-
Notifications
You must be signed in to change notification settings - Fork 89
/
multiclass.py
353 lines (295 loc) · 14.5 KB
/
multiclass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# Copyright (c) Yuta Saito, Yusuke Narita, and ZOZO Technologies, Inc. All rights reserved.
# Licensed under the Apache 2.0 License.
"""Class for Multi-Class Classification to Bandit Reduction."""
from dataclasses import dataclass
from typing import Optional
from typing import Union
import numpy as np
from scipy.stats import rankdata
from sklearn.base import ClassifierMixin
from sklearn.base import clone
from sklearn.base import is_classifier
from sklearn.model_selection import train_test_split
from sklearn.utils import check_random_state
from sklearn.utils import check_scalar
from sklearn.utils import check_X_y
from ..types import BanditFeedback
from ..utils import check_array
from ..utils import sample_action_fast
from .base import BaseBanditDataset
@dataclass
class MultiClassToBanditReduction(BaseBanditDataset):
"""Class for handling multi-class classification data as logged bandit data.
Note
-----
A machine learning classifier such as logistic regression is used to construct behavior and evaluation policies as follows.
1. Split the original data into training (:math:`\\mathcal{D}_{\\mathrm{tr}}`) and evaluation (:math:`\\mathcal{D}_{\\mathrm{ev}}`) sets.
2. Train classifiers on :math:`\\mathcal{D}_{\\mathrm{tr}}` and obtain base deterministic policies :math:`\\pi_{\\mathrm{det},b}` and :math:`\\pi_{\\mathrm{det},e}`.
3. Construct behavior (:math:`\\pi_{b}`) and evaluation (:math:`\\pi_{e}`) policies based on :math:`\\pi_{\\mathrm{det},b}` and :math:`\\pi_{\\mathrm{det},e}` as
.. math::
\\pi_b (a|x) := \\alpha_b \\cdot \\pi_{\\mathrm{det},b} (a|x) + (1.0 - \\alpha_b) \\cdot \\pi_{u} (a|x)
.. math::
\\pi_e (a|x) := \\alpha_e \\cdot \\pi_{\\mathrm{det},e} (a|x) + (1.0 - \\alpha_e) \\cdot \\pi_{u} (a|x)
where :math:`\\pi_{u}` is a uniform random policy and :math:`\\alpha_b` and :math:`\\alpha_e` are given by the user.
4. Measure the accuracy of the evaluation policy on :math:`\\mathcal{D}_{\\mathrm{ev}}` with its fully observed rewards and use it as the evaluation policy's ground truth policy value.
5. Using :math:`\\mathcal{D}_{\\mathrm{ev}}`, an estimator :math:`\\hat{V}` estimates the policy value of the evaluation policy, i.e.,
.. math::
V(\\pi_e) \\approx \\hat{V} (\\pi_e; \\mathcal{D}_{\\mathrm{ev}})
6. Evaluate the estimation performance of :math:`\\hat{V}` by comparing its estimate with the ground-truth policy value.
Parameters
-----------
X: array-like, shape (n_rounds,n_features)
Training vector of the original multi-class classification data,
where `n_rounds` is the number of samples and `n_features` is the number of features.
y: array-like, shape (n_rounds,)
Target vector (relative to `X`) of the original multi-class classification data.
base_classifier_b: ClassifierMixin
Machine learning classifier used to construct a behavior policy.
alpha_b: float, default=0.9
Ratio of a uniform random policy when constructing a **behavior** policy.
Must be in the [0, 1) interval to make the behavior policy stochastic.
n_deficient_actions: int, default=0
Number of deficient actions having zero probability of being selected in the logged bandit data.
If there are some deficient actions, the full/common support assumption is very likely to be violated,
leading to some bias for IPW-type estimators. See Sachdeva et al.(2020) for details.
`n_deficient_actions` should be an integer smaller than `n_actions - 1` so that there exists at least one actions
that have a positive probability of being selected by the behavior policy.
dataset_name: str, default=None
Name of the dataset.
