-
Notifications
You must be signed in to change notification settings - Fork 154
/
coherent.tex
8137 lines (7435 loc) · 306 KB
/
coherent.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Cohomology of Schemes}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we first prove a number of results on the cohomology of
quasi-coherent sheaves. A fundamental reference is \cite{EGA}.
Having done this we will elaborate on cohomology of
coherent sheaves in the Noetherian setting. See \cite{FAC}.
\section{{\v C}ech cohomology of quasi-coherent sheaves}
\label{section-cech-quasi-coherent}
\noindent
Let $X$ be a scheme.
Let $U \subset X$ be an affine open.
Recall that a {\it standard open covering} of $U$ is a covering
of the form $\mathcal{U} : U = \bigcup_{i = 1}^n D(f_i)$
where $f_1, \ldots, f_n \in \Gamma(U, \mathcal{O}_X)$ generate
the unit ideal, see
Schemes, Definition \ref{schemes-definition-standard-covering}.
\begin{lemma}
\label{lemma-cech-cohomology-quasi-coherent-trivial}
Let $X$ be a scheme.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $\mathcal{U} : U = \bigcup_{i = 1}^n D(f_i)$ be a standard
open covering of an affine open of $X$.
Then $\check{H}^p(\mathcal{U}, \mathcal{F}) = 0$ for
all $p > 0$.
\end{lemma}
\begin{proof}
Write $U = \Spec(A)$ for some ring $A$.
In other words, $f_1, \ldots, f_n$ are elements of $A$
which generate the unit ideal of $A$.
Write $\mathcal{F}|_U = \widetilde{M}$ for some $A$-module $M$.
Clearly the {\v C}ech complex
$\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F})$
is identified with the complex
$$
\prod\nolimits_{i_0} M_{f_{i_0}} \to
\prod\nolimits_{i_0i_1} M_{f_{i_0}f_{i_1}} \to
\prod\nolimits_{i_0i_1i_2} M_{f_{i_0}f_{i_1}f_{i_2}} \to
\ldots
$$
We are asked to show that the extended complex
\begin{equation}
\label{equation-extended}
0 \to
M \to
\prod\nolimits_{i_0} M_{f_{i_0}} \to
\prod\nolimits_{i_0i_1} M_{f_{i_0}f_{i_1}} \to
\prod\nolimits_{i_0i_1i_2} M_{f_{i_0}f_{i_1}f_{i_2}} \to
\ldots
\end{equation}
(whose truncation we have studied in
Algebra, Lemma \ref{algebra-lemma-cover-module}) is exact.
It suffices to show that (\ref{equation-extended})
is exact after localizing at a prime $\mathfrak p$, see
Algebra, Lemma \ref{algebra-lemma-characterize-zero-local}.
In fact we will show that the extended complex localized
at $\mathfrak p$ is homotopic to zero.
\medskip\noindent
There exists an index $i$ such that $f_i \not \in \mathfrak p$.
Choose and fix such an element $i_{\text{fix}}$. Note that
$M_{f_{i_{\text{fix}}}, \mathfrak p} = M_{\mathfrak p}$. Similarly
for a localization at a product $f_{i_0} \ldots f_{i_p}$ and $\mathfrak p$
we can drop any $f_{i_j}$ for which $i_j = i_{\text{fix}}$.
Let us define a homotopy
$$
h :
\prod\nolimits_{i_0 \ldots i_{p + 1}}
M_{f_{i_0} \ldots f_{i_{p + 1}}, \mathfrak p}
\longrightarrow
\prod\nolimits_{i_0 \ldots i_p}
M_{f_{i_0} \ldots f_{i_p}, \mathfrak p}
$$
by the rule
$$
h(s)_{i_0 \ldots i_p} = s_{i_{\text{fix}} i_0 \ldots i_p}
$$
(This is ``dual'' to the homotopy in the proof of
Cohomology, Lemma \ref{cohomology-lemma-homology-complex}.)
In other words, $h : \prod_{i_0} M_{f_{i_0}, \mathfrak p} \to M_\mathfrak p$
is projection onto the factor
$M_{f_{i_{\text{fix}}}, \mathfrak p} = M_{\mathfrak p}$ and in general
the map $h$ equal projection onto the factors
$M_{f_{i_{\text{fix}}} f_{i_1} \ldots f_{i_{p + 1}}, \mathfrak p}
= M_{f_{i_1} \ldots f_{i_{p + 1}}, \mathfrak p}$. We compute
\begin{align*}
(dh + hd)(s)_{i_0 \ldots i_p}
& =
\sum\nolimits_{j = 0}^p
(-1)^j
h(s)_{i_0 \ldots \hat i_j \ldots i_p}
+
d(s)_{i_{\text{fix}} i_0 \ldots i_p}\\
& =
\sum\nolimits_{j = 0}^p
(-1)^j
s_{i_{\text{fix}} i_0 \ldots \hat i_j \ldots i_p}
+
s_{i_0 \ldots i_p}
+
\sum\nolimits_{j = 0}^p
(-1)^{j + 1}
s_{i_{\text{fix}} i_0 \ldots \hat i_j \ldots i_p} \\
& =
s_{i_0 \ldots i_p}
\end{align*}
This proves the identity map is homotopic to zero as desired.
\end{proof}
\noindent
The following lemma says in particular that for any affine scheme
$X$ and any quasi-coherent sheaf $\mathcal{F}$ on $X$ we have
$$
H^p(X, \mathcal{F}) = 0
$$
for all $p > 0$.
\begin{lemma}
\label{lemma-quasi-coherent-affine-cohomology-zero}
\begin{slogan}
Serre vanishing: Higher cohomology vanishes on affine schemes
for quasi-coherent modules.
