-
Notifications
You must be signed in to change notification settings - Fork 154
/
descent.tex
9381 lines (8422 loc) · 343 KB
/
descent.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Descent}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In the chapter on topologies on schemes
(see Topologies, Section \ref{topologies-section-introduction}) we introduced
Zariski, \'etale, fppf, smooth, syntomic and fpqc coverings of schemes.
In this chapter we discuss what kind of structures over schemes
can be descended through such coverings.
See for example \cite{Gr-I}, \cite{Gr-II}, \cite{Gr-III},
\cite{Gr-IV}, \cite{Gr-V}, and \cite{Gr-VI}.
This is also meant to introduce the notions of
descent, descent data, effective descent data, in the less formal
setting of descent questions for quasi-coherent sheaves, schemes, etc.
The formal notion, that of a stack over a site, is discussed in
the chapter on stacks (see Stacks, Section \ref{stacks-section-introduction}).
\section{Descent data for quasi-coherent sheaves}
\label{section-equivalence}
\noindent
In this chapter we will use the convention where
the projection maps $\text{pr}_i : X \times \ldots \times X \to X$
are labeled starting with $i = 0$. Hence we have
$\text{pr}_0, \text{pr}_1 : X \times X \to X$,
$\text{pr}_0, \text{pr}_1, \text{pr}_2 : X \times X \times X \to X$,
etc.
\begin{definition}
\label{definition-descent-datum-quasi-coherent}
Let $S$ be a scheme. Let $\{f_i : S_i \to S\}_{i \in I}$ be a family
of morphisms with target $S$.
\begin{enumerate}
\item A {\it descent datum $(\mathcal{F}_i, \varphi_{ij})$
for quasi-coherent sheaves} with respect to the given family
is given by a quasi-coherent sheaf $\mathcal{F}_i$ on $S_i$ for
each $i \in I$, an isomorphism of quasi-coherent
$\mathcal{O}_{S_i \times_S S_j}$-modules
$\varphi_{ij} : \text{pr}_0^*\mathcal{F}_i \to \text{pr}_1^*\mathcal{F}_j$
for each pair $(i, j) \in I^2$
such that for every triple of indices $(i, j, k) \in I^3$ the
diagram
$$
\xymatrix{
\text{pr}_0^*\mathcal{F}_i \ar[rd]_{\text{pr}_{01}^*\varphi_{ij}}
\ar[rr]_{\text{pr}_{02}^*\varphi_{ik}} & &
\text{pr}_2^*\mathcal{F}_k \\
& \text{pr}_1^*\mathcal{F}_j \ar[ru]_{\text{pr}_{12}^*\varphi_{jk}} &
}
$$
of $\mathcal{O}_{S_i \times_S S_j \times_S S_k}$-modules
commutes. This is called the {\it cocycle condition}.
\item A {\it morphism $\psi : (\mathcal{F}_i, \varphi_{ij}) \to
(\mathcal{F}'_i, \varphi'_{ij})$ of descent data} is given
by a family $\psi = (\psi_i)_{i\in I}$ of morphisms of
$\mathcal{O}_{S_i}$-modules $\psi_i : \mathcal{F}_i \to \mathcal{F}'_i$
such that all the diagrams
$$
\xymatrix{
\text{pr}_0^*\mathcal{F}_i \ar[r]_{\varphi_{ij}} \ar[d]_{\text{pr}_0^*\psi_i}
& \text{pr}_1^*\mathcal{F}_j \ar[d]^{\text{pr}_1^*\psi_j} \\
\text{pr}_0^*\mathcal{F}'_i \ar[r]^{\varphi'_{ij}} &
\text{pr}_1^*\mathcal{F}'_j \\
}
$$
commute.
\end{enumerate}
\end{definition}
\noindent
A good example to keep in mind is the following.
Suppose that $S = \bigcup S_i$ is an open covering.
In that case we have seen descent data for sheaves of sets in
Sheaves, Section \ref{sheaves-section-glueing-sheaves}
where we called them ``glueing data for sheaves of sets
with respect to the given covering''. Moreover, we proved
that the category of glueing data is equivalent to the category
of sheaves on $S$. We will show the analogue in the setting above when
$\{S_i \to S\}_{i\in I}$ is an fpqc covering.
\medskip\noindent
In the extreme case where the covering $\{S \to S\}$
is given by $\text{id}_S$ a descent datum is necessarily
of the form $(\mathcal{F}, \text{id}_\mathcal{F})$. The cocycle
condition guarantees that the identity on $\mathcal{F}$ is the
only permitted map in this case. The following lemma shows
in particular that to every quasi-coherent sheaf of
$\mathcal{O}_S$-modules there is associated a unique
descent datum with respect to any given family.
\begin{lemma}
\label{lemma-refine-descent-datum}
Let $\mathcal{U} = \{U_i \to U\}_{i \in I}$ and
$\mathcal{V} = \{V_j \to V\}_{j \in J}$
be families of morphisms of schemes with fixed target.
Let $(g, \alpha : I \to J, (g_i)) : \mathcal{U} \to \mathcal{V}$
be a morphism of families of maps with fixed target, see
Sites, Definition \ref{sites-definition-morphism-coverings}.
Let $(\mathcal{F}_j, \varphi_{jj'})$ be a descent
datum for quasi-coherent sheaves with respect to the
family $\{V_j \to V\}_{j \in J}$. Then
\begin{enumerate}
\item The system
$$
\left(g_i^*\mathcal{F}_{\alpha(i)},
(g_i \times g_{i'})^*\varphi_{\alpha(i)\alpha(i')}\right)
$$
is a descent datum with respect to the family $\{U_i \to U\}_{i \in I}$.
