Applying OS Fuzzing Techniques To Unikernels

Oliver Dunk

Supervisors:
Dr. Pierre Olivier, University of Manchester
Dr. Razvan Deaconescu, University Politehnica of Bucharest

Felipe Huici, NEC Laboratories Europe

April 2021

1 Abstract

Fuzzing is a testing technique which involves running programs with random
inputs, often guided by instrumentation data such as code coverage. Unikernels
are a new type of Operating System, where an application and kernel are com-
piled in to a single kernel image. Unikernels are currently the focus of active
research and are growing in popularity due to the possibility of using them in
cloud environments. In this project, I investigated the application of fuzzing to
unikernels. While there is significant research applying fuzzing to traditional
operating systems like Linux, the same research does not exist for unikernels.
I propose a breakpoint based approach to collecting coverage information for
input generation, build a new fuzzer that uses this technique, and evaluate its
effectiveness.

Contents

6 Conclusion

1 Abstract
2 Introduction
2.1 Aims and Objectives
3 Background and Challenges
3.1 Unikernels
3.2 Fuzzing
3.2.1 Blackbox Fuzzing
3.2.2 Grammar-Based Fuzzing
3.2.3 Whitebox Fuzzing,
324 OSFuzzing
3.3 Challenges applying existing techniques to unikernels
3.3.1 Language Support
3.32 keov ...
3.3.3 OSmaturity
3.4 Related works Lo
4 Design and Implementation
4.1 Input generation
4.1.1 Syzlango
4.1.2 Cgo . . .
4.1.3 Transpiling to C++4+o
4.2 Building the fuzzer oo
4.2.1 Making a Unikraft image
4.3 Code Coverage i it
4.3.1 Performance counters, ...
4.3.2 Breakpoints Lo
433 QEMU
4.3.4 Porting coverage measurements to Linux
4.3.5 Porting to HermiTux
5 Evaluation
5.1 Effectiveness of fuzzing oL oL
5.1.1 Bugs Identified 0oL
5.1.2 Performance Overhead
5.2 Planningo
5.3 Projectgoals o
54 Futureworko
5.4.1 Type generation
5.4.2 Enabling features like UBSan and ASan
5.4.3 Support for other kernels
5.4.4 Persisting fuzzing state after acrash
5.4.5 Fine-grained disabling of system calls
5.4.6 Identifying common system call sequences

[\V]

ot O

NelNolNo R0 clNo IEN BENEEN BENEES I e e

7 Appendix 1: Bugs identified during the project 30

7.1 Unikraft 30
7.1.1 Page fault when executing uk_syscall(0, 0) 30
7.1.2 Defining a large global vector of strings results in page fault 30

7.2 HermiTux e 30
7.2.1 Bad parameter sanitization for prlimit64 30
7.2.2 clock_gettime does not return the time offset from the epoch 30
7.2.3 bad error code returned from sys_creat 30
7.2.4 Sanitize close() parameter 30
7.2.5 Page fault in Glib¢’s malloc 31

2 Introduction

Fuzzing is a testing technique in which programs are repeatedly passed random
data in an attempt to find exploitable bugs in their implementation. Code cov-
erage is measured while running with a particular input, and promising inputs
which generate new coverage are explored further by running a number of mu-
tated versions of them. This technique has been applied extensively to OSes
(Operating Systems) like Linux, and is responsible for finding a large number
of security issues. However, there has been little work applying this same tech-
nique to non-mainstream OSes. Unikernels are a type of OS designed for use
in cloud applications, where a bespoke operating system is built by compiling
the kernel and application together in to a single binary. These are growing
in popularity, so the application of fuzzing provides an important opportunity
to identify security critical bugs in these new projects. On top of this, many
unikernels claim to provide POSIX compatibility through a system call inter-
face, providing an opportunity to investigate the use of fuzzing for determining
compatibility.

Applying fuzzing tools which already exist to unikernels is a challenge, due
to constraints such as the requirement of platform specific features (kcov on
Linux) or support for higher level languages (such as Go). I started my project
by researching these challenges, and then based on this research, built a new
fuzzing tool in C++. The fuzzer input generation is guided using coverage
collected by a modified version of QEMU which inserts breakpoints at the start
of functions within the kernel. I demonstrated the effectiveness of this approach
by identifying a number of bugs, including two in Unikraft and five in HermiTux
(see Appendix). T also show that this fuzzer is generic by demonstrating that it
can be ported to other OSes like Linux with minimal effort.

2.1 Aims and Objectives

The following list is taken from the original project description. For each task, I
have added my own criteria which I will use to decide if the task was completed.

Aim/Objective

Criteria for success

Study of fuzzing concepts and exist-
ing tools

For this to be successful, I hope to
be able to demonstrate in this report
where I have found approaches in ex-
isting work that I can adapt, as well
as gaps in current research that I have
taken steps towards addressing.

Select the appropriate tool, define a
fuzzing strategy, and select a tar-
get unikernel model such as OSv,
Rumprun or HermiTux

I will consider this successful if I am
able to choose and justify a fuzzing
strategy, explaining how the strategy
could be used to fuzz the unikernel I
chose.

Apply the fuzzing strategy and fix or
report the potentially uncovered bugs

I will consider this achieved if I am
able to show evidence of applying

fuzzing techniques to one or more
unikernels. I also expect to be able
to include a number of bugs in this
report that I have found and reacted
to.

3 Background and Challenges

3.1 Unikernels

Originally described in Madhavapeddy et al.’s Unikernels: library operating
systems for the cloud [14], unikernels are bespoke OSes, which run a single
program chosen at compile-time. Unlike traditional OSes, which have many ad-
dress spaces and provide support for running multiple programs simultaneously,
unikernels operate in a single address space and programs run directly with the
kernel in a virtual machine, on a hypervisor.

One major benefit of this approach is the reduced size of the deployed binary.
Since unused parts of the operating system can be removed, the attack surface
is reduced, and the binary itself is smaller. If a particular program does not
work with files, for example, large sections of library code to work with files can
be excluded altogether.

As well as this, unikernels have the potential to perform faster and use less
system resources. Unikraft claim boot times of 10ms or less and a memory
footprint of just a few MBs of RAM [13]. This makes them particularly well
suited to deployment in cloud environments, where it would be common for a
machine to be dedicated to a single application.

Many existing unikernels such as HermiTux [17], Unikraft [13], OSv [12] and
rumprun [10] offer a POSIX-like interface for communicating with the kernel.
Unikraft provides a system call shim layer [19] which directly maps system call
numbers to the corresponding handler, and OSv has compatibility with the
Linux ABI [18]. This compatibility is present in other unikernels like HermiTux
and Rump too. With this in mind, this could allow fuzzers built for POSIX-like
OSes to be applied in the project.

3.2 Fuzzing

Fuzzing is a process which consists of a program being run repeatedly with
random, although often guided, inputs. The goal is to explore as much of the
code as possible, including paths which may be rarely used, as these often exhibit
undefined behaviour when passed unexpected inputs. Fuzzing can take place in
userspace (AFL [5]) or the kernel (syzkaller [7]). The strategy taken for input
generation can often be split in to one of three broad categories [4]:

3.2.1 Blackbox Fuzzing

Blackbox fuzzers have no understanding of a program’s internal structure, so
these types of fuzzers usually generate inputs entirely randomly. This makes
input generation fast, but statistically a much larger number of inputs are re-
quired to test the program thoroughly, as the vast majority of inputs will make
repeated use of the same code paths or cause the program to terminate at a
very early stage of execution. One approach taken to improve the effectiveness
of blackbox fuzzing is providing a well-formed input known as a seed, which is
then mutated to produce new inputs. These mutations are small changes such as
flipping a bit or overwriting a small section of the input. The mutations usually
only affect a small part of the input, which increases the chance the mutated
input will be similar enough to the well-formed input to trigger interesting code
paths in the program.