\end{slogan}
Let $X$ be a scheme.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
For any affine open $U \subset X$ we have
$H^p(U, \mathcal{F}) = 0$ for all $p > 0$.
\end{lemma}
\begin{proof}
We are going to apply
Cohomology, Lemma \ref{cohomology-lemma-cech-vanish-basis}.
As our basis $\mathcal{B}$ for the topology of $X$ we are going to use
the affine opens of $X$.
As our set $\text{Cov}$ of open coverings we are going to use the standard
open coverings of affine opens of $X$.
Next we check that conditions (1), (2) and (3) of
Cohomology, Lemma \ref{cohomology-lemma-cech-vanish-basis}
hold. Note that the intersection of standard opens in an affine is
another standard open. Hence property (1) holds.
The coverings form a cofinal system of open coverings of any element
of $\mathcal{B}$, see
Schemes, Lemma \ref{schemes-lemma-standard-open}.
Hence (2) holds.
Finally, condition (3) of the lemma follows from
Lemma \ref{lemma-cech-cohomology-quasi-coherent-trivial}.
\end{proof}
\noindent
Here is a relative version of the vanishing of cohomology of quasi-coherent
sheaves on affines.
\begin{lemma}
\label{lemma-relative-affine-vanishing}
Let $f : X \to S$ be a morphism of schemes.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
If $f$ is affine then $R^if_*\mathcal{F} = 0$ for all $i > 0$.
\end{lemma}
\begin{proof}
According to
Cohomology, Lemma \ref{cohomology-lemma-describe-higher-direct-images}
the sheaf
$R^if_*\mathcal{F}$ is the sheaf associated to the presheaf
$V \mapsto H^i(f^{-1}(V), \mathcal{F}|_{f^{-1}(V)})$.
By assumption, whenever $V$ is affine we have that $f^{-1}(V)$ is
affine, see Morphisms, Definition \ref{morphisms-definition-affine}.
By Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero} we conclude that
$H^i(f^{-1}(V), \mathcal{F}|_{f^{-1}(V)}) = 0$
whenever $V$ is affine. Since $S$ has a basis consisting of affine
opens we win.
\end{proof}
\begin{lemma}
\label{lemma-relative-affine-cohomology}
Let $f : X \to S$ be an affine morphism of schemes.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Then $H^i(X, \mathcal{F}) = H^i(S, f_*\mathcal{F})$ for all $i \geq 0$.
\end{lemma}
\begin{proof}
Follows from Lemma \ref{lemma-relative-affine-vanishing}
and the Leray spectral sequence. See
Cohomology, Lemma \ref{cohomology-lemma-apply-Leray}.
\end{proof}
\noindent
The following two lemmas explain when {\v C}ech cohomology
can be used to compute cohomology of quasi-coherent modules.
\begin{lemma}
\label{lemma-affine-diagonal}
Let $X$ be a scheme. The following are equivalent
\begin{enumerate}
\item $X$ has affine diagonal $\Delta : X \to X \times X$,
\item for $U, V \subset X$ affine open, the intersection
$U \cap V$ is affine, and
\item there exists an open covering $\mathcal{U} : X = \bigcup_{i \in I} U_i$
such that $U_{i_0 \ldots i_p}$ is affine open for all $p \ge 0$ and all
$i_0, \ldots, i_p \in I$.
\end{enumerate}
In particular this holds if $X$ is separated.
\end{lemma}
\begin{proof}
Assume $X$ has affine diagonal. Let $U, V \subset X$ be affine opens.
Then $U \cap V = \Delta^{-1}(U \times V)$ is affine. Thus (2) holds.
It is immediate that (2) implies (3). Conversely, if there is a
covering of $X$ as in (3), then $X \times X = \bigcup U_i \times U_{i'}$
is an affine open covering, and we see that
$\Delta^{-1}(U_i \times U_{i'}) = U_i \cap U_{i'}$
is affine. Then $\Delta$ is an affine morphism by
Morphisms, Lemma \ref{morphisms-lemma-characterize-affine}.
The final assertion follows from Schemes, Lemma
\ref{schemes-lemma-characterize-separated}.
\end{proof}
\begin{lemma}
\label{lemma-cech-cohomology-quasi-coherent}
Let $X$ be a scheme.
Let $\mathcal{U} : X = \bigcup_{i \in I} U_i$ be an open covering such that
$U_{i_0 \ldots i_p}$ is affine open for all $p \ge 0$ and all
$i_0, \ldots, i_p \in I$.
In this case for any quasi-coherent sheaf $\mathcal{F}$ we have
$$
\check{H}^p(\mathcal{U}, \mathcal{F}) = H^p(X, \mathcal{F})
$$
as $\Gamma(X, \mathcal{O}_X)$-modules for all $p$.
\end{lemma}
\begin{proof}
In view of
Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero}
this is a special case of
Cohomology, Lemma
\ref{cohomology-lemma-cech-spectral-sequence-application}.
\end{proof}
\section{Vanishing of cohomology}
\label{section-vanishing}
\noindent
We have seen that on an affine scheme the higher cohomology groups
of any quasi-coherent sheaf vanish
(Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero}).
It turns out that this also
characterizes affine schemes. We give two versions.
\begin{lemma}
\label{lemma-quasi-compact-h1-zero-covering}
\begin{reference}
\cite{Serre-criterion}, \cite[II, Theorem 5.2.1 (d') and IV (1.7.17)]{EGA}
\end{reference}
\begin{slogan}
Serre's criterion for affineness.
\end{slogan}
Let $X$ be a scheme.
Assume that
\begin{enumerate}
\item $X$ is quasi-compact,
\item for every quasi-coherent sheaf of ideals
$\mathcal{I} \subset \mathcal{O}_X$ we have $H^1(X, \mathcal{I}) = 0$.
\end{enumerate}
Then $X$ is affine.