\item This construction is functorial in the descent datum
$(\mathcal{F}_j, \varphi_{jj'})$.
\item Given a second morphism $(g', \alpha' : I \to J, (g'_i))$
of families of maps with fixed target with $g = g'$
there exists a functorial isomorphism of descent data
$$
(g_i^*\mathcal{F}_{\alpha(i)},
(g_i \times g_{i'})^*\varphi_{\alpha(i)\alpha(i')})
\cong
((g'_i)^*\mathcal{F}_{\alpha'(i)},
(g'_i \times g'_{i'})^*\varphi_{\alpha'(i)\alpha'(i')}).
$$
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted. Hint: The maps
$g_i^*\mathcal{F}_{\alpha(i)} \to (g'_i)^*\mathcal{F}_{\alpha'(i)}$
which give the isomorphism of descent data in part (3)
are the pullbacks of the maps $\varphi_{\alpha(i)\alpha'(i)}$ by the
morphisms $(g_i, g'_i) : U_i \to V_{\alpha(i)} \times_V V_{\alpha'(i)}$.
\end{proof}
\noindent
Any family $\mathcal{U} = \{S_i \to S\}_{i \in I}$ is a refinement of
the trivial covering $\{S \to S\}$ in a unique way. For
a quasi-coherent sheaf $\mathcal{F}$ on $S$ we denote simply
$(\mathcal{F}|_{S_i}, can)$ the descent datum with respect to
$\mathcal{U}$ obtained by the procedure above.
\begin{definition}
\label{definition-descent-datum-effective-quasi-coherent}
Let $S$ be a scheme.
Let $\{S_i \to S\}_{i \in I}$ be a family of morphisms
with target $S$.
\begin{enumerate}
\item Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_S$-module.
We call the unique descent on $\mathcal{F}$ datum with respect to the covering
$\{S \to S\}$ the {\it trivial descent datum}.
\item The pullback of the trivial descent datum to
$\{S_i \to S\}$ is called the {\it canonical descent datum}.
Notation: $(\mathcal{F}|_{S_i}, can)$.
\item A descent datum $(\mathcal{F}_i, \varphi_{ij})$
for quasi-coherent sheaves with respect to the given covering
is said to be {\it effective} if there exists a quasi-coherent
sheaf $\mathcal{F}$ on $S$ such that $(\mathcal{F}_i, \varphi_{ij})$
is isomorphic to $(\mathcal{F}|_{S_i}, can)$.
\end{enumerate}
\end{definition}
\begin{lemma}
\label{lemma-zariski-descent-effective}
Let $S$ be a scheme.
Let $S = \bigcup U_i$ be an open covering.
Any descent datum on quasi-coherent sheaves
for the family $\mathcal{U} = \{U_i \to S\}$ is
effective. Moreover, the functor from the category of
quasi-coherent $\mathcal{O}_S$-modules to the category
of descent data with respect to $\mathcal{U}$ is fully faithful.
\end{lemma}
\begin{proof}
This follows immediately from
Sheaves, Section \ref{sheaves-section-glueing-sheaves}
and the fact that being quasi-coherent is a local property, see
Modules, Definition \ref{modules-definition-quasi-coherent}.
\end{proof}
\noindent
To prove more we first need to study the case of modules over rings.
\section{Descent for modules}
\label{section-descent-modules}
\noindent
Let $R \to A$ be a ring map.
By Simplicial, Example \ref{simplicial-example-push-outs-simplicial-object}
this gives rise to a cosimplicial $R$-algebra
$$
\xymatrix{
A
\ar@<1ex>[r]
\ar@<-1ex>[r]
&
A \otimes_R A
\ar@<0ex>[l]
\ar@<2ex>[r]
\ar@<0ex>[r]
\ar@<-2ex>[r]
&
A \otimes_R A \otimes_R A
\ar@<1ex>[l]
\ar@<-1ex>[l]
}
$$
Let us denote this $(A/R)_\bullet$ so that $(A/R)_n$ is the $(n + 1)$-fold
tensor product of $A$ over $R$. Given a map
$\varphi : [n] \to [m]$ the $R$-algebra map $(A/R)_\bullet(\varphi)$
is the map
$$
a_0 \otimes \ldots \otimes a_n
\longmapsto
\prod\nolimits_{\varphi(i) = 0} a_i
\otimes
\prod\nolimits_{\varphi(i) = 1} a_i
\otimes \ldots \otimes
\prod\nolimits_{\varphi(i) = m} a_i
$$
where we use the convention that the empty product is $1$. Thus the first
few maps, notation as in
Simplicial, Section \ref{simplicial-section-cosimplicial-object}, are
$$
\begin{matrix}
\delta^1_0 & : & a_0 & \mapsto & 1 \otimes a_0 \\
\delta^1_1 & : & a_0 & \mapsto & a_0 \otimes 1 \\
\sigma^0_0 & : & a_0 \otimes a_1 & \mapsto & a_0a_1 \\
\delta^2_0 & : & a_0 \otimes a_1 & \mapsto & 1 \otimes a_0 \otimes a_1 \\
\delta^2_1 & : & a_0 \otimes a_1 & \mapsto & a_0 \otimes 1 \otimes a_1 \\
\delta^2_2 & : & a_0 \otimes a_1 & \mapsto & a_0 \otimes a_1 \otimes 1 \\
\sigma^1_0 & : & a_0 \otimes a_1 \otimes a_2 & \mapsto & a_0a_1 \otimes a_2 \\
\sigma^1_1 & : & a_0 \otimes a_1 \otimes a_2 & \mapsto & a_0 \otimes a_1a_2
\end{matrix}
$$
and so on.
