \to F_\mathcal{K} \circ f_*$ is an isomorphism
for every morphism $f : X' \to X$ whose source is an affine scheme.
\end{lemma}
\begin{proof}
Consider a morphism $f' : X' \to X$ with $X'$ affine. Since the