\end{lemma}
\begin{proof}
Let $x \in X$ be a closed point. Let $U \subset X$ be an affine open
neighbourhood of $x$. Write $U = \Spec(A)$ and let
$\mathfrak m \subset A$ be the maximal ideal corresponding to $x$.
Set $Z = X \setminus U$ and $Z' = Z \cup \{x\}$.
By Schemes, Lemma \ref{schemes-lemma-reduced-closed-subscheme} there
are quasi-coherent sheaves of ideals
$\mathcal{I}$, resp.\ $\mathcal{I}'$ cutting out
the reduced closed subschemes $Z$, resp.\ $Z'$.
Consider the short exact sequence
$$
0 \to \mathcal{I}' \to \mathcal{I} \to \mathcal{I}/\mathcal{I}' \to 0.
$$
Since $x$ is a closed point of $X$ and $x \not \in Z$ we see that
$\mathcal{I}/\mathcal{I}'$ is supported at $x$. In fact, the restriction
of $\mathcal{I}/\mathcal{I'}$ to $U$ corresponds to the $A$-module
$A/\mathfrak m$. Hence we see that $\Gamma(X, \mathcal{I}/\mathcal{I'})
= A/\mathfrak m$. Since by assumption $H^1(X, \mathcal{I}') = 0$
we see there exists a global section $f \in \Gamma(X, \mathcal{I})$
which maps to the element $1 \in A/\mathfrak m$ as a section of
$\mathcal{I}/\mathcal{I'}$. Clearly we have
$x \in X_f \subset U$. This implies that $X_f = D(f_A)$ where
$f_A$ is the image of $f$ in $A = \Gamma(U, \mathcal{O}_X)$.
In particular $X_f$ is affine.
\medskip\noindent
Consider the union $W = \bigcup X_f$ over all $f \in \Gamma(X, \mathcal{O}_X)$
such that $X_f$ is affine. Obviously $W$ is open in $X$.
By the arguments above every closed point of
$X$ is contained in $W$. The closed subset $X \setminus W$ of $X$
is also quasi-compact
(see Topology, Lemma \ref{topology-lemma-closed-in-quasi-compact}).
Hence it has a closed point if it is nonempty (see
Topology, Lemma \ref{topology-lemma-quasi-compact-closed-point}).
This would contradict the fact that all closed points are in
$W$. Hence we conclude $X = W$.
\medskip\noindent
Choose finitely many $f_1, \ldots, f_n \in \Gamma(X, \mathcal{O}_X)$
such that $X = X_{f_1} \cup \ldots \cup X_{f_n}$ and such that each
$X_{f_i}$ is affine. This is possible as we've seen above.
By Properties, Lemma \ref{properties-lemma-characterize-affine}
to finish the proof it suffices
to show that $f_1, \ldots, f_n$ generate the unit ideal in
$\Gamma(X, \mathcal{O}_X)$. Consider the short exact sequence
$$
\xymatrix{
0 \ar[r] &
\mathcal{F} \ar[r] &
\mathcal{O}_X^{\oplus n} \ar[rr]^{f_1, \ldots, f_n} & &
\mathcal{O}_X \ar[r] &
0
}
$$
The arrow defined by $f_1, \ldots, f_n$ is surjective since the
opens $X_{f_i}$ cover $X$. We let $\mathcal{F}$ be the kernel
of this surjective map.
Observe that $\mathcal{F}$ has a filtration
$$
0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset
\ldots \subset \mathcal{F}_n = \mathcal{F}
$$
so that each subquotient $\mathcal{F}_i/\mathcal{F}_{i - 1}$ is
isomorphic to a quasi-coherent sheaf of ideals.
Namely we can take $\mathcal{F}_i$ to be the intersection of
$\mathcal{F}$ with the first $i$ direct summands of
$\mathcal{O}_X^{\oplus n}$.
The assumption
of the lemma implies that $H^1(X, \mathcal{F}_i/\mathcal{F}_{i - 1}) = 0$
for all $i$. This implies that
$H^1(X, \mathcal{F}_2) = 0$ because it is sandwiched between
$H^1(X, \mathcal{F}_1)$ and $H^1(X, \mathcal{F}_2/\mathcal{F}_1)$.
Continuing like this we deduce that $H^1(X, \mathcal{F}) = 0$.
Therefore we conclude that the map
$$
\xymatrix{
\bigoplus\nolimits_{i = 1, \ldots, n} \Gamma(X, \mathcal{O}_X)
\ar[rr]^{f_1, \ldots, f_n} & &
\Gamma(X, \mathcal{O}_X)
}
$$
is surjective as desired.
\end{proof}
\noindent
Note that if $X$ is a Noetherian scheme then every quasi-coherent
sheaf of ideals is automatically a coherent sheaf of ideals and a
finite type quasi-coherent sheaf of ideals. Hence
the preceding lemma and the next lemma both apply in this case.
\begin{lemma}
\label{lemma-quasi-separated-h1-zero-covering}
\begin{reference}
\cite{Serre-criterion}, \cite[II, Theorem 5.2.1]{EGA}
\end{reference}
\begin{slogan}
Serre's criterion for affineness.
\end{slogan}
Let $X$ be a scheme. Assume that
\begin{enumerate}
\item $X$ is quasi-compact,
\item $X$ is quasi-separated, and
\item $H^1(X, \mathcal{I}) = 0$ for every quasi-coherent sheaf
of ideals $\mathcal{I}$ of finite type.
\end{enumerate}
Then $X$ is affine.
\end{lemma}
\begin{proof}
By
Properties, Lemma \ref{properties-lemma-quasi-coherent-colimit-finite-type}
every quasi-coherent sheaf of ideals is a directed colimit of
quasi-coherent sheaves of ideals of finite type.