3.2.2 Grammar-Based Fuzzing

Grammar-Based fuzzing exploits structure in the expected input of programs.
For example, a program may be expecting JSON, in which case rules could
be defined to ensure curly braces and quotes are balanced, and that the data
types of particular fields are respected. This input generation strategy works
especially well for many types of programs, although one limitation is that the
process of writing the grammar itself requires a lot of manual effort.

3.2.3 Whitebox Fuzzing

The final type of fuzzing, and the focus of my project, is whitebox fuzzing. In
this case, the fuzzing strategy relies on the programmer having full access to
the source code of the program. This has two big benefits. Firstly, the code
can be instrumented such that feedback is provided after any given input is
run. This is usually in the form of coverage, and allows mutated inputs, or
mutations themselves, to be favoured based on if new code has been covered.
Additionally, this coverage provides a useful metric as to how many execution
paths have been tested by the fuzzer. Mutation strategies can be compared
based on the coverage generated, and fuzzing can stop when the code coverage
begins to converge.

3.2.4 OS Fuzzing

One potential target for fuzzing is the kernel of an operating system. Fuzzers
usually depend on having a well defined entry point, and in the case of an
operating system, this is usually either the system call interface or the wrappers

around it provided by libc. Fuzzing an operating system is as a whole fairly
similar to fuzzing a program in userspace, however it does present additional
challenges. For example, the stability of the entire operating system may be
affected. As a result, fuzzing is usually run inside a virtual machine, with at least
some code for persisting state such as the corpus of interesting inputs running
on the host. The host is also responsible for starting new virtual machines when
an existing one crashes or becomes unresponsive.

Google’s syzkaller [7] is one of the most well known operating system fuzzers.
In syzkaller, syz-manager starts virtual machines running a version of the kernel
built with kcov coverage support. Inside, the syz-fuzzer process is started, an
application written in Go which generates inputs and collects coverage data.
To execute inputs, the short-lived syz-executor is started. syz-fuzzer and syz-
manager synchronise data over time, and this allows syz-manager to persist the
fuzzing state even if the virtual machine exits and a new one needs to be started.

syz-manager (Go)

inputs
syz-fuzzer (Go) syz-executor (C)

VIRTUAL MACHINE

3.3 Challenges applying existing techniques to unikernels

A large amount of work has been put in to fuzzing tools since at least the early
2000s [4]. Consequently, it was important early on in the project to understand
if these existing tools were sufficient for doing similar testing of unikernels.
Unfortunately, there were several challenges which meant existing tools could
not be easily reused.

3.3.1 Language Support

Google’s syzkaller [7] is an “unsupervised coverage-guided kernel fuzzer”, which
initially made it a promising project. However, syzkaller generates sequences of
system calls inside a process called syz-fuzzer. This is written in Go, a language
supported by only some of the unikernels I hoped to support. Additionally, even
considering just the unikernels which claim Go support, this is tested less than
languages like C and therefore significantly more unstable.

3.3.2 kcov

The Linux kernel can be built with the CONFIG_KCOV flag. This adds instru-
mentation which collects kernel code coverage during system calls as well as
the operands used in comparisons. This is relied on by syzkaller to perform
coverage-based fuzzing [8].

Currently, this is specific to the Linux kernel. Additionally, even if it was
supported by other OSes, making it a requirement would limit fuzzing to OSes
which either implemented it already or had time available to implement it. This
was a requirement I wanted to avoid.

3.3.3 OS maturity

Linux is the target of the vast majority of kernel fuzzing research. Since it has
been tested extensively, crashes are rare, and any overhead introduced by the
need to start a new virtual machine when one running the fuzzing process faults
is negligible. On the other hand, many unikernels have never been tested by
fuzzers before. Consequently, a mechanism is needed for restricting the input
that is generated such that known bugs are not hit repeatedly. Additionally,
since unikernels only run a single program, the security risk associated with
allowing a program which usually runs in user space to invoke undefined be-
haviour in the kernel is less obvious. This means input validation and error
codes implemented by Linux may not be implemented by unikernels for per-
formance reasons. This means even a well tested unikernel may appear more
unstable during fuzzing.

Bugs may also be present in less mature OSes which makes porting complex
fuzzers hard. As an example, during this project I encountered a page fault
when statically initialising a large vector in a C4++ program (see Appendix).
This global vector contained a description of the available system calls and their
arguments, which was required by my fuzzer to generate inputs. Due to the bug,
when compiling for Unikraft, I was forced to limit the number of system calls
that my fuzzer was aware of. I do expect that this limitation will be short-
lived, as the bug has been reported to the Unikraft team and is already under
investigation. However, existing fuzzers like syzkaller are fairly complex and
may run in to many bugs like this, which still adds additional work to porting
even if the bugs identified are eventually fixed.

3.4 Related works

The previous section focused very heavily on the syzkaller project. While I
didn’t apply this directly to unikernels, it is the closest piece of work to what
I wanted to accomplish and many of the decisions I made during the project
were inspired by it. On top of this, I also read a selection of other papers, which
provided additional background on the OS fuzzing research which has taken
place over the last few years.

Kim et al. (2019) [11] as well as Xu et al. (2019) [20] both investigate
the fuzzing of file systems, treating the file system as another dimension to be
fuzzed. The file system is mutated as well as the input syscalls and this means
a great number of situations can be tested.

Hazimeh et al’s (2020) [9] Magma investigates the evaluation of fuzzers.
They insert bugs for a fuzzer to find, and using instrumentation, are able to
differentiate between executing code involved with a bug and actually exercising
the unintended behaviour.

DIFUZE, the focus of Corina et al. (2017) [1], identifies kernel drivers as
a particular area of interest for fuzzing. Communication with these drivers is
through the ioctl interface, and often involves complex data structures. The

parsing required for structures like this means complex code may be involved,
creating an an unusually large attack surface. The paper investigates ways of
determining the data structures used by a driver through static analysis and
the result is able to identify more bugs in this context than syzkaller.

4 Design and Implementation

With all of the above in mind, I decided that building a fuzzer from scratch
would be easier than trying to port an existing fuzzer to unikernels. I also
thought a new fuzzer would be an opportunity to focus more heavily on older
languages, producing something applicable to future work more easily.

Virtual Machine

Kernel

Compiler (Go) Fuzzer (C++)

Modified QEMU (C)

Host

The fuzzer I built consists of three main components. Firstly, a compiler
written in Go converts data about available system calls from the syzkaller
Syzlang format to C++ code. Second, a fuzzer written in C++ loads this data
and executes random system calls generated using this data. Finally, the fuzzer
is compiled as part of a unikernel or loaded alongside Linux, at which point it
is run inside of a modified version of QEMU. The QEMU build is modified to
collect code coverage data through breakpoint based instrumentation, which is
sent back to the fuzzer to guide the input generation process.