\medskip\noindent
An $R$-module $M$ gives rise to a cosimplicial $(A/R)_\bullet$-module
$(A/R)_\bullet \otimes_R M$. In other words
$M_n = (A/R)_n \otimes_R M$ and using the $R$-algebra maps
$(A/R)_n \to (A/R)_m$ to define the corresponding maps on
$M \otimes_R (A/R)_\bullet$.
\medskip\noindent
The analogue to a descent datum
for quasi-coherent sheaves in the setting of modules is the following.
\begin{definition}
\label{definition-descent-datum-modules}
Let $R \to A$ be a ring map.
\begin{enumerate}
\item A {\it descent datum $(N, \varphi)$ for modules
with respect to $R \to A$}
is given by an $A$-module $N$ and an isomorphism of
$A \otimes_R A$-modules
$$
\varphi : N \otimes_R A \to A \otimes_R N
$$
such that the {\it cocycle condition} holds: the diagram
of $A \otimes_R A \otimes_R A$-module maps
$$
\xymatrix{
N \otimes_R A \otimes_R A \ar[rr]_{\varphi_{02}}
\ar[rd]_{\varphi_{01}}
& &
A \otimes_R A \otimes_R N \\
& A \otimes_R N \otimes_R A \ar[ru]_{\varphi_{12}} &
}
$$
commutes (see below for notation).
\item A {\it morphism $(N, \varphi) \to (N', \varphi')$ of descent data}
is a morphism of $A$-modules $\psi : N \to N'$ such that
the diagram
$$
\xymatrix{
N \otimes_R A \ar[r]_\varphi \ar[d]_{\psi \otimes \text{id}_A} &
A \otimes_R N \ar[d]^{\text{id}_A \otimes \psi} \\
N' \otimes_R A \ar[r]^{\varphi'} &
A \otimes_R N'
}
$$
is commutative.
\end{enumerate}
\end{definition}
\noindent
In the definition we use the notation that
$\varphi_{01} = \varphi \otimes \text{id}_A$,
$\varphi_{12} = \text{id}_A \otimes \varphi$, and
$\varphi_{02}(n \otimes 1 \otimes 1) = \sum a_i \otimes 1 \otimes n_i$
if $\varphi(n \otimes 1) = \sum a_i \otimes n_i$. All three are
$A \otimes_R A \otimes_R A$-module homomorphisms. Equivalently we have
$$
\varphi_{ij}
=
\varphi \otimes_{(A/R)_1, \ (A/R)_\bullet(\tau^2_{ij})} (A/R)_2
$$
where $\tau^2_{ij} : [1] \to [2]$ is the map
$0 \mapsto i$, $1 \mapsto j$. Namely,
$(A/R)_{\bullet}(\tau^2_{02})(a_0 \otimes a_1) =
a_0 \otimes 1 \otimes a_1$,
and similarly for the others\footnote{Note that
$\tau^2_{ij} = \delta^2_k$, if $\{i, j, k\} = [2] = \{0, 1, 2\}$,
see Simplicial, Definition \ref{simplicial-definition-face-degeneracy}.}.
\medskip\noindent
We need some more notation to be able to state the next lemma.
Let $(N, \varphi)$ be a descent datum with respect to a ring map $R \to A$.
For $n \geq 0$ and $i \in [n]$ we set
$$
N_{n, i} =
A \otimes_R
\ldots
\otimes_R A \otimes_R N \otimes_R A \otimes_R
\ldots
\otimes_R A
$$
with the factor $N$ in the $i$th spot. It is an $(A/R)_n$-module.
If we introduce the maps $\tau^n_i : [0] \to [n]$, $0 \mapsto i$
then we see that
$$
N_{n, i} = N \otimes_{(A/R)_0, \ (A/R)_\bullet(\tau^n_i)} (A/R)_n
$$
For $0 \leq i \leq j \leq n$ we let $\tau^n_{ij} : [1] \to [n]$
be the map such that $0$ maps to $i$ and $1$ to $j$. Similarly
to the above the homomorphism $\varphi$ induces isomorphisms
$$
\varphi^n_{ij}
=
\varphi \otimes_{(A/R)_1, \ (A/R)_\bullet(\tau^n_{ij})} (A/R)_n :
N_{n, i} \longrightarrow N_{n, j}
$$
of $(A/R)_n$-modules when $i < j$. If $i = j$ we set
$\varphi^n_{ij} = \text{id}$. Since these are all isomorphisms they allow us
to move the factor $N$ to any spot we like. And the cocycle condition
exactly means that it does not matter how we do this (e.g., as a composition
of two of these or at once). Finally, for any $\beta : [n] \to [m]$
we define the morphism
$$
N_{\beta, i} : N_{n, i} \to N_{m, \beta(i)}
$$
as the unique $(A/R)_\bullet(\beta)$-semi linear map such that
$$
N_{\beta, i}(1 \otimes \ldots \otimes n \otimes \ldots \otimes 1)
=
1 \otimes \ldots \otimes n \otimes \ldots \otimes 1
$$
for all $n \in N$.
This hints at the following lemma.
\begin{lemma}
\label{lemma-descent-datum-cosimplicial}
Let $R \to A$ be a ring map.
Given a descent datum $(N, \varphi)$ we can associate to it a
cosimplicial $(A/R)_\bullet$-module $N_\bullet$\footnote{We should really
write $(N, \varphi)_\bullet$.} by the
rules $N_n = N_{n, n}$ and given $\beta : [n] \to [m]$
setting we define
$$
N_\bullet(\beta) = (\varphi^m_{\beta(n)m}) \circ N_{\beta, n} :
N_{n, n} \longrightarrow N_{m, m}.
$$
This procedure is functorial in the descent datum.