By Cohomology, Lemma \ref{cohomology-lemma-quasi-separated-cohomology-colimit}
taking cohomology on $X$ commutes with directed colimits.
Hence we see that $H^1(X, \mathcal{I}) = 0$
for every quasi-coherent sheaf of ideals on $X$. In other words
we see that Lemma \ref{lemma-quasi-compact-h1-zero-covering} applies.
\end{proof}
\noindent
We can use the arguments given above to find a sufficient condition to
see when an invertible sheaf is ample. However, we warn the reader that
this condition is not necessary.
\begin{lemma}
\label{lemma-quasi-compact-h1-zero-invertible}
Let $X$ be a scheme. Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module.
Assume that
\begin{enumerate}
\item $X$ is quasi-compact,
\item for every quasi-coherent sheaf of ideals
$\mathcal{I} \subset \mathcal{O}_X$
there exists an $n \geq 1$ such that
$H^1(X, \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}) = 0$.
\end{enumerate}
Then $\mathcal{L}$ is ample.
\end{lemma}
\begin{proof}
This is proved in exactly the same way as
Lemma \ref{lemma-quasi-compact-h1-zero-covering}.
Let $x \in X$ be a closed point. Let $U \subset X$ be an affine open
neighbourhood of $x$ such that $\mathcal{L}|_U \cong \mathcal{O}_U$.
Write $U = \Spec(A)$ and let
$\mathfrak m \subset A$ be the maximal ideal corresponding to $x$.
Set $Z = X \setminus U$ and $Z' = Z \cup \{x\}$.
By Schemes, Lemma \ref{schemes-lemma-reduced-closed-subscheme} there
are quasi-coherent sheaves of ideals
$\mathcal{I}$, resp.\ $\mathcal{I}'$ cutting out
the reduced closed subschemes $Z$, resp.\ $Z'$.
Consider the short exact sequence
$$
0 \to \mathcal{I}' \to \mathcal{I} \to \mathcal{I}/\mathcal{I}' \to 0.
$$
For every $n \geq 1$ we obtain a short exact sequence
$$
0 \to \mathcal{I}' \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}
\to \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n} \to
\mathcal{I}/\mathcal{I}' \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n} \to 0.
$$
By our assumption we may pick $n$ such that
$H^1(X, \mathcal{I}' \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}) = 0$.
Since $x$ is a closed point of $X$ and $x \not \in Z$ we see that
$\mathcal{I}/\mathcal{I}'$ is supported at $x$. In fact, the restriction
of $\mathcal{I}/\mathcal{I'}$ to $U$ corresponds to the $A$-module
$A/\mathfrak m$. Since $\mathcal{L}$ is trivial on $U$
we see that the restriction of
$\mathcal{I}/\mathcal{I}' \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}$
to $U$ also corresponds to the $A$-module $A/\mathfrak m$.
Hence we see that
$\Gamma(X, \mathcal{I}/\mathcal{I'} \otimes_{\mathcal{O}_X}
\mathcal{L}^{\otimes n}) = A/\mathfrak m$.
By our choice of $n$ we see there exists a global section
$s \in \Gamma(X, \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n})$
which maps to the element $1 \in A/\mathfrak m$. Clearly we have
$x \in X_s \subset U$ because $s$ vanishes at points of $Z$.
This implies that $X_s = D(f)$ where
$f \in A$ is the image of $s$ in $A \cong \Gamma(U, \mathcal{L}^{\otimes n})$.
In particular $X_s$ is affine.
\medskip\noindent
Consider the union $W = \bigcup X_s$ over all
$s \in \Gamma(X, \mathcal{L}^{\otimes n})$ for $n \geq 1$
such that $X_s$ is affine. Obviously $W$ is open in $X$.
By the arguments above every closed point of
$X$ is contained in $W$. The closed subset $X \setminus W$ of $X$
is also quasi-compact
(see Topology, Lemma \ref{topology-lemma-closed-in-quasi-compact}).
Hence it has a closed point if it is nonempty (see
Topology, Lemma \ref{topology-lemma-quasi-compact-closed-point}).
This would contradict the fact that all closed points are in
$W$. Hence we conclude $X = W$. This means that $\mathcal{L}$
is ample by Properties, Definition \ref{properties-definition-ample}.
\end{proof}
\noindent
There is a variant of Lemma \ref{lemma-quasi-compact-h1-zero-invertible}
with finite type ideal sheaves which we will formulate and prove here if
we ever need it.
\begin{lemma}
\label{lemma-criterion-affine-morphism}
Let $f : X \to Y$ be a quasi-compact morphism with $X$ and $Y$ quasi-separated.
If $R^1f_*\mathcal{I} = 0$ for every quasi-coherent sheaf of ideals
$\mathcal{I}$ on $X$, then $f$ is affine.
\end{lemma}
\begin{proof}
Let $V \subset Y$ be an affine open subscheme. We have to show that
$U = f^{-1}(V)$ is affine. The inclusion morphism $V \to Y$ is quasi-compact
by Schemes, Lemma \ref{schemes-lemma-quasi-compact-permanence}.
Hence the base change $U \to X$ is quasi-compact, see
Schemes, Lemma \ref{schemes-lemma-quasi-compact-preserved-base-change}.
Thus any quasi-coherent sheaf of ideals $\mathcal{I}$ on $U$
extends to a quasi-coherent sheaf of ideals on $X$, see
Properties, Lemma \ref{properties-lemma-extend-trivial}.
Since the formation of $R^1f_*$ is local on $Y$
(Cohomology, Section \ref{cohomology-section-locality})
we conclude that $R^1(U \to V)_*\mathcal{I} = 0$ by the assumption
in the lemma. Hence by the Leray Spectral sequence
(Cohomology, Lemma \ref{cohomology-lemma-Leray})
we conclude that $H^1(U, \mathcal{I}) = H^1(V, (U \to V)_*\mathcal{I})$.