4.1 Input generation

To effectively build a fuzzer for unikernels, the first problem I wanted to solve
was input generation.

4.1.1 Syzlang

Through my research, I learned that syzkaller uses Syzlang, a “syscall descrip-
tion language”. This is a grammar which describes the syscalls available in
Linux, the arguments they take, and the values they return. Importantly, this
is more detailed than what can be exported directly from the code. For example,
the code used to describe the open syscall looks like this:

10

open(file ptr[in, filename], flags flags[open_flags],
mode flags[open_mode]) fd

This returns fd, a “resource” which is defined as follows:
resource fd[int32]: -1

From this, we can tell that not only is an int returned from the system
call, but that this is valid for other system calls which require a file descriptor.
This allows the fuzzer to generate inputs which are more likely to be valid, and
consequently more likely to trigger coverage in the code.

It was clear that access to the data in Syzlang would be useful, but the
compiler in syzkaller loads this in to Go structs. I needed a way to access the
data from C instead.

4.1.2 Cgo

One option I explored was using Cgo [3], a feature of Go which allows code
to be compiled as a C library. Unfortunately, this produces a library which is
dynamically linked against libc, and some of the expected functions will not be
found when the code is run inside of a unikernel. This is evident when running
the nm command on the output file, as shown in Figure 1. The command
shows symbols which are missing and expected to be defined elsewhere with a
U. Providing implementations for some of these may be possible, but I did not
find a way to provide all of the functions which were needed.

_madvise

_malloc

_mmap

_munmap

_nanosleep

_open

_pipe
_pthread_attr_destroy
_pthread_attr_getstacksize

acgacacacaaaa

Figure 1: Output of nm command showing undefined symbols in library

While this approach didn’t work out in the end, I was able to get fairly close.
The code available in the cgo-1ib folder is a proof of concept demonstrating
syzlang being passed as a string from C to Go, the file being compiled by
syzcaller, and a partial result being returned to the caller in C.

4.1.3 Transpiling to C++

While I didn’t want to depend on Go during fuzzing, I decided that I could use
the existing Go code beforehand to generate a C++ file containing equivalent
types. To do this, I first created a header file defining a number of Vector types
that the program could depend on. For example, a system call is defined as
follows:

11

typedef struct Syscall {
int ID;
uint64_t NR;
string Name;
string CallName;
int MissingArgs;
struct SyscallAttrs Attrs;
vector<struct Field> Args;
int ret;

} Syscall;

extern vector<struct Syscall> SYSCALLS;

In my Go code, I produce an output file amd64.cpp which meets this defini-
tion. As well as providing information about the available system calls, I also
export information about types (which includes numbers with different bit rep-
resentations) and constants (a map of values such as the bits to set for particular
flags).

I first open the file, and write out the required header include. I then start
the declaration of the SYSCALLS vector and output a single line per system call,
containing all of the data needed to populate the struct. C++ was incredibly
useful here, as the shorthand notation provided for initialising vectors allowed
me to avoid producing code to allocate memory as I would need in C. The result-
ing file contained 304 system calls, and a range of information about argument
types, spread across 979 lines in total. The equivalent C code would have been
much longer, as each system call would have been preceded by several lines ini-
tialising constants such as strings before the actual system call definition could
be included.

12

#ifndef amd64
#define amd64

#include ”amd64.hpp”

vector<struct Syscall> SYSCALLS = {

{
.ID = 0, .NR = 163, .Name = ”acct”, .CallName = "acct”,
. MissingArgs = 0,
Attrs = {
.Disabled = false, .Timeout = 0, .ProgTimeout = 0,
.IgnoreReturn = false, .BreaksReturns = false
}7
.Args = {
{
.name = ”filename” , .type = 222,
.hasDirection = false, .direction = 0
}7
}7
.ret = -1
}

Figure 2: amd64. cpp file produced for a single system call

This file contains some system calls more than once, because the Syzlang
file provided by syzkaller allows a single system call to produce more than one
return type. For example, the open syscall is included twice, returning a f£d
representing a file in one case and a fd_dir representing a directory in the
other.

Notably, I made two minor changes to the syzkaller source code to enable
the use of the compiler in this way. Firstly, the compiler emits warnings when
types are unused, but these were previously emitted as errors which caused
compilation to end. I reduced the level which these are logged at to avoid
this. Additionally, the required deserializeFile function was private to the
syzkaller package, so I made it public allowing me to access it externally. Both
of these changes are provided as the file syzkaller.patch to be applied on top of
a clone of the repository.

This approach was sufficient for generating the data needed to continue
development of the fuzzer, and I believe the fact that we rely on code from
syzkaller should make adapting to future Syzlang changes fairly easy.

4.2 Building the fuzzer

Once I had information about the syscalls available on OSes with a Linux like
interface, I was ready to build the main fuzzer. This is composed of a few main
parts.

Firstly, the fuzzer holds a corpus, which is a set of inputs that have pre-
viously generated new coverage and can be iterated upon for further fuzzing.

13

This can be initialised with “seed” data, data known to be valid and which gen-
erates notable coverage of the program, but in my case it begins empty and is
populated throughout the runtime of the program. The data within this corpus
is not individual syscalls, but instead a list of “programs”, which are sequences
of syscalls. This allows inputs to be generated which perform multiple steps,
such as opening a file and then writing some data to it. These programs are
represented as structs with a vector of calls and a vector of arguments within
them. Arguments can be absolute values, such as flags, or references to the
return value of previous syscalls when a resource has been generated.

This corpus is accessed from within a main loop, which decides with random
probability if we should perform mutations on an existing input from the corpus
or generate a new program entirely randomly. The probability of picking be-
tween each of these cases can be changed to alter the behaviour of the fuzzer. 1
chose to generate new inputs every 100 iterations, which is the same value used
by syzkaller.

To generate inputs, the fuzzer needs to be able to produce random argu-
ments which meet the constraints of a given type. For example, the “int8” type
represents a number representable by 8 bits, so the fuzzer needs to be able to
produce a value in this range. In the case of strings, these may represent a file-
name, in which case we need to initialise a string with a valid filename and pass
a pointer to the first character as an argument to the syscall. Again, resources
are a fairly special case. After a random syscall with a resource argument has
been selected, the fuzzer checks to make sure at least one previous syscall pro-
duces the required resource, moving on to adding a different call if that is not
the case. Assuming the syscall can be added, a random call that produces the
desired resource is selected from the program’s existing calls. The return value
from this call is used. A new program is formed by choosing 20 random syscalls
and populating them with 20 random argument values. This forms the basis of
my generation strategy.

In the case where existing inputs from the corpus are used, these are mutated
so they have the potential to generate different coverage to when they were run
previously. In my project, I did not focus heavily on the implementation of a
mutation strategy, and only implemented a single mutation where a random
syscall from the program is removed. This is because I agreed with my supervi-
sors that there was no original work to do here and that it could be easily added
at a later date. Usually, a much larger number of mutations are implemented,
including combining two programs or inserting a new call. It is also common
to mutate individual arguments, for example incrementing a value, applying a
shift to an integer, or flipping a bit in a more complex structure.

Finally, I needed to be able to execute system calls with the inputs I had
generated. I did this implementation in the file executor. cpp.