\end{lemma}
\begin{proof}
Here are the first few maps
where $\varphi(n \otimes 1) = \sum \alpha_i \otimes x_i$
$$
\begin{matrix}
\delta^1_0 & : & N & \to & A \otimes N & n & \mapsto & 1 \otimes n \\
\delta^1_1 & : & N & \to & A \otimes N & n & \mapsto &
\sum \alpha_i \otimes x_i\\
\sigma^0_0 & : & A \otimes N & \to & N & a_0 \otimes n & \mapsto & a_0n \\
\delta^2_0 & : & A \otimes N & \to & A \otimes A \otimes N &
a_0 \otimes n & \mapsto & 1 \otimes a_0 \otimes n \\
\delta^2_1 & : & A \otimes N & \to & A \otimes A \otimes N &
a_0 \otimes n & \mapsto & a_0 \otimes 1 \otimes n \\
\delta^2_2 & : & A \otimes N & \to & A \otimes A \otimes N &
a_0 \otimes n & \mapsto & \sum a_0 \otimes \alpha_i \otimes x_i \\
\sigma^1_0 & : & A \otimes A \otimes N & \to & A \otimes N &
a_0 \otimes a_1 \otimes n & \mapsto & a_0a_1 \otimes n \\
\sigma^1_1 & : & A \otimes A \otimes N & \to & A \otimes N &
a_0 \otimes a_1 \otimes n & \mapsto & a_0 \otimes a_1n
\end{matrix}
$$
with notation as in
Simplicial, Section \ref{simplicial-section-cosimplicial-object}.
We first verify the two properties $\sigma^0_0 \circ \delta^1_0 = \text{id}$
and $\sigma^0_0 \circ \delta^1_1 = \text{id}$.
The first one, $\sigma^0_0 \circ \delta^1_0 = \text{id}$, is clear from
the explicit description of the morphisms above.
To prove the second relation we have to use the cocycle condition
(because it does not hold for an arbitrary isomorphism
$\varphi : N \otimes_R A \to A \otimes_R N$). Write
$p = \sigma^0_0 \circ \delta^1_1 : N \to N$. By the description of the
maps above we deduce that $p$ is also equal to
$$
p = \varphi \otimes \text{id} :
N = (N \otimes_R A) \otimes_{(A \otimes_R A)} A
\longrightarrow
(A \otimes_R N) \otimes_{(A \otimes_R A)} A = N
$$
Since $\varphi$ is an isomorphism we see that $p$ is an isomorphism.
Write $\varphi(n \otimes 1) = \sum \alpha_i \otimes x_i$ for certain
$\alpha_i \in A$ and $x_i \in N$. Then $p(n) = \sum \alpha_ix_i$.
Next, write
$\varphi(x_i \otimes 1) = \sum \alpha_{ij} \otimes y_j$ for
certain $\alpha_{ij} \in A$ and $y_j \in N$. Then the cocycle condition
says that
$$
\sum \alpha_i \otimes \alpha_{ij} \otimes y_j
=
\sum \alpha_i \otimes 1 \otimes x_i.
$$
This means that $p(n) = \sum \alpha_ix_i = \sum \alpha_i\alpha_{ij}y_j =
\sum \alpha_i p(x_i) = p(p(n))$. Thus $p$ is a projector, and since it is
an isomorphism it is the identity.
\medskip\noindent
To prove fully that $N_\bullet$ is a cosimplicial module we have to check
all 5 types of relations of
Simplicial, Remark \ref{simplicial-remark-relations-cosimplicial}.
The relations on composing $\sigma$'s are obvious.
The relations on composing $\delta$'s come down to the
cocycle condition for $\varphi$.
In exactly the same way as above one checks the relations
$\sigma_j \circ \delta_j = \sigma_j \circ \delta_{j + 1} = \text{id}$.
Finally, the other relations on compositions of $\delta$'s and $\sigma$'s
hold for any $\varphi$ whatsoever.
\end{proof}
\noindent
Note that to an $R$-module $M$ we can associate a canonical
descent datum, namely $(M \otimes_R A, can)$ where
$can : (M \otimes_R A) \otimes_R A \to A \otimes_R (M \otimes_R A)$
is the obvious map:
$(m \otimes a) \otimes a' \mapsto a \otimes (m \otimes a')$.
\begin{lemma}
\label{lemma-canonical-descent-datum-cosimplicial}
Let $R \to A$ be a ring map.
Let $M$ be an $R$-module. The cosimplicial
$(A/R)_\bullet$-module associated to the canonical descent
datum is isomorphic to the cosimplicial module $(A/R)_\bullet \otimes_R M$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{definition}
\label{definition-descent-datum-effective-module}
Let $R \to A$ be a ring map.
We say a descent datum $(N, \varphi)$ is {\it effective}
if there exists an $R$-module $M$ and an isomorphism
of descent data from $(M \otimes_R A, can)$ to
$(N, \varphi)$.
\end{definition}
\noindent
Let $R \to A$ be a ring map.
Let $(N, \varphi)$ be a descent datum.
We may take the cochain complex $s(N_\bullet)$ associated
with $N_\bullet$ (see
Simplicial, Section \ref{simplicial-section-dold-kan-cosimplicial}).
It has the following shape:
$$
N \to A \otimes_R N \to A \otimes_R A \otimes_R N \to \ldots
$$
We can describe the maps.
The first map is the map
$$
n \longmapsto 1 \otimes n - \varphi(n \otimes 1).
$$
The second map on pure tensors has the values
$$
a \otimes n \longmapsto 1 \otimes a \otimes n
- a \otimes 1 \otimes n + a \otimes \varphi(n \otimes 1).
$$
It is clear how the pattern continues.