Since $(U \to V)_*\mathcal{I}$ is quasi-coherent by
Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent}, we have
$H^1(V, (U \to V)_*\mathcal{I}) = 0$ by
Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero}.
Thus we find that $U$ is affine by
Lemma \ref{lemma-quasi-compact-h1-zero-covering}.
\end{proof}
\section{Quasi-coherence of higher direct images}
\label{section-quasi-coherence}
\noindent
We have seen that the higher cohomology groups of a quasi-coherent module on
an affine are zero. For (quasi-)separated quasi-compact schemes $X$ this implies
vanishing of cohomology groups of quasi-coherent sheaves beyond a certain
degree. However, it may not be the case that $X$ has finite cohomological
dimension, because that is defined in terms of vanishing of cohomology
of {\it all} $\mathcal{O}_X$-modules.
\begin{lemma}[Induction Principle]
\label{lemma-induction-principle}
\begin{reference}
\cite[Proposition 3.3.1]{BvdB}
\end{reference}
Let $X$ be a quasi-compact and quasi-separated scheme. Let $P$ be a property
of the quasi-compact opens of $X$. Assume that
\begin{enumerate}
\item $P$ holds for every affine open of $X$,
\item if $U$ is quasi-compact open, $V$ affine open,
$P$ holds for $U$, $V$, and $U \cap V$, then
$P$ holds for $U \cup V$.
\end{enumerate}
Then $P$ holds for every quasi-compact open of $X$
and in particular for $X$.
\end{lemma}
\begin{proof}
First we argue by induction that $P$ holds for {\it separated} quasi-compact
opens $W \subset X$. Namely, such an open can be written as
$W = U_1 \cup \ldots \cup U_n$ and we can do induction on $n$ using
property (2) with $U = U_1 \cup \ldots \cup U_{n - 1}$ and $V = U_n$.
This is allowed because
$U \cap V = (U_1 \cap U_n) \cup \ldots \cup (U_{n - 1} \cap U_n)$
is also a union of $n - 1$ affine open subschemes by
Schemes, Lemma \ref{schemes-lemma-characterize-separated}
applied to the affine opens $U_i$ and $U_n$ of $W$.
Having said this, for any quasi-compact open $W \subset X$ we can
do induction on the number of affine opens needed to cover $W$
using the same trick as before and using that the quasi-compact open
$U_i \cap U_n$ is separated as an open subscheme of the affine scheme $U_n$.
\end{proof}
\begin{lemma}
\label{lemma-vanishing-nr-affines}
\begin{slogan}
For schemes with affine diagonal, the cohomology of quasi-coherent
modules vanishes in degrees bigger than the number of affine
opens needed in a covering.
\end{slogan}
Let $X$ be a quasi-compact scheme with affine diagonal (for example
if $X$ is separated).
Let $t = t(X)$ be the minimal number of affine opens needed to
cover $X$. Then $H^n(X, \mathcal{F}) = 0$ for all $n \geq t$ and all
quasi-coherent sheaves $\mathcal{F}$.
\end{lemma}
\begin{proof}
First proof.
By induction on $t$.
If $t = 1$ the result follows from
Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero}.
If $t > 1$ write $X = U \cup V$ with $V$ affine open and
$U = U_1 \cup \ldots \cup U_{t - 1}$ a union of $t - 1$ open affines.
Note that in this case
$U \cap V = (U_1 \cap V) \cup \ldots (U_{t - 1} \cap V)$
is also a union of $t - 1$ affine open subschemes.
Namely, since the diagonal is affine, the intersection of two
affine opens is affine, see Lemma \ref{lemma-affine-diagonal}.
We apply the Mayer-Vietoris long exact sequence
$$
0 \to
H^0(X, \mathcal{F}) \to
H^0(U, \mathcal{F}) \oplus H^0(V, \mathcal{F}) \to
H^0(U \cap V, \mathcal{F}) \to
H^1(X, \mathcal{F}) \to \ldots
$$
see Cohomology, Lemma \ref{cohomology-lemma-mayer-vietoris}.
By induction we see that the groups $H^i(U, \mathcal{F})$,
$H^i(V, \mathcal{F})$, $H^i(U \cap V, \mathcal{F})$ are zero for
$i \geq t - 1$. It follows immediately that $H^i(X, \mathcal{F})$
is zero for $i \geq t$.
\medskip\noindent
Second proof.
Let $\mathcal{U} : X = \bigcup_{i = 1}^t U_i$ be a finite affine open
covering. Since $X$ is has affine diagonal the multiple intersections
$U_{i_0 \ldots i_p}$ are all affine, see
Lemma \ref{lemma-affine-diagonal}.
By Lemma \ref{lemma-cech-cohomology-quasi-coherent} the {\v C}ech
cohomology groups $\check{H}^p(\mathcal{U}, \mathcal{F})$
agree with the cohomology groups. By
Cohomology, Lemma \ref{cohomology-lemma-alternating-usual}
the {\v C}ech cohomology groups may be computed using the alternating
{\v C}ech complex $\check{\mathcal{C}}_{alt}^\bullet(\mathcal{U}, \mathcal{F})$.
As the covering consists of $t$ elements we see immediately
that $\check{\mathcal{C}}_{alt}^p(\mathcal{U}, \mathcal{F}) = 0$
for all $p \geq t$. Hence the result follows.
