forked from oneThousand1000/HairMapper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_mapper.py
159 lines (126 loc) · 6.25 KB
/
main_mapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os.path
import argparse
import cv2
from styleGAN2_ada_model.stylegan2_ada_generator import StyleGAN2adaGenerator
from tqdm import tqdm
from classifier.src.feature_extractor.hair_mask_extractor import get_hair_mask, get_parsingNet
from mapper.networks.level_mapper import LevelMapper
import torch
import glob
from diffuse.inverter_remove_hair import InverterRemoveHair
import numpy as np
from PIL import ImageFile
import os
ImageFile.LOAD_TRUNCATED_IMAGES = True
def parse_args():
"""Parses arguments."""
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='./test_data',
help='Directory of test data.')
parser.add_argument('--learning_rate', type=float, default=0.01,
help='Learning rate for optimization.')
parser.add_argument('--num_iterations', type=int, default=100,
help='Number of optimization iterations.')
parser.add_argument('--loss_weight_feat', type=float, default=3e-5,
help='The perceptual loss weight.')
parser.add_argument('--loss_weight_id', type=float, default=1.0,
help='The facial identity loss weight')
parser.add_argument("--remain_ear",
help="if set, remain ears in the original image",
action="store_true")
parser.add_argument("--diffuse",
help="if set, perform an additional diffusion method",
action="store_true")
parser.add_argument('--dilate_kernel_size', type=int, default=50,
help='dilate kernel size')
parser.add_argument('--blur_kernel_size', type=int, default=30,
help='blur kernel size')
parser.add_argument('--truncation_psi', type=float, default='0.75')
return parser.parse_args()
def mkdir(path):
if not os.path.exists(path):
os.mkdir(path)
def run():
args = parse_args()
model_name = 'stylegan2_ada'
latent_space_type = 'wp'
print(f'Initializing generator.')
model = StyleGAN2adaGenerator(model_name, logger=None, truncation_psi=args.truncation_psi)
mapper = LevelMapper(input_dim=512).eval().cuda()
ckpt = torch.load('./mapper/checkpoints/final/best_model.pt')
alpha = float(ckpt['alpha']) * 1.2
mapper.load_state_dict(ckpt['state_dict'], strict=True)
kwargs = {'latent_space_type': latent_space_type}
parsingNet = get_parsingNet(save_pth='./ckpts/face_parsing.pth')
inverter = InverterRemoveHair(
model_name,
Generator=model,
learning_rate=0.01,
reconstruction_loss_weight=1.0,
perceptual_loss_weight=5e-5,
truncation_psi=args.truncation_psi,
logger=None)
code_dir = os.path.join(args.data_dir, 'code')
origin_img_dir = os.path.join(args.data_dir, 'origin')
res_dir = os.path.join(args.data_dir, 'mapper_res')
mkdir(res_dir)
code_list = glob.glob(os.path.join(code_dir, '*.npy'))
total_num = len(code_list)
print(f'Editing {total_num} samples.')
pbar = tqdm(total=total_num)
for index in range(total_num):
pbar.update(1)
code_path = code_list[index]
name = os.path.basename(code_path)[:-4]
f_path_png = os.path.join(origin_img_dir, f'{name}.png')
f_path_jpg = os.path.join(origin_img_dir, f'{name}.jpg')
if os.path.exists(os.path.join(res_dir, f'{name}.png')):
continue
if os.path.exists(f_path_png):
origin_img_path = f_path_png
elif os.path.exists(f_path_jpg):
origin_img_path = f_path_jpg
else:
continue
latent_codes_origin = np.reshape(np.load(code_path), (1, 18, 512))
mapper_input = latent_codes_origin.copy()
mapper_input_tensor = torch.from_numpy(mapper_input).cuda().float()
edited_latent_codes = latent_codes_origin
edited_latent_codes[:, :8, :] += alpha * mapper(mapper_input_tensor).to('cpu').detach().numpy()
origin_img = cv2.imread(origin_img_path)
outputs = model.easy_style_mixing(latent_codes=edited_latent_codes,
style_range=range(7, 18),
style_codes=latent_codes_origin,
mix_ratio=0.8,
**kwargs
)
edited_img = outputs['image'][0][:, :, ::-1]
# --remain_ear: preserve the ears in the original input image.
if args.remain_ear:
hair_mask = get_hair_mask(img_path=origin_img, net=parsingNet, include_hat=True, include_ear=False)
else:
hair_mask = get_hair_mask(img_path=origin_img, net=parsingNet, include_hat=True, include_ear=True)
mask_dilate = cv2.dilate(hair_mask,
kernel=np.ones((args.dilate_kernel_size, args.dilate_kernel_size), np.uint8))
mask_dilate_blur = cv2.blur(mask_dilate, ksize=(args.blur_kernel_size, args.blur_kernel_size))
mask_dilate_blur = (hair_mask + (255 - hair_mask) / 255 * mask_dilate_blur).astype(np.uint8)
face_mask = 255 - mask_dilate_blur
index = np.where(face_mask > 0)
cy = (np.min(index[0]) + np.max(index[0])) // 2
cx = (np.min(index[1]) + np.max(index[1])) // 2
center = (cx, cy)
res_save_path = os.path.join(res_dir, f'{name}.png')
if args.diffuse:
synthesis_image = origin_img * (1 - hair_mask // 255) + edited_img * (hair_mask // 255)
target_image = (synthesis_image[:, :, ::-1]).astype(np.uint8)
res_wp, _, res_img = inverter.easy_mask_diffuse(target=target_image,
init_code=edited_latent_codes,
mask=hair_mask, iteration=150)
# Image Blending in Sec 3.7
mixed_clone = cv2.seamlessClone(origin_img, res_img[:, :, ::-1], face_mask[:, :, 0], center,
cv2.NORMAL_CLONE)
else:
mixed_clone = cv2.seamlessClone(origin_img, edited_img, face_mask[:, :, 0], center, cv2.NORMAL_CLONE)
cv2.imwrite(res_save_path, mixed_clone)
if __name__ == '__main__':
run()