\medskip\noindent
In the special case
where $N = A \otimes_R M$ we see that for any $m \in M$
the element $1 \otimes m$ is in the kernel of the first map
of the cochain complex associated to the cosimplicial
module $(A/R)_\bullet \otimes_R M$. Hence we get an extended cochain complex
\begin{equation}
\label{equation-extended-complex}
0 \to M \to A \otimes_R M \to A \otimes_R A \otimes_R M \to \ldots
\end{equation}
Here we think of the $0$ as being in degree $-2$,
the module $M$ in degree $-1$, the module $A \otimes_R M$ in
degree $0$, etc. Note that this complex has the shape
$$
0 \to R \to A \to A \otimes_R A \to A \otimes_R A \otimes_R A \to \ldots
$$
when $M = R$.
\begin{lemma}
\label{lemma-with-section-exact}
Suppose that $R \to A$ has a section.
Then for any $R$-module $M$ the extended cochain complex
(\ref{equation-extended-complex}) is exact.
\end{lemma}
\begin{proof}
By
Simplicial, Lemma \ref{simplicial-lemma-push-outs-simplicial-object-w-section}
the map $R \to (A/R)_\bullet$ is a homotopy equivalence
of cosimplicial $R$-algebras
(here $R$ denotes the constant cosimplicial $R$-algebra).
Hence $M \to (A/R)_\bullet \otimes_R M$ is
a homotopy equivalence in the category of cosimplicial
$R$-modules, because $\otimes_R M$ is a
functor from the category of $R$-algebras to the category
of $R$-modules, see
Simplicial, Lemma \ref{simplicial-lemma-functorial-homotopy}.
This implies that the induced map of associated
complexes is a homotopy equivalence, see
Simplicial, Lemma \ref{simplicial-lemma-homotopy-s-Q}.
Since the complex associated to the constant cosimplicial
$R$-module $M$ is the complex
$$
\xymatrix{
M \ar[r]^0 & M \ar[r]^1 & M \ar[r]^0 & M \ar[r]^1 & M \ldots
}
$$
we win (since the extended version simply puts an extra $M$ at
the beginning).
\end{proof}
\begin{lemma}
\label{lemma-ff-exact}
Suppose that $R \to A$ is faithfully flat, see
Algebra, Definition \ref{algebra-definition-flat}.
Then for any $R$-module $M$ the extended cochain complex
(\ref{equation-extended-complex}) is exact.
\end{lemma}
\begin{proof}
Suppose we can show there exists a faithfully flat ring map
$R \to R'$ such that the result holds for the ring map
$R' \to A' = R' \otimes_R A$. Then the result follows for
$R \to A$. Namely, for any $R$-module $M$ the cosimplicial
module $(M \otimes_R R') \otimes_{R'} (A'/R')_\bullet$ is
just the cosimplicial module $R' \otimes_R (M \otimes_R (A/R)_\bullet)$.
Hence the vanishing of cohomology of the complex associated to
$(M \otimes_R R') \otimes_{R'} (A'/R')_\bullet$ implies the
vanishing of the cohomology of the complex associated to
$M \otimes_R (A/R)_\bullet$ by faithful flatness of $R \to R'$.
Similarly for the vanishing of cohomology groups in degrees
$-1$ and $0$ of the extended complex (proof omitted).
\medskip\noindent
But we have such a faithful flat extension. Namely $R' = A$ works
because the ring map $R' = A \to A' = A \otimes_R A$ has a section
$a \otimes a' \mapsto aa'$ and
Lemma \ref{lemma-with-section-exact}
applies.
\end{proof}
\noindent
Here is how the complex relates to the question of effectivity.
\begin{lemma}
\label{lemma-recognize-effective}
Let $R \to A$ be a faithfully flat ring map.
Let $(N, \varphi)$ be a descent datum.
Then $(N, \varphi)$ is effective if and only if the canonical
map
$$
A \otimes_R H^0(s(N_\bullet)) \longrightarrow N
$$
is an isomorphism.
\end{lemma}
\begin{proof}
If $(N, \varphi)$ is effective, then we may write $N = A \otimes_R M$
with $\varphi = can$. It follows that $H^0(s(N_\bullet)) = M$ by
Lemmas \ref{lemma-canonical-descent-datum-cosimplicial}
and \ref{lemma-ff-exact}. Conversely, suppose the map of the lemma
is an isomorphism. In this case set $M = H^0(s(N_\bullet))$.
This is an $R$-submodule of $N$,
namely $M = \{n \in N \mid 1 \otimes n = \varphi(n \otimes 1)\}$.
The only thing to check is that via the isomorphism
$A \otimes_R M \to N$
the canonical descent data agrees with $\varphi$.
We omit the verification.
\end{proof}
\begin{lemma}
\label{lemma-descent-descends}
Let $R \to A$ be a faithfully flat ring map, and let $R \to R'$
be faithfully flat. Set $A' = R' \otimes_R A$. If all descent data
for $R' \to A'$ are effective, then so are all descent data for $R \to A$.
\end{lemma}
\begin{proof}
Let $(N, \varphi)$ be a descent datum for $R \to A$.
Set $N' = R' \otimes_R N = A' \otimes_A N$, and denote
$\varphi' = \text{id}_{R'} \otimes \varphi$ the base change
of the descent datum $\varphi$. Then $(N', \varphi')$ is
a descent datum for $R' \to A'$ and
$H^0(s(N'_\bullet)) = R' \otimes_R H^0(s(N_\bullet))$.