\end{proof}
\begin{lemma}
\label{lemma-affine-diagonal-universal-delta-functor}
Let $X$ be a quasi-compact scheme with affine diagonal
(for example if $X$ is separated). Then
\begin{enumerate}
\item given a quasi-coherent $\mathcal{O}_X$-module $\mathcal{F}$
there exists an embedding $\mathcal{F} \to \mathcal{F}'$ of
quasi-coherent $\mathcal{O}_X$-modules
such that $H^p(X, \mathcal{F}') = 0$ for all $p \geq 1$, and
\item $\{H^n(X, -)\}_{n \geq 0}$
is a universal $\delta$-functor from $\QCoh(\mathcal{O}_X)$ to
$\textit{Ab}$.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $X = \bigcup U_i$ be a finite affine open covering.
Set $U = \coprod U_i$ and denote $j : U \to X$
the morphism inducing the given open immersions $U_i \to X$.
Since $U$ is an affine scheme and $X$ has affine diagonal,
the morphism $j$ is affine, see
Morphisms, Lemma \ref{morphisms-lemma-affine-permanence}.
For every $\mathcal{O}_X$-module $\mathcal{F}$ there is
a canonical map $\mathcal{F} \to j_*j^*\mathcal{F}$.
This map is injective as can be seen by checking on stalks:
if $x \in U_i$, then we have a factorization
$$
\mathcal{F}_x \to (j_*j^*\mathcal{F})_x
\to (j^*\mathcal{F})_{x'} = \mathcal{F}_x
$$
where $x' \in U$ is the point $x$ viewed as a point of $U_i \subset U$.
Now if $\mathcal{F}$ is quasi-coherent, then $j^*\mathcal{F}$
is quasi-coherent on the affine scheme $U$ hence has vanishing
higher cohomology by
Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero}.
Then $H^p(X, j_*j^*\mathcal{F}) = 0$ for
$p > 0$ by Lemma \ref{lemma-relative-affine-cohomology}
as $j$ is affine. This proves (1).
Finally, we see that the map
$H^p(X, \mathcal{F}) \to H^p(X, j_*j^*\mathcal{F})$
is zero and part (2) follows from
Homology, Lemma \ref{homology-lemma-efface-implies-universal}.
\end{proof}
\begin{lemma}
\label{lemma-vanishing-nr-affines-quasi-separated}
Let $X$ be a quasi-compact quasi-separated scheme.
Let $X = U_1 \cup \ldots \cup U_n$ be an open covering
with each $U_i$ quasi-compact and separated (for example affine).
Set
$$
d = \max\nolimits_{I \subset \{1, \ldots, n\}}
\left(|I| + t(\bigcap\nolimits_{i \in I} U_i) - 1\right)
$$
where $t(U)$ is the minimal number of affines needed to cover
the scheme $U$. Then $H^p(X, \mathcal{F}) = 0$ for all $p \geq d$ and all
quasi-coherent sheaves $\mathcal{F}$.
\end{lemma}
\begin{proof}
Note that since $X$ is quasi-separated and $U_i$ quasi-compact the numbers
$t(\bigcap_{i \in I} U_i)$ are finite. Proof using induction on $n$.
If $n = 1$ then the result follows from Lemma \ref{lemma-vanishing-nr-affines}.
If $n > 1$, write $X = U \cup V$ with $U = U_1 \cup \ldots \cup U_{n - 1}$
and $V = U_n$. We apply the Mayer-Vietoris long exact sequence
$$
0 \to
H^0(X, \mathcal{F}) \to
H^0(U, \mathcal{F}) \oplus H^0(V, \mathcal{F}) \to
H^0(U \cap V, \mathcal{F}) \to
H^1(X, \mathcal{F}) \to \ldots
$$
see Cohomology, Lemma \ref{cohomology-lemma-mayer-vietoris}.
To finish the proof for $q \geq d$ we will show that
$H^q(V, \mathcal{F})$, $H^q(U, \mathcal{F})$, and
$H^{q - 1}(U \cap V, \mathcal{F})$ vanish.
By the case $n = 1$ we have $H^q(V, \mathcal{F}) = 0$ for
$q \geq t(V) = t(U_n)$. Since $t(V) \leq d$ this proves what we want.
By induction hypothesis we have $H^q(U, \mathcal{F}) = 0$ for
$$
q \geq \max\nolimits_{I \subset \{1, \ldots, n - 1\}}
\left(|I| + t(\bigcap\nolimits_{i \in I} U_i) - 1\right)
$$
Since the integer on the right is less than or equal to $d$, this
proves what we want. Finally we may use our induction hypothesis for the open
$U \cap V = (U_1 \cap U_n) \cup \ldots \cup (U_{n - 1} \cap U_n)$ to get
the vanishing of $H^q(U \cap V, \mathcal{F}) = 0$ for
$$
q \geq \max\nolimits_{I \subset \{1, \ldots, n - 1\}}
\left(|I| + t(U_n \cap \bigcap\nolimits_{i \in I} U_i) - 1\right)
$$
Since the integer on the right is strictly less than $d$
the lemma follows.
\end{proof}
\begin{lemma}
\label{lemma-quasi-coherence-higher-direct-images}
Let $f : X \to S$ be a morphism of schemes.
Assume that $f$ is quasi-separated and quasi-compact.
\begin{enumerate}
\item For any quasi-coherent $\mathcal{O}_X$-module $\mathcal{F}$ the
higher direct images $R^pf_*\mathcal{F}$ are quasi-coherent on $S$.
\item If $S$ is quasi-compact, there exists an integer $n = n(X, S, f)$
such that $R^pf_*\mathcal{F} = 0$ for all $p \geq n$ and any
quasi-coherent sheaf $\mathcal{F}$ on $X$.
\item In fact, if $S$ is quasi-compact we can find $n = n(X, S, f)$
such that for every
morphism of schemes $S' \to S$ we have $R^p(f')_*\mathcal{F}' = 0$
for $p \geq n$ and any quasi-coherent sheaf $\mathcal{F}'$
on $X'$. Here $f' : X' = S' \times_S X \to S'$ is the base change of $f$.