The first challenge I ran in to was that the macro used to perform system
calls is different between OSes. Usually system calls are made through libc and
not directly from user code, so the macro is not needed. However, in my case,
the executor is an exception to this. In Linux, the file unistd.h is included and
and the macro syscall is invoked. This takes the syscall number as its first value
and any parameters to the call as subsequent arguments. Unikraft was similar,
but uses the uk_syscall macro. I also wanted to be able to test my fuzzer on my
personal macOS machine without worrying about the consequences of invoking
arbitrary syscalls, so this was yet another mode I needed to support. To enable

14

this, I made use of a compiler flag which controlled the inclusion of three dif-
ferent executeSyscall implementations. This is passed to g++ in my Makefile,
using -D platform $(PLATFORM) which is based on the environment variable
PLATFORM. When both platform unikraft and platform_linux are undefined,
I provide an empty stub implementation. Otherwise, I call the platform specific
macro.

4.2.1 Making a Unikraft image

I decided to target Unikraft as my first unikernel to be fuzzed. This is a fairly
mature Unikernel, and through my supervisor I was in contact with some of the
developers behind it.

To compile my fuzzer in to a Unikraft image, I used the kraft command line
tool. This reads a kraft.yaml file specifying the entry point of the program,
modules to enable, and other libraries which should be included. This, along
with the files Makefile and Makefile.uk, allow for an image to be built for
any of the supported architectures. My kraft.yaml was fairly simple, with a
few libraries added for C++ support.

specification: ’0.4’°

unikraft:

version: ’staging’

kconfig:
- CONFIG_LIBSYSCALL_SHIM=y
- CONFIG_LIBPOSIX_SYSINFO=y
- CONFIG_POSIX_USER=y
- CONFIG_LIBNEWLIBC=y
- CONFIG_LIBPOSIX_PROCESS=y
- CONFIG_LIBUKMMAP=y
- CONFIG_LIBUKTIME=y
- CONFIG_LIBVFSCORE=y

architectures:
x86_64: true
arm64: true

platforms:
linuxu: true
kvm: true
xen: true

libraries:
libunwind: ’staging’
compiler-rt: ’staging’
libcxx: ’staging’
libcxxabi: ’staging’
newlib: ’staging’

I also enabled a number of modules such as UKMMAP and POSIX_PROCESS.
These register additional syscalls in the syscall shim layer and allow more of

15

the Unikraft codebase to to be fuzzed. Despite this, some system calls were
still unsupported and this meant the fuzzer was making calls that immediately
returned ENOSYS, a value indicating that no matching syscall was found. To
work around this, I updated my fuzzer to call uk_syscall_name_p for each call
on startup. This usually returns the name of a system call, but returns NULL if
no matching call is found. This allowed me to automatically disable those calls.

The last issue I tackled before successfully running the fuzzer on Unikraft
was that the linker failed to find the uk_syscall symbol. I explored this with
Dr. Razvan Deaconescu, an Assistant Professor at University Politehnica of
Bucharest. We discovered using nm that this was due to some function name
mangling that C++ performed. Surrounding the include statement in an extern
"C" { block was sufficient to fix this.

4.3 Code Coverage

The next problem I needed to solve was code coverage. As mentioned previously,
traditional operating system fuzzers use kernel features such as kcov which were
not available. Consequently, I experimented with a few different options.

4.3.1 Performance counters

An early idea I had was that the information provided by performance counters
may correlate with code coverage. These are stored in special CPU registers
and contain values such as the number of instructions executed or the number
of CPU cycles which have taken place. A concern was that constructs such
as loops may break the relationship, but due to the relative ease of accessing
performance counters across kernels, this was an idea that I wanted to spend
some time investigating.

To understand if there was a correlation between code coverage and perfor-
mance counter values, I wanted to obtain both from the same code executed
with the same inputs. To find code to use, I looked in to a number of bench-
marking suites, eventually settling on the SNU NPB 2019 Suite [2], which is
an implementation of the NAS Parallel Benchmarks (NPB). These are usually
used for benchmarking the performance increase resulting from parallelisation,
but I ran just the serial implementation so I could avoid the code running on
multiple CPU cores.

After choosing a benchmarking library, I needed to be able to access perfor-
mance counters during the benchmarks. I did this by implementing a small
library perf.c, which uses the perf_event_open syscall to record values from
the CPU. For my initial experiments, I observed a single performance counter,
PERF_COUNT_HW_BRANCH_INSTRUCTIONS.

Before running the experiments, I set the isolcpus boot parameter in my
kernel, and updated the perf_event_open syscall to restrict measurements to the
selected core. This guaranteed that other processes would not interfere with the
measurements I got.

I adapted two of the benchmarks in the benchmarking library to add per-
formance counter instrumentation, BT and CG. In each case, the benchmark
performs a number of iterations, and I calculated the average number of branches
across all of them. I also ran the same experiment removing the performance

16

counter instrumentation, compiling with gcov and outputting coverage infor-
mation to a file. This gave me two data points showing the number of branch
instructions taken and the number of basic blocks executed. The results are
shown below.

Benchmark Branches (perf) Blocks Executed
(gcov)

BT 444819 330

CG 13943298 50

This initial experiment was not promising, but I realised that without a much
larger corpus of benchmarks, I would not have enough data to produce a graph
showing how the two variables were correlated. I then began looking for other
projects that may provide a large corpus of code to be tested. A possible option
was the test suite of an open source project, as each test is likely to cover a small
but different part of the code, hopefully exercising different code constructs in
frequencies similar to what would be found in most codebases. However, due
to the complexity of updating a test harness to add instrumenation, I chose
against this.

As well as developing syzkaller, Google also run the FuzzBench [6] project,
which regularly tests a variety of fuzzers on a range of applications. Usefully,
as part of these test runs, the corpus of interesting inputs generated by fuzzers
is archived. A small wrapper program is also provided around the application
being tested, providing a single entry point that runs the application with a
given input. After some research, I realised I would be able to run the entire
corpus, with either gcov or performance counter based instrumentation added
to the wrapper application.

For this set of experiments, I chose to use the libxml benchmark, which is
based on libxml v2.9.2. The archived corpus I downloaded contained 7,705 files,
each containing a small input which generated new coverage during fuzzing with
AFL. I recorded the value of six performance counters, and then repeated the
runs recording the percentage of code blocks covered.

17

+ Cache misses / Cache references

0.7

0.525

0.35

0.175

Ratio of cache misses to cache references

0
0.0000000000000000 2.5000000000000000 5.0000000000000000

Coverage (%)

Figure 3: Graph showing the cache hit rate against code coverage

Both of these runs were performed using a small bash script I wrote. This
executed each test sequentially, outputting the instrumentation data to a CSV
file. In the case of gcov, I used the llvin-profdata and llvim-cov commands to
read coverage information as JSON, piped to jq to extract just the percentage
coverage.

With this much larger pool of data, I was ultimately able to rule out the use
of performance counters.

4.3.2 Breakpoints

In Nagy et al. [16], the idea of Coverage-Guided tracing is introduced. Instead
of running coverage tracing throughout the entire fuzzing process, so it can be
known when new coverage is obtained, coverage information is only obtained
once it is already known that an input generates new coverage. To achieve this,
an “interest oracle” is made. This is a version of the binary which has had
breakpoints added at the start of each basic block using a tool such as Dyninst.
Consequently, when the breakpoint is hit, this is an indication that new code
has been reached. Breakpoints are removed when they are hit to make sure that
they only run the first time each basic block is executed.