Moreover, the map
$A' \otimes_{R'} H^0(s(N'_\bullet)) \to N'$ is identified
with the base change of the $A$-module map
$A \otimes_R H^0(s(N)) \to N$ via the faithfully flat map
$A \to A'$. Hence we conclude by Lemma \ref{lemma-recognize-effective}.
\end{proof}
\noindent
Here is the main result of this section.
Its proof may seem a little clumsy; for a more highbrow approach see
Remark \ref{remark-homotopy-equivalent-cosimplicial-algebras} below.
\begin{proposition}
\label{proposition-descent-module}
\begin{slogan}
Effective descent for modules along faithfully flat ring maps.
\end{slogan}
Let $R \to A$ be a faithfully flat ring map.
Then
\begin{enumerate}
\item any descent datum on modules with respect to $R \to A$
is effective,
\item the functor $M \mapsto (A \otimes_R M, can)$ from $R$-modules
to the category of descent data is an equivalence, and
\item the inverse functor is given by $(N, \varphi) \mapsto H^0(s(N_\bullet))$.
\end{enumerate}
\end{proposition}
\begin{proof}
We only prove (1) and omit the proofs of (2) and (3).
As $R \to A$ is faithfully flat, there exists a faithfully flat
base change $R \to R'$ such that $R' \to A' = R' \otimes_R A$ has
a section (namely take $R' = A$ as in the proof of
Lemma \ref{lemma-ff-exact}). Hence, using
Lemma \ref{lemma-descent-descends}
we may assume that $R \to A$ has a section, say $\sigma : A \to R$.
Let $(N, \varphi)$ be a descent datum relative to $R \to A$.
Set
$$
M = H^0(s(N_\bullet)) = \{n \in N \mid 1 \otimes n = \varphi(n \otimes 1)\}
\subset
N
$$
By Lemma \ref{lemma-recognize-effective} it suffices to show that
$A \otimes_R M \to N$ is an isomorphism.
\medskip\noindent
Take an element $n \in N$. Write
$\varphi(n \otimes 1) = \sum a_i \otimes x_i$ for certain
$a_i \in A$ and $x_i \in N$. By Lemma \ref{lemma-descent-datum-cosimplicial}
we have $n = \sum a_i x_i$ in $N$ (because
$\sigma^0_0 \circ \delta^1_1 = \text{id}$ in any cosimplicial object).
Next, write $\varphi(x_i \otimes 1) = \sum a_{ij} \otimes y_j$ for
certain $a_{ij} \in A$ and $y_j \in N$.
The cocycle condition means that
$$
\sum a_i \otimes a_{ij} \otimes y_j = \sum a_i \otimes 1 \otimes x_i
$$
in $A \otimes_R A \otimes_R N$. We conclude two things from this:
\begin{enumerate}
\item applying $\sigma$ to the first $A$ we get
$\sum \sigma(a_i) \varphi(x_i \otimes 1) = \sum \sigma(a_i) \otimes x_i$,
\item applying $\sigma$ to the middle $A$ we get
$\sum_i a_i \otimes \sum_j \sigma(a_{ij}) y_j = \sum a_i \otimes x_i$.
\end{enumerate}
Part (1) shows that $\sum \sigma(a_i) x_i \in M$. Applying this to
$x_i$ we see that $\sum \sigma(a_{ij})y_i \in M$ for all $i$.
Multiplying out the equation in (2) we conclude that
$\sum_i a_i (\sum_j \sigma(a_{ij}) y_j) = \sum a_i x_i = n$.
Hence $A \otimes_R M \to N$ is surjective.
Finally, suppose that $m_i \in M$ and $\sum a_i m_i = 0$.
Then we see by applying $\varphi$ to
$\sum a_im_i \otimes 1$ that $\sum a_i \otimes m_i = 0$.
In other words $A \otimes_R M \to N$ is injective and we win.
\end{proof}
\begin{remark}
\label{remark-standard-covering}
Let $R$ be a ring. Let $f_1, \ldots, f_n\in R$ generate the
unit ideal. The ring $A = \prod_i R_{f_i}$ is a faithfully flat
$R$-algebra. We remark that the cosimplicial ring $(A/R)_\bullet$
has the following ring in degree $n$:
$$
\prod\nolimits_{i_0, \ldots, i_n} R_{f_{i_0}\ldots f_{i_n}}
$$
Hence the results above recover
Algebra, Lemmas \ref{algebra-lemma-standard-covering},
\ref{algebra-lemma-cover-module} and \ref{algebra-lemma-glue-modules}.
But the results above actually say more because of exactness
in higher degrees. Namely, it implies that {\v C}ech cohomology of
quasi-coherent sheaves on affines is trivial. Thus we get a second
proof of Cohomology of Schemes, Lemma
\ref{coherent-lemma-cech-cohomology-quasi-coherent-trivial}.
\end{remark}
\begin{remark}
\label{remark-homotopy-equivalent-cosimplicial-algebras}
Let $R$ be a ring. Let $A_\bullet$ be a cosimplicial $R$-algebra.
In this setting a descent datum corresponds to an cosimplicial
$A_\bullet$-module $M_\bullet$ with the property that for
every $n, m \geq 0$ and every $\varphi : [n] \to [m]$ the
map $M(\varphi) : M_n \to M_m$ induces an isomorphism
$$
M_n \otimes_{A_n, A(\varphi)} A_m \longrightarrow M_m.
$$
Let us call such a cosimplicial module a {\it cartesian module}.
In this setting, the proof of Proposition \ref{proposition-descent-module}
can be split in the following steps
\begin{enumerate}
\item If $R \to R'$ and $R \to A$ are faithfully flat,
then descent data for $A/R$ are effective if
descent data for $(R' \otimes_R A)/R'$ are effective.