\end{enumerate}
\end{lemma}
\begin{proof}
We first prove (1). Note that under the hypotheses of the lemma the sheaf
$R^0f_*\mathcal{F} = f_*\mathcal{F}$ is quasi-coherent by
Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent}.
Using
Cohomology, Lemma \ref{cohomology-lemma-localize-higher-direct-images}
we see that forming higher direct images commutes with restriction
to open subschemes. Since being quasi-coherent is local on $S$ we
reduce to the case discussed in the next paragraph.
\medskip\noindent
Proof of (1) in case $S$ is affine. We will use the induction principle.
Since $f$ quasi-compact and quasi-separated we see that $X$
is quasi-compact and quasi-separated. For $U \subset X$
quasi-compact open and $a = f|_U$ we let $P(U)$ be the property that
$R^pa_*\mathcal{F}$ is quasi-coherent on $S$ for all quasi-coherent modules
$\mathcal{F}$ on $U$ and all $p \geq 0$. Since $P(X)$ is (1), it suffices
the prove conditions (1) and (2) of Lemma \ref{lemma-induction-principle} hold.
If $U$ is affine, then $P(U)$ holds because $R^pa_*\mathcal{F} = 0$ for
$p \geq 1$ (by Lemma \ref{lemma-relative-affine-vanishing} and
Morphisms, Lemma \ref{morphisms-lemma-morphism-affines-affine})
and we've already observed the result holds for $p = 0$ in the first
paragraph. Next, let $U \subset X$ be a quasi-compact open, $V \subset X$
an affine open, and assume $P(U)$, $P(V)$, $P(U \cap V)$ hold.
Let $a = f|_U$, $b = f|_V$, $c = f|_{U \cap V}$, and $g = f|_{U \cup V}$.
Then for any quasi-coherent $\mathcal{O}_{U \cup V}$-module $\mathcal{F}$
we have the relative Mayer-Vietoris sequence
$$
0 \to
g_*\mathcal{F} \to
a_*(\mathcal{F}|_U) \oplus b_*(\mathcal{F}|_V) \to
c_*(\mathcal{F}|_{U \cap V}) \to
R^1g_*\mathcal{F} \to \ldots
$$
see Cohomology, Lemma \ref{cohomology-lemma-relative-mayer-vietoris}.
By $P(U)$, $P(V)$, $P(U \cap V)$ we see that
$R^pa_*(\mathcal{F}|_U)$, $R^pb_*(\mathcal{F}|_V)$ and
$R^pc_*(\mathcal{F}|_{U \cap V})$ are all quasi-coherent.
Using the results on quasi-coherent sheaves in
Schemes, Section \ref{schemes-section-quasi-coherent}
this implies that each of the sheaves
$R^pg_*\mathcal{F}$ is quasi-coherent since it sits in the middle of a short
exact sequence with a cokernel of a map between quasi-coherent sheaves
on the left and a kernel of a map between quasi-coherent sheaves on the right.
Whence $P(U \cup V)$ and the proof of (1) is complete.
\medskip\noindent
Next, we prove (3) and a fortiori (2). Choose a finite affine open
covering $S = \bigcup_{j = 1, \ldots m} S_j$. For each $j$ choose
a finite affine open covering
$f^{-1}(S_j) = \bigcup_{i = 1, \ldots t_j} U_{ji} $.
Let
$$
d_j = \max\nolimits_{I \subset \{1, \ldots, t_j\}}
\left(|I| + t(\bigcap\nolimits_{i \in I} U_{ji})\right)
$$
be the integer found in
Lemma \ref{lemma-vanishing-nr-affines-quasi-separated}.
We claim that $n(X, S, f) = \max d_j$ works.
\medskip\noindent
Namely, let $S' \to S$ be a morphism of schemes and let
$\mathcal{F}'$ be a quasi-coherent sheaf on $X' = S' \times_S X$.
We want to show that $R^pf'_*\mathcal{F}' = 0$ for $p \geq n(X, S, f)$.
Since this question is local on $S'$ we may assume that $S'$ is affine
and maps into $S_j$ for some $j$. Then $X' = S' \times_{S_j} f^{-1}(S_j)$
is covered by the open affines $S' \times_{S_j} U_{ji}$, $i = 1, \ldots t_j$
and the intersections
$$
\bigcap\nolimits_{i \in I} S' \times_{S_j} U_{ji} =
S' \times_{S_j} \bigcap\nolimits_{i \in I} U_{ji}
$$
are covered by the same number of affines as before the base change.
Applying
Lemma \ref{lemma-vanishing-nr-affines-quasi-separated}
we get $H^p(X', \mathcal{F}') = 0$. By the first part of the proof
we already know that each $R^qf'_*\mathcal{F}'$ is quasi-coherent
hence has vanishing higher cohomology groups on our affine scheme $S'$,
thus we see that $H^0(S', R^pf'_*\mathcal{F}') = H^p(X', \mathcal{F}') = 0$
by Cohomology, Lemma \ref{cohomology-lemma-apply-Leray}.
Since $R^pf'_*\mathcal{F}'$ is quasi-coherent
we conclude that $R^pf'_*\mathcal{F}' = 0$.
\end{proof}
\begin{lemma}
\label{lemma-quasi-coherence-higher-direct-images-application}
Let $f : X \to S$ be a morphism of schemes.
Assume that $f$ is quasi-separated and quasi-compact.
Assume $S$ is affine.
For any quasi-coherent $\mathcal{O}_X$-module $\mathcal{F}$
we have
$$
H^q(X, \mathcal{F}) = H^0(S, R^qf_*\mathcal{F})
$$
for all $q \in \mathbf{Z}$.