Examples
----------
.. code-block:: python
# evaluate the estimation performance of IPW using the `digits` data in sklearn
>>> import numpy as np
>>> from sklearn.datasets import load_digits
>>> from sklearn.linear_model import LogisticRegression
# import open bandit pipeline (obp)
>>> from obp.dataset import MultiClassToBanditReduction
>>> from obp.ope import OffPolicyEvaluation, InverseProbabilityWeighting as IPW
# load raw digits data
>>> X, y = load_digits(return_X_y=True)
# convert the raw classification data into the logged bandit dataset
>>> dataset = MultiClassToBanditReduction(
X=X,
y=y,
base_classifier_b=LogisticRegression(random_state=12345),
alpha_b=0.8,
dataset_name="digits",
)
# split the original data into the training and evaluation sets
>>> dataset.split_train_eval(eval_size=0.7, random_state=12345)
# obtain logged bandit feedback generated by behavior policy
>>> bandit_feedback = dataset.obtain_batch_bandit_feedback(random_state=12345)
>>> bandit_feedback
{
'n_actions': 10,
'n_rounds': 1258,
'context': array([[ 0., 0., 0., ..., 16., 1., 0.],
[ 0., 0., 7., ..., 16., 3., 0.],
[ 0., 0., 12., ..., 8., 0., 0.],
...,
[ 0., 1., 13., ..., 8., 11., 1.],
[ 0., 0., 15., ..., 0., 0., 0.],
[ 0., 0., 4., ..., 15., 3., 0.]]),
'action': array([6, 8, 5, ..., 2, 5, 9]),
'reward': array([1., 1., 1., ..., 1., 1., 1.]),
'position': None,
'pscore': array([0.82, 0.82, 0.82, ..., 0.82, 0.82, 0.82])
}
# obtain action choice probabilities by an evaluation policy and its ground-truth policy value
>>> action_dist = dataset.obtain_action_dist_by_eval_policy(
base_classifier_e=LogisticRegression(C=100, random_state=12345),
alpha_e=0.9,
)
>>> ground_truth = dataset.calc_ground_truth_policy_value(action_dist=action_dist)
>>> ground_truth
0.865643879173291
# off-policy evaluation using IPW
>>> ope = OffPolicyEvaluation(bandit_feedback=bandit_feedback, ope_estimators=[IPW()])
>>> estimated_policy_value = ope.estimate_policy_values(action_dist=action_dist)
>>> estimated_policy_value
{'ipw': 0.8662705029276045}
# evaluate the estimation performance (accuracy) of IPW by relative estimation error (relative-ee)
>>> relative_estimation_errors = ope.evaluate_performance_of_estimators(
ground_truth_policy_value=ground_truth,
action_dist=action_dist,
)
>>> relative_estimation_errors
{'ipw': 0.000723881690137968}
References
------------
Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li.
"Doubly Robust Policy Evaluation and Optimization.", 2014.
Noveen Sachdeva, Yi Su, and Thorsten Joachims.
"Off-policy Bandits with Deficient Support.", 2020.
"""
X: np.ndarray
y: np.ndarray
base_classifier_b: ClassifierMixin
alpha_b: float = 0.8
n_deficient_actions: int = 0
dataset_name: Optional[str] = None
def __post_init__(self) -> None:
"""Initialize Class."""
if not is_classifier(self.base_classifier_b):
raise ValueError("`base_classifier_b` must be a classifier")
check_scalar(self.alpha_b, "alpha_b", float, min_val=0.0)
check_scalar(
self.n_deficient_actions,
"n_deficient_actions",
int,
min_val=0,
max_val=self.n_actions - 1,
)
if self.alpha_b >= 1.0:
raise ValueError(f"`alpha_b`= {self.alpha_b}, must be < 1.0.")
self.X, y = check_X_y(X=self.X, y=self.y, ensure_2d=True, multi_output=False)
self.y = (rankdata(y, "dense") - 1).astype(int) # re-index actions
# fully observed labels (full bandit feedback)
self.y_full = np.zeros((self.n_rounds, self.n_actions))
self.y_full[np.arange(self.n_rounds), y] = 1
@property
def len_list(self) -> int:
"""Length of recommendation lists, slate size."""
return 1
@property
def n_actions(self) -> int:
"""Number of actions (number of classes)."""
return np.unique(self.y).shape[0]
@property
def n_rounds(self) -> int:
"""Number of samples in the original multi-class classification data."""
return self.y.shape[0]
def split_train_eval(
self,
eval_size: Union[int, float] = 0.25,
random_state: Optional[int] = None,
) -> None:
"""Split the original data into the training (used for policy learning) and evaluation (used for OPE) sets.
Parameters
----------
eval_size: float or int, default=0.25
If float, should be between 0.0 and 1.0 and represent the proportion of the data to include in the evaluation split.
If int, represents the absolute number of test samples.
random_state: int, default=None
Controls the random seed in train-evaluation split.
"""
(
self.X_tr,
self.X_ev,
self.y_tr,
self.y_ev,
_,
self.y_full_ev,
) = train_test_split(
self.X, self.y, self.y_full, test_size=eval_size, random_state=random_state
)
self.n_rounds_ev = self.X_ev.shape[0]
def obtain_batch_bandit_feedback(
self,
random_state: Optional[int] = None,
) -> BanditFeedback:
"""Obtain batch logged bandit data, an evaluation policy, and its ground-truth policy value.