\item Let $A$ be an $R$-algebra. Descent data for $A/R$ correspond
to cartesian $(A/R)_\bullet$-modules.
\item If $R \to A$ has a section then $(A/R)_\bullet$ is homotopy
equivalent to $R$, the constant cosimplicial
$R$-algebra with value $R$.
\item If $A_\bullet \to B_\bullet$ is a homotopy equivalence of
cosimplicial $R$-algebras then the functor
$M_\bullet \mapsto M_\bullet \otimes_{A_\bullet} B_\bullet$
induces an equivalence of categories between cartesian
$A_\bullet$-modules and cartesian $B_\bullet$-modules.
\end{enumerate}
For (1) see Lemma \ref{lemma-descent-descends}.
Part (2) uses Lemma \ref{lemma-descent-datum-cosimplicial}.
Part (3) we have seen in the proof of Lemma \ref{lemma-with-section-exact}
(it relies on Simplicial,
Lemma \ref{simplicial-lemma-push-outs-simplicial-object-w-section}).
Moreover, part (4) is a triviality if you think about it right!
\end{remark}
\section{Descent for universally injective morphisms}
\label{section-descent-universally-injective}
\noindent
Numerous constructions in algebraic geometry are made using techniques of
{\it descent}, such as constructing objects over a given space by first
working over a somewhat larger space which projects down to the given space,
or verifying a property of a space or a morphism by pulling back along a
covering map. The utility of such techniques is of course dependent on
identification of a wide class of {\it effective descent morphisms}.
Early in the Grothendieckian development of modern algebraic geometry,
the class of morphisms which are {\it quasi-compact} and {\it faithfully flat}
was shown to be effective for descending objects, morphisms, and many
properties thereof.
\medskip\noindent
As usual, this statement comes down to a property of rings and modules.
For a homomorphism $f: R \to S$ to be an effective descent morphism for
modules, Grothendieck showed that it is sufficient for $f$ to be
faithfully flat. However, this excludes many natural examples: for instance,
any split ring homomorphism is an effective descent morphism. One natural
example of this even arises in the proof of faithfully flat descent: for
$f: R \to S$ any ring homomorphism, $1_S \otimes f: S \to S \otimes_R S$
is split by the multiplication map whether or not it is flat.
\medskip\noindent
One may then ask whether there is a natural ring-theoretic condition
implying effective descent for modules which includes both the case of a
faithfully flat morphism and that of a split ring homomorphism. It may
surprise the reader (at least it surprised this author) to learn that a
complete answer to this question has been known since around 1970! Namely,
it is not hard to check that a necessary condition for $f: R \to S$ to be
an effective descent morphism for modules is that $f$ must be
{\it universally injective} in the category of $R$-modules, that is, for
any $R$-module $M$, the map $1_M \otimes f: M \to M \otimes_R S$
must be injective. This then turns out to be a sufficient condition as well.
For example, if $f$ is split in the category of $R$-modules (but not
necessarily in the category of rings), then $f$ is an effective descent
morphism for modules.
\medskip\noindent
The history of this result is a bit involved: it was originally asserted
by Olivier \cite{olivier}, who called universally injective morphisms
{\it pure}, but without a clear indication of proof. One can extract the
result from the work of Joyal and Tierney \cite{joyal-tierney}, but to the
best of our knowledge, the first free-standing proof to appear in the
literature is that of Mesablishvili \cite{mesablishvili1}. The first purpose
of this section is to expose Mesablishvili's proof; this requires little
modification of his original presentation aside from correcting typos, with
the one exception that we make explicit the relationship between the
customary definition of a descent datum in algebraic geometry and the one
used in \cite{mesablishvili1}. The proof turns out to be entirely
category-theoretic, and consequently can be put in the language of monads
(and thus applied in other contexts); see \cite{janelidze-tholen}.
\medskip\noindent
The second purpose of this section is to collect some information about which
properties of modules, algebras, and morphisms can be descended along
universally injective ring homomorphisms. The cases of finite modules
and flat modules were treated by Mesablishvili \cite{mesablishvili2}.
\subsection{Category-theoretic preliminaries}
\label{subsection-category-prelims}
\noindent
We start by recalling a few basic notions from category theory which will
simplify the exposition. In this subsection, fix an ambient category.
\medskip\noindent
For two morphisms $g_1, g_2: B \to C$, recall that an {\it equalizer}
of $g_1$ and $g_2$ is a morphism $f: A \to B$ which satisfies
$g_1 \circ f = g_2 \circ f$ and is universal for this property.
This second statement means that any commutative diagram
$$
\xymatrix{A' \ar[rd]^e \ar@/^1.5pc/[rrd] \ar@{-->}[d] & & \\
A \ar[r]^f & B \ar@<1ex>[r]^{g_1} \ar@<-1ex>[r]_{g_2} &
C
}
$$
without the dashed arrow can be uniquely completed. We also say in this
situation that the diagram
\begin{equation}
\label{equation-equalizer}
\xymatrix{
A \ar[r]^f & B \ar@<1ex>[r]^{g_1} \ar@<-1ex>[r]_{g_2} & C
}
\end{equation}
is an equalizer. Reversing arrows gives the definition of a {\it coequalizer}.
See Categories, Sections \ref{categories-section-equalizers} and
\ref{categories-section-coequalizers}.