To add a breakpoint to a program, the first byte of the instruction which
the breakpoint should be set on is replaced with the INT3 assembly instruction.
INT generates a software interrupt, and INT3 in particular has some properties

18

which make it desirable for debugging. Firstly, it only takes up a single byte,
meaning instructions of any length can be overwritten. The byte which has
been overwritten can be stored and this can then be easily put back once the
breakpoint is hit. Second, it bypasses permission level checks which usually
happen in userspace and would prevent the interrupt from being called.

This approach was extremely promising for the fuzzing of unikernels, because
breakpoints can be added using a hypervisor like QEMU without any coverage
features needing to be implemented in the kernel. Additionally, there were pos-
sible performance benefits. This was the focus of the Nagy et al. paper, which
found that over 90% of the time spent fuzzing is related to coverage instrumen-
tation even though less than 1 in 10,000 test cases are coverage increasing.

To take a similar approach for unikernels, I first needed to identify where
to place breakpoints within the kernel. For my initial prototype, I chose to
use the Dyninst project’s SymtabAPI, which reads a binary’s symbol table and
provides an interface through which the offset of both functions and variables
can be found. Using this, I was able to build a small C library which populates
a struct with the absolute address of each function within the source of a kernel
built with debugging symbols. Currently, this happens at the function level.
However, for more precision, I believe it would be fairly easy to integrate with a
library that provides the location of basic blocks. This additional precision may
impact performance, so it would be necessary to perform some experiments to
see if this extra code coverage was worth the overhead.

4.3.3 QEMU

55 pushqg %$rbp
48 89 e5 movqg %rsp, %rbp
48 81 ec 80 01 00 00 subg $384, %rsp

o .

55 pushqg %$rbp
48 89 e5 movqg %rsp, %rbp
cc 81 ec 80 01 00 00 subg $384, %rsp

o Instruction executed, QEMU receives interrupt

00 00 00 00 00 00 00 00 COV_FLAG

(3] 3

00 00 00 00 00 00 00 01 COV_FLAG

Figure 4: Process of adding an INT3 instruction and capturing the interrupt

To actually instrument the program, the Unfuzzer tool built in the Nagy
et al. paper has a parent process which performs the modification process.
Then, one or more child forkservers are started, which execute the program.
Interrupts are caught by the parent process, which collects coverage information,
unmodifies the binary, and restarts the forkservers. In my case, I wanted to keep
the code running inside of the unikernel as simple as possible, and I did not have

19

access to fork. Consequently, I chose for the parent process to be QEMU itself.

QEMU supports GDB through a remote debugging server referred to as
“gdbstub”. Fortunately, I was able to reuse many of the functions here for
inserting breakpoints and preserving the values which had been overwritten.
For example, when I first run the program, I iterate over each of the addresses
provided by my C library and insert a software breakpoint. This is done by
calling kvm_insert_breakpoint.

static void instrument (CPUState xcpu) {
xfunctions = getAllFunctions(get_kernel_filename ());

printf (”Found %lu._functions ,_instrumenting ...\ n”,

functions —>count);

for (unsigned long i = 0; i < functions—>count; i++) {
// Add a breakpoint at the start of this function
kvm_insert_breakpoint (cpu, functions—>offsets[i], O,
GDBBREAKPOINT_SW) ;

}

printf(”Kernel_instrumented .with _%lu_breakpoints!\n”,
functions —>count);

I initially called this as soon as the virtual machine started, within the
internal function kvm_vcpu_thread fn. However, I found that my breakpoints
were not hit, which I think may be because they get overwritten as the kernel
is loaded in to memory by the bootloader. To address this, I made use of a
hardware breakpoint, and inserted the software breakpoints needed for fuzzing
only when this breakpoint was hit. I chose the start of print_banner, but any
kernel function called sufficiently late in the boot process should work. Finally,
I made a small change to kvm_handle_debug, to make sure it does not skip over
hardware breakpoints which it doesn’t recognise.

I then needed to find a way to communicate coverage information back to
the program running inside of the unikernel. To do this, I decided that the
simplest approach would be a global variable, defined within the C code. In
QEMU, I use Dyninst to read the location of this from the symbol table, and
I then set the “flag” variable to 1 if new code has been covered. The fuzzer
can reset this back to 0 before fuzzing with new input. One limitation of this
approach is that it is restricted to a single thread. To fuzz in parallel, more than
one virtual machine can be started. Fuzzing with multiple threads in the same
virtual machine would need multiple flag variables, but the effectiveness of this
may still be limited as it allows syscalls being made on the different threads to
interfere with one another.

4.3.4 Porting coverage measurements to Linux

While developing the fuzzer, a problem I ran in to was that it was hard to test
the effectiveness on only less mature OSes. While unikernels were ultimately
the focus of my project, I realised that there were several benefits to being able
to test the fuzzer on Linux. Firstly, this would allow me to see how it performs
on a much larger number of syscalls. Secondly, it would provide me with the

20

opportunity to directly compare the performance of my code coverage strategy
against existing approaches like kcov. Finally, it would allow me to demonstrate
that the fuzzer I had made was generic, being applicable to OSes other than the
ones I had in mind when developing it.

The first part of doing this was to find a way of running my fuzzer source
code on Linux. A very different approach was needed to the one taken for
unikernels, as while unikernels are built to boot in to a particular program,
the Linux operating system is a multitasking operating system which usually
loads programs dynamically. This presented a problem, as even if I could load
a program on boot, I would not know where in memory it would reside.

To solve the problem of running my fuzzer at boot, I used the initramfs
scheme. This is a feature in Linux which allows a compressed archive created
using cpio to be uncompressed at boot, at which point the binary at /init will be
executed. Usually, this is a simple image which performs tasks like disk decryp-
tion and the loading of drivers before mounting the real file system. However,
I was able to create an image containing my fuzzing binary, and pass this as
an initrd argument to QEMU. This fairly simple solution helps to minimise the
steps required to build the fuzzer.

The other problem to solve was the loading of symbols for the purpose of
adding breakpoints. When running a unikernel, the kernel I pass to QEMU is a
normal Linux binary and Dyninst is able to extract symbols from that directly.
However, when running Linux, I initially wanted to avoid rebuilding the Linux
kernel. T achieved this by using the open source vmlinux-to-elf [15] tool, which
reconstructs debug symbols using a compressed symbol table available in kernels
called “kallsyms”. I then updated my QEMU build so an optional environment
variable could be set to override the location that symbols are loaded from.

By default, the Linux kernel has a feature called Kernel Address Space Lay-
out Randomisation, or KASLR. This randomises the base address where the
kernel is loaded, adding a constant but unpredictable offset to the base address
where the image is loaded to. This is a useful security protection, as it prevents
attacks where malicious processes jump to known locations in memory, for ex-
ample by exploiting a buffer overflow to overwrite memory at a location which is
known to be significant. However, this makes instrumentation with breakpoints
harder. Consequently, I pass the the nokaslr argument to the kernel which
disables this behaviour.