\end{lemma}
\begin{proof}
Consider the Leray spectral sequence $E_2^{p, q} = H^p(S, R^qf_*\mathcal{F})$
converging to $H^{p + q}(X, \mathcal{F})$, see
Cohomology, Lemma \ref{cohomology-lemma-Leray}.
By Lemma \ref{lemma-quasi-coherence-higher-direct-images}
we see that the sheaves $R^qf_*\mathcal{F}$ are quasi-coherent.
By Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero}
we see that $E_2^{p, q} = 0$ when $p > 0$.
Hence the spectral sequence degenerates at $E_2$ and we win.
See also
Cohomology, Lemma \ref{cohomology-lemma-apply-Leray} (2)
for the general principle.
\end{proof}
\section{Cohomology and base change, I}
\label{section-cohomology-and-base-change}
\noindent
Let $f : X \to S$ be a morphism of schemes.
Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$.
Suppose further that $g : S' \to S$ is any morphism of schemes. Denote
$X' = X_{S'} = S' \times_S X$ the base change of $X$ and denote
$f' : X' \to S'$ the base change of $f$.
Also write $g' : X' \to X$ the projection,
and set $\mathcal{F}' = (g')^*\mathcal{F}$.
Here is a diagram representing the situation:
\begin{equation}
\label{equation-base-change-diagram}
\vcenter{
\xymatrix{
\mathcal{F}' = (g')^*\mathcal{F} &
X' \ar[r]_{g'} \ar[d]_{f'} &
X \ar[d]^f &
\mathcal{F} \\
Rf'_*\mathcal{F}' &
S' \ar[r]^g &
S &
Rf_*\mathcal{F}
}
}
\end{equation}
Here is the simplest case of the base change property we have in mind.
\begin{lemma}
\label{lemma-affine-base-change}
Let $f : X \to S$ be a morphism of schemes.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Assume $f$ is affine.
In this case $f_*\mathcal{F} \cong Rf_*\mathcal{F}$ is
a quasi-coherent sheaf, and for every base change diagram
(\ref{equation-base-change-diagram})
we have
$$
g^*f_*\mathcal{F} = f'_*(g')^*\mathcal{F}.
$$
\end{lemma}
\begin{proof}
The vanishing of higher direct images is
Lemma \ref{lemma-relative-affine-vanishing}.
The statement is local on $S$ and $S'$. Hence we may
assume $X = \Spec(A)$, $S = \Spec(R)$,
$S' = \Spec(R')$ and $\mathcal{F} = \widetilde{M}$
for some $A$-module $M$.
We use Schemes, Lemma \ref{schemes-lemma-widetilde-pullback}
to describe pullbacks and pushforwards of $\mathcal{F}$.
Namely, $X' = \Spec(R' \otimes_R A)$ and
$\mathcal{F}'$ is the quasi-coherent sheaf associated
to $(R' \otimes_R A) \otimes_A M$.
Thus we see that the lemma boils down to the
equality
$$
(R' \otimes_R A) \otimes_A M = R' \otimes_R M
$$
as $R'$-modules.
\end{proof}
\noindent
In many situations it is sufficient to know about the following
special case of cohomology and base change. It follows immediately
from the stronger results in
Section \ref{section-cohomology-and-base-change-derived},
but since it is so important it deserves its own proof.
\begin{lemma}[Flat base change]
\label{lemma-flat-base-change-cohomology}
Consider a cartesian diagram of schemes
$$
\xymatrix{
X' \ar[d]_{f'} \ar[r]_{g'} & X \ar[d]^f \\
S' \ar[r]^g & S
}
$$
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module
with pullback $\mathcal{F}' = (g')^*\mathcal{F}$.
Assume that $g$ is flat and that $f$ is quasi-compact and quasi-separated.
For any $i \geq 0$
\begin{enumerate}
\item the base change map of
Cohomology, Lemma \ref{cohomology-lemma-base-change-map-flat-case}
is an isomorphism
$$
g^*R^if_*\mathcal{F} \longrightarrow R^if'_*\mathcal{F}',
$$
\item if $S = \Spec(A)$ and $S' = \Spec(B)$, then
$H^i(X, \mathcal{F}) \otimes_A B = H^i(X', \mathcal{F}')$.
\end{enumerate}
\end{lemma}
\begin{proof}
Using Cohomology, Lemma \ref{cohomology-lemma-base-change-map-flat-case} in (1)
is allowed since $g'$ is flat by
Morphisms, Lemma \ref{morphisms-lemma-base-change-flat}.
Having said this, part (1) follows from part (2). Namely,
part (1) is local on $S'$ and hence we may assume $S$
and $S'$ are affine. In other words, we have $S = \Spec(A)$
and $S' = \Spec(B)$ as in (2).
Then since $R^if_*\mathcal{F}$ is quasi-coherent
(Lemma \ref{lemma-quasi-coherence-higher-direct-images}),
it is the quasi-coherent $\mathcal{O}_S$-module associated to the
$A$-module $H^0(S, R^if_*\mathcal{F}) = H^i(X, \mathcal{F})$
(equality by
Lemma \ref{lemma-quasi-coherence-higher-direct-images-application}).
Similarly, $R^if'_*\mathcal{F}'$ is the quasi-coherent
$\mathcal{O}_{S'}$-module associated to the $B$-module
$H^i(X', \mathcal{F}')$. Since pullback by $g$ corresponds
to $- \otimes_A B$ on modules
(Schemes, Lemma \ref{schemes-lemma-widetilde-pullback})
we see that it suffices to prove (2).
\medskip\noindent
Let $A \to B$ be a flat ring homomorphism.
Let $X$ be a quasi-compact and quasi-separated scheme over $A$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Set $X_B = X \times_{\Spec(A)} \Spec(B)$ and denote
$\mathcal{F}_B$ the pullback of $\mathcal{F}$.
We are trying to show that the map
$$