\medskip\noindent
Since it involves a universal property, the property of being an equalizer is
typically not stable under applying a covariant functor. Just as for
monomorphisms and epimorphisms, one can get around this in some
cases by exhibiting splittings.
\begin{definition}
\label{definition-split-equalizer}
A {\it split equalizer} is a diagram (\ref{equation-equalizer}) with
$g_1 \circ f = g_2 \circ f$ for which there exist auxiliary morphisms
$h : B \to A$ and $i : C \to B$ such that
\begin{equation}
\label{equation-split-equalizer-conditions}
h \circ f = 1_A, \quad f \circ h = i \circ g_1, \quad i \circ g_2 = 1_B.
\end{equation}
\end{definition}
\noindent
The point is that the equalities among arrows force (\ref{equation-equalizer})
to be an equalizer: the map $e$ factors uniquely through $f$ by writing
$e = f \circ (h \circ e)$. Consequently, applying a covariant functor
to a split equalizer gives a split equalizer; applying a contravariant functor
gives a {\it split coequalizer}, whose definition is apparent.
\subsection{Universally injective morphisms}
\label{subsection-universally-injective}
\noindent
Recall that $\textit{Rings}$ denotes the category of commutative rings
with $1$. For an object $R$ of $\textit{Rings}$ we denote $\text{Mod}_R$
the category of $R$-modules.
\begin{remark}
\label{remark-reflects}
Any functor $F : \mathcal{A} \to \mathcal{B}$ of abelian categories
which is exact and takes nonzero objects to nonzero objects reflects
injections and surjections. Namely, exactness implies that
$F$ preserves kernels and cokernels (compare with
Homology, Section \ref{homology-section-functors}).
For example, if $f : R \to S$ is a
faithfully flat ring homomorphism, then
$\bullet \otimes_R S: \text{Mod}_R \to \text{Mod}_S$ has these properties.
\end{remark}
\noindent
Let $R$ be a ring. Recall that a morphism $f : M \to N$ in $\text{Mod}_R$
is {\it universally injective} if for all $P \in \text{Mod}_R$,
the morphism $f \otimes 1_P: M \otimes_R P \to N \otimes_R P$ is injective.
See Algebra, Definition \ref{algebra-definition-universally-injective}.
\begin{definition}
\label{definition-universally-injective}
A ring map $f: R \to S$ is {\it universally injective}
if it is universally injective as a morphism in $\text{Mod}_R$.
\end{definition}
\begin{example}
\label{example-split-injection-universally-injective}
Any split injection in $\text{Mod}_R$ is universally injective. In particular,
any split injection in $\textit{Rings}$ is universally injective.
\end{example}
\begin{example}
\label{example-cover-universally-injective}
For a ring $R$ and $f_1, \ldots, f_n \in R$ generating the unit
ideal, the morphism $R \to R_{f_1} \oplus \ldots \oplus R_{f_n}$ is
universally injective. Although this is immediate from
Lemma \ref{lemma-faithfully-flat-universally-injective},
it is instructive to check it directly: we immediately reduce to the case
where $R$ is local, in which case some $f_i$ must be a unit and so the map
$R \to R_{f_i}$ is an isomorphism.
\end{example}
\begin{lemma}
\label{lemma-faithfully-flat-universally-injective}
Any faithfully flat ring map is universally injective.
\end{lemma}
\begin{proof}
This is a reformulation of Algebra, Lemma
\ref{algebra-lemma-faithfully-flat-universally-injective}.
\end{proof}
\noindent
The key observation from \cite{mesablishvili1} is that universal injectivity
can be usefully reformulated in terms of a splitting, using the usual
construction of an injective cogenerator in $\text{Mod}_R$.
\begin{definition}
\label{definition-C}
Let $R$ be a ring. Define the contravariant functor
{\it $C$} $ : \text{Mod}_R \to \text{Mod}_R$ by setting
$$
C(M) = \Hom_{\textit{Ab}}(M, \mathbf{Q}/\mathbf{Z}),
$$
with the $R$-action on $C(M)$ given by $rf(s) = f(rs)$.
\end{definition}
\noindent
This functor was denoted $M \mapsto M^\vee$ in
More on Algebra, Section \ref{more-algebra-section-injectives-modules}.
\begin{lemma}
\label{lemma-C-is-faithful}
For a ring $R$, the functor $C : \text{Mod}_R \to \text{Mod}_R$ is
exact and reflects injections and surjections.
\end{lemma}
\begin{proof}
Exactness is More on Algebra, Lemma \ref{more-algebra-lemma-vee-exact}
and the other properties follow from this, see
Remark \ref{remark-reflects}.
\end{proof}
\begin{remark}
\label{remark-adjunction}
We will use frequently the standard adjunction between $\Hom$ and tensor
product, in the form of the natural isomorphism of contravariant functors
\begin{equation}
\label{equation-adjunction}
C(\bullet_1 \otimes_R \bullet_2) \cong \Hom_R(\bullet_1, C(\bullet_2)):
\text{Mod}_R \times \text{Mod}_R \to \text{Mod}_R
\end{equation}
taking $f: M_1 \otimes_R M_2 \to \mathbf{Q}/\mathbf{Z}$ to the map $m_1 \mapsto
(m_2 \mapsto f(m_1 \otimes m_2))$. See
Algebra, Lemma \ref{algebra-lemma-hom-from-tensor-product-variant}.
A corollary of this observation is that if
$$
\xymatrix@C=9pc{
C(M) \ar@<1ex>[r] \ar@<-1ex>[r] & C(N) \ar[r] & C(P)
}
$$
is a split coequalizer diagram in $\text{Mod}_R$, then so is
$$
\xymatrix@C=9pc{
C(M \otimes_R Q) \ar@<1ex>[r] \ar@<-1ex>[r] & C(N \otimes_R Q) \ar[r] & C(P
\otimes_R Q)
}
$$
for any $Q \in \text{Mod}_R$.
\end{remark}