Finally, I needed to be able to share coverage information between the
QEMU hypervisor and the init process running the fuzzer. Since I wasn’t
confident that we could rely on where the init process was loaded, I worked
alongside another student who was following the project to implement a new
system call, which would allow a program in userspace to access a global variable
stored within the kernel. Jules Irenge provided me with a small patch to the
Linux kernel that adds a new global variable to the file kernel/sys.c, where
syscall handlers are implemented. The patch also updated the file unistd.h to
add constants for the new system call number, and both syscall 64.tbl and
syscall_32.tbl to actually register these handlers in the lookup table. I took
this patch and modified it slightly. Firstly, I switched from storing a struct to
a single integer, as I only needed a single flag indicating if new coverage had
been obtained. Second, I updated the call handler to clear the flag when it is
read, so it is only set on future calls if coverage has been obtained since we last
checked. I built the kernel after applying this patch and was able to use this in

21

place of the official kernel build I was using when running QEMU.

4.3.5 Porting to HermiTux

During the project my fuzzer was also ported to HermiTux, a unikernel which
can run native Linux binaries. This was done by supervisor, Dr Pierre Olivier.
Since the unikernel is binary-compatible, this was reported as being a fairly
straightforward process with the fuzzer simply being built for Linux. Some
small changes were made including fixing the implementation of clock_gettime
so the random number generator used by the fuzzer could be seeded.

5 Evaluation

5.1 Effectiveness of fuzzing
5.1.1 Bugs Identified

A number of bugs were identified by my fuzzer, which can be broken down in
to two categories. General kernel issues refers to bugs found while porting the
fuzzer. Implementation bugs in syscall handlers refers to bugs which caused a
crash while the fuzzer was running signalling an issue in the implementation of
the handling code for that particular system call. The full list of issues can be
found in the Appendix.

Category Bugs Identified
General kernel issues 2
Implementation bugs in syscall handlers 5

5.1.2 Performance Overhead

Since fuzzing relies on executing a program many times, reducing the perfor-
mance overhead of instrumentation is a key part of increasing a fuzzer’s effi-
ciency. Towards the end of my project, I wanted to see what the overhead of
inserting breakpoints was. The UnTracer fuzzer which this technique was in-
spired by claims below 1% average overhead, so I was hoping to see only a small
change in program execution time.

22

Average time taken by last ten program executions vs. programs executed

@ Average time taken with instrumentation (microseconds)
Average time taken without instrumentation (microseconds)

100000

10000

1000

Average time for last ten program executions
(microseconds)

100
0 100 200 300 400

Number of programs executed

Figure 5: Graph showing the performance overhead of breakpoint based instru-
mentation, on a logarithmic scale

As shown in Figure 5, I ran my fuzzer on the Linux kernel twice, recording
how the average time for the last ten program executions changed. Initially, I
did this without breakpoints to get a control for the average execution time of a
program. As expected, this remains constant, taking just over 500 microseconds
for each 20 syscall program. I then added breakpoints at the start of each
function using the features in my modified version of QEMU. Programs initially
took much longer to run, but after around 100 programs had been executed,
the performance of the two trials is similar, with only rare, small spikes in
the time taken by the instrumented kernel. This gives me confidence that as
breakpoints are removed, the overhead decreases, making the overall overhead
of this approach fairly low.

5.2 Planning

Figure 6 is a Gantt chart that I made at the start of Semester 1, showing
when I intended to work on each part of the project. The initial research followed
the schedule quite closely, and I did a presentation on what I had learned about
syzkaller on the 22nd October. I had then planned to research gcov for the
last week of October so I could begin implementation in November. This didn’t
quite go to plan, however, as I spent longer researching the various parts of the
project until making my first commit on the 15th November.

Implementation followed the plan quite closely, but delayed by a few weeks
due to the extra time spent on research. For example, I planned to finish the
Syzlang compiler in November, but committed this at the start of December
instead. I would have benefitted from revising this plan as the scope of the
project changed. For example, I planned to spend about two months working

23

[Z) Research earch
Fuzzing research
Syzkaller research
Kraft and gcov research
(=) Implementation
Syscall Executor Proof of Concept
Parsing syzlang and generating inputs
Intelligent fuzzing using goov data
Further implementation
(=) Report
Write Report
(5 Finishing Project Fi.
Tweaking Report

Screencast

Figure 6: Gantt chart made at the start of the project

to use gcov data in the fuzzer. However, this development time instead went on
investigating other ways of generating code coverage information.

Work on my report started later than planned. While I had written a small
amount in March, I switched focus to this at the start of April. Again, it would
have been beneficial to revise my plan to reflect these adjusted deadlines.

5.3 Project goals

At the start of my project, I set out three key goals that I wanted to accomplish
over the year.

Firstly, I wanted to study fuzzing concepts and existing tools. This would be
useful as it was not an area I had worked in before, and I wanted to understand
the existing research before doing my own. My first part of the success criteria
for this goal was to be able to demonstrate where I have found approaches in
existing work that I could adapt. I believe that there are several places where
I can demonstrate this. For example, I compile a specification of available
syscalls from syzkaller’s Syzlang, and many of the implementation decisions for
the fuzzer were based on the main fuzzing loop used by existing fuzzers like
AFL. T also wanted to be able to identify any gaps in existing research that I
have taken steps towards addressing. I believe my major contribution here is
showing that breakpoints can be used as a viable alternative to traditional code
coverage techniques when fuzzing kernels that do not have features like kcov
available. Adding breakpoints for code instrumentation is not a new technique
in itself, but I have shown that it can be applied in a new context. I have also
built a number of components which are less complex than existing fuzzing tools
and allow a greater range of kernels to be fuzzed.

The second objective for this project was to select an appropriate tool, de-
fine a fuzzing strategy, and select a target unikernel. I believe I met this by
choosing to build a new fuzzer and giving justification for taking this approach.
Additionally, I chose Unikraft as a unikernel which was more mature than the
alternatives, and which had a syscall shim layer that I could use as the entry

24

point for fuzzing. I used Whitebox fuzzing as looking at the existing literature
convinced me that this would be the most effective form of fuzzing.

Finally, I wanted to be able to show evidence of applying the fuzzing strategy
and either reporting or fixing any potentially uncovered bugs. I found two bugs
in Unikraft, and my fuzzer enabled the identification of bugs in HermiTux too.
These are listed in the Appendix.

5.4 Future work

While overall I am proud of the work I achieved during the project, there remain
experiments to be performed and parts of the implementation to be completed.
This is partly due to the fact that it was a research project exploring the appli-
cation of techniques in new ways, and in some cases building a proof of concept
was prioritised over a complete implementation of any given component.

5.4.1 Type generation

During the implementation of both my compiler and fuzzer, I prioritised support
for the types that appeared most frequently in system call arguments, such as
integers, flags and filenames. However, syscalls take a much greater range of
arguments than this, such as pointers to larger structs. Based on the types I
currently have support for, the fuzzer is able to generate inputs for 179 of the
305 syscalls documented by Syzkaller.

Improving support here would allow a greater number of system calls to be
fuzzed, which has the potential to significantly increase the amount of kernel
code covered. Additionally, there is scope to generate a wider range of values
for given arguments. For example, currently only valid flags are generated.
While this should ordinarily be the case, to avoid generating inputs which are
immediately discarded by the kernel, it would be useful to infrequently generate
other values to check they are correctly handled. File descriptors are another
example of this. Before I had correctly implemented resources, I was incorrectly
passing a syscall index as an argument to subsequent syscalls instead of the
syscall’s return value. These values would almost certainly have been invalid,
but this lead to the identification of a bug in HermiTux where arbitrary file
descriptors passed to close would cause internal descriptors to be closed. This
sort of bug can only be identified if the fuzzer intentionally generates input
which violates the values it knows are allowed.