Note
-------
Please call `self.split_train_eval()` before calling this method.
Parameters
-----------
random_state: int, default=None
Controls the random seed in sampling actions.
Returns
---------
bandit_feedback: BanditFeedback
bandit_feedback is logged bandit data generated from a multi-class classification dataset.
"""
random_ = check_random_state(random_state)
# train a base ML classifier
base_clf_b = clone(self.base_classifier_b)
base_clf_b.fit(X=self.X_tr, y=self.y_tr)
preds = base_clf_b.predict(self.X_ev).astype(int)
# construct a behavior policy
pi_b = np.zeros((self.n_rounds_ev, self.n_actions))
pi_b[:, :] = (1.0 - self.alpha_b) / self.n_actions
pi_b[np.arange(self.n_rounds_ev), preds] = (
self.alpha_b + (1.0 - self.alpha_b) / self.n_actions
)
if self.n_deficient_actions > 0:
deficient_actions = np.argsort(
random_.gumbel(size=(self.n_rounds_ev, self.n_actions)), axis=1
)[:, ::-1][:, : self.n_deficient_actions]
deficient_actions_idx = (
np.tile(np.arange(self.n_rounds_ev), (self.n_deficient_actions, 1)).T,
deficient_actions,
)
pi_b[deficient_actions_idx] = 0.0 # create some deficient actions
pi_b /= pi_b.sum(1)[
:, np.newaxis
] # re-normalize the probability distribution
# sample actions and factual rewards
actions = sample_action_fast(pi_b, random_state=random_state)
rewards = self.y_full_ev[np.arange(self.n_rounds_ev), actions]
return dict(
n_actions=self.n_actions,
n_rounds=self.n_rounds_ev,
context=self.X_ev,
action=actions,
reward=rewards,
position=None, # position effect is not considered in classification data
pi_b=pi_b[:, :, np.newaxis],
pscore=pi_b[np.arange(self.n_rounds_ev), actions],
)
def obtain_action_dist_by_eval_policy(
self, base_classifier_e: Optional[ClassifierMixin] = None, alpha_e: float = 1.0
) -> np.ndarray:
"""Obtain action choice probabilities by an evaluation policy.
Parameters
-----------
base_classifier_e: ClassifierMixin, default=None
Machine learning classifier used to construct a behavior policy.
alpha_e: float, default=1.0
Ratio of a uniform random policy when constructing an **evaluation** policy.
Must be in the [0, 1] interval (evaluation policy can be deterministic).
Returns
---------
action_dist_by_eval_policy: array-like, shape (n_rounds_ev, n_actions, 1)
`action_dist_by_eval_policy` is the action choice probabilities of the evaluation policy.
where `n_rounds_ev` is the number of samples in the evaluation set given the current train-eval split.
`n_actions` is the number of actions.
"""
check_scalar(alpha_e, "alpha_e", float, min_val=0.0, max_val=1.0)
# train a base ML classifier
if base_classifier_e is None:
base_clf_e = clone(self.base_classifier_b)
else:
assert is_classifier(
base_classifier_e
), "`base_classifier_e` must be a classifier"
base_clf_e = clone(base_classifier_e)
base_clf_e.fit(X=self.X_tr, y=self.y_tr)
preds = base_clf_e.predict(self.X_ev).astype(int)
# construct an evaluation policy
pi_e = np.zeros((self.n_rounds_ev, self.n_actions))
pi_e[:, :] = (1.0 - alpha_e) / self.n_actions
pi_e[np.arange(self.n_rounds_ev), preds] = (
alpha_e + (1.0 - alpha_e) / self.n_actions
)
return pi_e[:, :, np.newaxis]
def calc_ground_truth_policy_value(self, action_dist: np.ndarray) -> float:
"""Calculate the ground-truth policy value of the given action distribution.
Parameters
----------
action_dist: array-like, shape (n_rounds_ev, n_actions, 1)
Action distribution or action choice probabilities of a policy whose ground-truth is to be caliculated here.
where `n_rounds_ev` is the number of samples in the evaluation set given the current train-eval split.
`n_actions` is the number of actions.
Returns
---------
ground_truth_policy_value: float
policy value of given action distribution (mostly evaluation policy).
"""
check_array(array=action_dist, name="action_dist", expected_dim=3)
if action_dist.shape[0] != self.n_rounds_ev:
raise ValueError(
"Expected `action_dist.shape[0] == self.n_rounds_ev`, but found it False"
)
return action_dist[np.arange(self.n_rounds_ev), self.y_ev].mean()