5.4.2 Enabling features like UBSan and ASan

Compilers such as GCC and Clang have support for features such as the un-
defined behaviour sanitizer (UBSan) and address sanitizer (ASan). These can
be enabled at compile time and add additional checks within the assembly code
to detect bugs that can usually go undetected. For example, the undefined be-
haviour sanitizer in Clang can detect when an an array whose bounds can be
statically determined has had an out of bounds access. The address sanitizer
can detect similar bugs such as the use of memory after it has been freed. Cur-
rently I haven’t tried using these with the fuzzer but they may allow additional
bugs to be caught.

25

5.4.3 Support for other kernels

During the project a few changes were identified that would be needed for some
kernels.

Firstly, the fuzzer currently relies on the syscall macro, which Unikraft
has an equivalent for. However, other unikernels like OSv provide Linux com-
patibility through the libc interface, relying on functions such as read. To be
able to support these OSes, the fuzzer would need to be able to call any one
of these functions without knowing the particular sequence of calls at runtime.
This should be possible but would likely involve directly manipulating registers
or a large switch statement over all possible function calls.

Second, the breakpoint based instrumentation I implemented was done by
modifying QEMU, a hypervisor used by many unikernels. However, this is not
the case for HermiTux, so all fuzzing performed on this kernel was with entirely
random system calls. Providing coverage information when fuzzing HermiTux
would likely require modification of the custom hypervisor it uses. This should
be feasible, as the HermiTux hypervisor follows a similar architecture to QEMU
and the modifications I made to QEMU were fairly simple. However, it would
require additional work.

5.4.4 Persisting fuzzing state after a crash

In a successful run of the fuzzer, the kernel would eventually be expected to
crash after running in to undefined behaviour caused by an implementation
bug. Currently, all state is lost at this point, including the programs in the
corpus and the instructions which have not yet been reached and should still be
instrumented. The fuzzer does print the system calls it is executing to stdout,
allowing manual intervention in an attempt to reproduce the crash and find the
root cause. However, in the future, it would be useful to persist this state to
the host to avoid losing it entirely. There are several ways in which this could
be implemented. In syzkaller, the syz-fuzzer process communicates with syz-
manager over a network socket, and similar could be done using virtio. This
is a virtual network interface supported by some unikernels such as Unikraft
as well as hypervisors like QEMU. Alternatively, the data could be written
to a shared filesystem. An example of this would be using the 9pfs support in
Unikraft to share a network file system with the application running with KVM.

Once the syscall history could be persisted to the host, it would be possible
to explore creating reproducers for crashes. This is a process implemented by
other fuzzers where the program is slowly reduced in size to find the smallest
number of system calls that reliably reproduce the crash. Manual work is still
required to identify the bug but this significantly reduces the amount of work
required.

5.4.5 Fine-grained disabling of system calls

As mentioned in Section 3.3.3, unikernels are currently an area of active research
and are usually less mature. This means that it is much more likely to encounter
crashes than when fuzzing a traditional operating system like Linux. While the
disabled attribute in the exported Syzlang data can be used to disable an
entire system call, this means an entire part of the kernel may no longer be able
to be fuzzed. A better approach would be if more specific conditions could be

26

specified, such as avoiding the use of a particular argument range or preventing
two system calls from being called one after the other. This would allow frequent
crashes to be avoided even before it is possible to land a patch fixing the issue
in the upstream kernel repository.

5.4.6 Identifying common system call sequences

Finally, to seed the fuzzer, it would be interesting to record sequences of syscalls
made by applications which are commonly deployed in the cloud. This should
allow the fuzzer to cover more of the kernel source more quickly, meaning bugs
can be identified after a shorter session of fuzzing. Additionally, this would
give greater assurances than the unikernel being fuzzed is compatible with that
application, which may be of interest to kernel developers.

6 Conclusion

This project was a great learning experience for me and I thoroughly enjoyed
my time working on it. My supervisor, Dr Pierre Olivier, was incredibly helpful
throughout. Through sharing his experience building the HermiTux unikernel,
I learnt a lot about how unikernels are run in the KVM. He also shared a lot
about the research process and guided me while I researched existing projects,
and developed my own work. I learnt a lot over the year, going from knowing
nothing about fuzzing or unikernels to understanding how they work in some
level of detail. I also learnt a lot of new skills, like how debug symbols are stored
in a Linux binary and how to read them. I even worked with QEMU for the first
time and began to understand how QEMU communicates with the underlying
hardware to start a virtual machine in KVM mode.

I was able to build a new fuzzer and demonstrate its effectiveness fuzzing
the syscall interface of unikernels, which as far as I know has not been done
before. This identified a number of bugs that I was able to share with project
authors and highlighted a new way that these types of systems can be tested in
the future.

References

[1] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili,
Shuang Hao, Christopher Kruegel, and Giovanni Vigna. Difuze: Inter-
face aware fuzzing for kernel drivers. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS
17, page 21232138, New York, NY, USA, 2017. Association for Com-
puting Machinery. URL: https://doi.org/10.1145/3133956.3134069,
doi:10.1145/3133956.3134069.

[2] Youngdong Do, Hyungmo Kim, Pyeongseok Oh, Daeyoung Park, and
Jaejin Lee. Snu-npb 2019: Parallelizing and optimizing npb in opencl
and cuda for modern gpus. In 2019 IEEE International Symposium on
Workload Characterization (IISWC), pages 93105, 2019. doi:10.1109/
IISWC47752.2019.9041954.

[3] Go. Cgo. URL: https://golang.org/pkg/cmd/cgo/.

27

https://doi.org/10.1145/3133956.3134069
http://dx.doi.org/10.1145/3133956.3134069
http://dx.doi.org/10.1109/IISWC47752.2019.9041954
http://dx.doi.org/10.1109/IISWC47752.2019.9041954
https://golang.org/pkg/cmd/cgo/

[4]

[13]

[14]

Patrice Godefroid. Fuzzing: Hack, art, and science. Commun. ACM,
63(2):7076, January 2020. URL: https://doi.org/10.1145/3363824,
doi:10.1145/3363824.

Google. Afl. URL: https://github.com/google/AFL.

Google. Fuzzbench: Fuzzer benchmarking as a service. URL: https:
//github.com/google/fuzzbench.

Google. syzkaller. URL: https://github.com/google/syzkaller.

Google. syzkaller/setup.md - linux kernel. URL: https://github.com/
google/syzkaller/blob/master/docs/linux/setup.md#linux-kernel.

Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. Magma: A ground-
truth fuzzing benchmark. Proc. ACM Meas. Anal. Comput. Syst., 4(3), De-
cember 2020. URL: https://doi.org/10.1145/3428334, doi:10.1145/
3428334.

Antti Kantee and Justin Cormack. Rump kernels: No o0s? no problem!
login Useniz Mag., 39, 2014.

Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu,
and Taesoo Kim. Finding semantic bugs in file systems with an exten-
sible fuzzing framework. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP 19, page 147161, New York,
NY, USA, 2019. Association for Computing Machinery. URL: https:
//doi.org/10.1145/3341301.3359662, doi:10.1145/3341301.3359662

Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El,
Don Marti, and Vlad Zolotarov. Osv—optimizing the operating sys-
tem for virtual machines. In 2014 USENIX Annual Technical Confer-
ence (USENIX ATC 14), pages 61-72, Philadelphia, PA, June 2014.
USENIX Association. = URL: https://www.usenix.org/conference/
atcl4/technical-sessions/presentation/kivity.

Simon Kuenzer, Vlad-Andrei Bdoiu, Hugo Lefeuvre, Sharan Santhanam,
Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu, tefan Teodor-
escu, Costi Rducanu, Cristian Banu, Laurent Mathy, Rzvan Deaconescu,
Costin Raiciu, and Felipe Huici. Unikraft: Fast, specialized unikernels
the easy way. FEuroSys'21, New York, NY, USA, 2021. ACM. doi:
10.1145/3447786.3456248.

Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott,
Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon
Crowcroft. Unikernels: Library operating systems for the cloud. SIGARCH
Comput. Archit. News, 41(1):461472, March 2013. URL: https://doi.
org/10.1145/2490301.2451167, doi:10.1145/2490301.2451167.

Marin. vmlinux-to-elf. URL: https://github.com/marin-m/
vmlinux-to-elf.

28

https://doi.org/10.1145/3363824
http://dx.doi.org/10.1145/3363824
https://github.com/google/AFL
https://github.com/google/fuzzbench
https://github.com/google/fuzzbench
https://github.com/google/syzkaller
https://github.com/google/syzkaller/blob/master/docs/linux/setup.md#linux-kernel
https://github.com/google/syzkaller/blob/master/docs/linux/setup.md#linux-kernel
https://doi.org/10.1145/3428334
http://dx.doi.org/10.1145/3428334
http://dx.doi.org/10.1145/3428334
https://doi.org/10.1145/3341301.3359662
https://doi.org/10.1145/3341301.3359662
http://dx.doi.org/10.1145/3341301.3359662
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
http://dx.doi.org/10.1145/3447786.3456248
http://dx.doi.org/10.1145/3447786.3456248
https://doi.org/10.1145/2490301.2451167
https://doi.org/10.1145/2490301.2451167
http://dx.doi.org/10.1145/2490301.2451167
https://github.com/marin-m/vmlinux-to-elf
https://github.com/marin-m/vmlinux-to-elf

[16]

[18]

[19]

Stefan Nagy and Matthew Hicks. Full-speed fuzzing: Reducing fuzzing
overhead through coverage-guided tracing. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 787-802, 2019. doi:10.1109/SP.2019.
00069.

Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy
Ravindran. A binary-compatible unikernel. In Proceedings of the 15th ACM
SIGPLAN/SIGOPS International Conference on Virtual Ezecution Envi-
ronments, VEE 2019, page 5973, New York, NY, USA, 2019. Association
for Computing Machinery. URL: https://doi.org/10.1145/3313808.
3313817, doi:10.1145/3313808.3313817.

OSv. Osv linux abi compatibility. URL: https://github.com/
cloudius-systems/osv/wiki/0Sv-Linux-ABI-Compatibility.

Unikraft. Application development and porting - syscall shim
layer. URL: http://docs.unikraft.org/developers-app.html#
syscall-shim-layer.

Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and Taesoo
Kim. Fuzzing file systems via two-dimensional input space exploration. In
2019 IEEE Symposium on Security and Privacy (SP), pages 818-834, 2019.
doi:10.1109/SP.2019.00035.

29

http://dx.doi.org/10.1109/SP.2019.00069
http://dx.doi.org/10.1109/SP.2019.00069
https://doi.org/10.1145/3313808.3313817
https://doi.org/10.1145/3313808.3313817
http://dx.doi.org/10.1145/3313808.3313817
https://github.com/cloudius-systems/osv/wiki/OSv-Linux-ABI-Compatibility
https://github.com/cloudius-systems/osv/wiki/OSv-Linux-ABI-Compatibility
http://docs.unikraft.org/developers-app.html#syscall-shim-layer
http://docs.unikraft.org/developers-app.html#syscall-shim-layer
http://dx.doi.org/10.1109/SP.2019.00035

7 Appendix 1: Bugs identified during the project
7.1 Unikraft

These issues were discovered by both me and Dr. Razvan Deaconescu while
building the fuzzer for Unikraft.

7.1.1 Page fault when executing uk_syscall(0, 0)

This is the first issue I opened after realising that passing 0 the open syscall
caused a crash.
Issue URL: https://github.com/unikraft /unikraft /issues/89

7.1.2 Defining a large global vector of strings results in page fault

When populating a large, statically initialised vector in C4++, Unikraft crashes
during boot.
Issue URL: https://github.com/unikraft/lib-libcxx /issues/4

7.2 HermiTux

These issues were discovered by supervisor Dr. Pierre Olivier while porting the
fuzzer to HermiTux.

7.2.1 Bad parameter sanitization for prlimit64

The prlimit system call is used for getting and setting resource limits. The
old_limit parameter, where the old limit value is stored, was being dereferenced
before checking to see if it was NULL.

Issue URL: https://github.com/ssrg-vt/hermitux/issues/19

7.2.2 clock_gettime does not return the time offset from the epoch

The call clock_gettime was always populating the result struct with the value
Zero.
Issue URL: https://github.com/ssrg-vt/hermitux/issues/20

7.2.3 bad error code returned from sys_creat

The call sys_creat was returning a value based on what is usually returned
by the libc wrapper, instead of the value returned when calling the syscall on
Linux.

Issue URL: https://github.com/ssrg-vt/hermitux/issues/21

7.2.4 Sanitize close() parameter

File descriptors passed to the close call were not validated, allowing internal
file descriptors used as part of the KVM VCPU to be closed.
Issue URL: https://github.com/ssrg-vt/hermitux/issues/22

30

7.2.5 Page fault in Glibc’s malloc

This fault has not yet been debugged but causes a crash within glibc.
Issue URL: https://github.com/ssrg-vt/hermitux/issues/23

31

	Abstract
	Introduction
	Aims and Objectives

	Background and Challenges
	Unikernels
	Fuzzing
	Blackbox Fuzzing
	Grammar-Based Fuzzing
	Whitebox Fuzzing
	OS Fuzzing

	Challenges applying existing techniques to unikernels
	Language Support
	kcov
	OS maturity

	Related works

	Design and Implementation
	Input generation
	Syzlang
	Cgo
	Transpiling to C++

	Building the fuzzer
	Making a Unikraft image

	Code Coverage
	Performance counters
	Breakpoints
	QEMU
	Porting coverage measurements to Linux
	Porting to HermiTux

	Evaluation
	Effectiveness of fuzzing
	Bugs Identified
	Performance Overhead

	Planning
	Project goals
	Future work
	Type generation
	Enabling features like UBSan and ASan
	Support for other kernels
	Persisting fuzzing state after a crash
	Fine-grained disabling of system calls
	Identifying common system call sequences

	Conclusion
	Appendix 1: Bugs identified during the project
	Unikraft
	Page fault when executing uk_syscall(0, 0)
	Defining a large global vector of strings results in page fault

	HermiTux
	Bad parameter sanitization for prlimit64
	clock_gettime does not return the time offset from the epoch
	bad error code returned from sys_creat
	Sanitize close() parameter
	Page fault in Glibc's malloc

