
1

Binary-Compatibility with Linux

Application for a Unikernel Written in

Rust

Christopher Densham

Supervisor: Dr. Pierre Olivier

April 2021

2

Abstract

Unikernels offer an alternative to traditional virtual machines and containers as a

lightweight virtualization mechanism for use in cloud computing. However, barriers to

their widespread adoption include the difficulty in porting existing applications, and

their lack of safety and security. Unikernels are typically categorized as either written

in memory unsafe languages with easy application porting or written in a memory safe

language with a significant cost to port applications.

This project explores the possibility of having a unikernel written in the memory safe

language Rust which can execute precompiled Linux binary applications. This would

provide a unikernel which is both memory-safe and yet requires minimal to no effort to

port existing Linux applications. Thus, eliminating two of the barriers to the adoption

of unikernels in the cloud computing space.

The project attempts to replicate some of the work in the existing binary compatible

HermiTux unikernel written in C, applying this work to the RustyHermit unikernel which

is written in Rust.

3

Acknowledgements

I would like to thank my project supervisor Dr. Pierre Olivier for his help and guidance

throughout the project. My project partner Laurent Pool for his contribution and

assistance during the project. My parents for their belief and support in enabling me

to re-enter education. Finally, I would like to thank my friends and family, in particular

Hayley, for their perseverance and support over the years and particularly over this

last difficult year.

Impact of Covid-19

The lockdown due to the pandemic has had a minimal impact on the planning and

execution of the project in a practical sense. Remote access was provided to a

machine capable of the virtualization required for development and testing. Meetings

have taken place using video conferencing instead of face to face.

However, it has limited the ability to engage in collaborative practices such as pair

programming with my project partner or have ad hoc discussions and meetings. The

lack of contact with other students and academics outside of the project also limits the

opportunity to explain and discuss your work with those who do not already know about

it. This is often a useful way of both gauging your own knowledge and gaining an

outside perspective.

4

Table of Contents

1 Introduction ... 6

1.1 Motivation .. 6

1.2 Aims .. 7

1.3 Summary ... 7

2 Background & Related Works ... 7

2.1 Background ... 7

2.2 Related Works ... 9

3 Design ... 10

4 Implementation.. 12

4.1 RustyHermit .. 13

4.2 First-stage Loader ... 13

4.2.1 Relocate the Kernel .. 13

4.2.2 Load the Application ... 15

4.2.3 Pass Application Metadata to the Kernel .. 15

4.3 Second-stage Loader .. 15

4.4 Challenges .. 21

4.4.1 Remote Access .. 21

4.4.2 Learning a New Language .. 22

4.4.3 Dependencies ... 22

4.4.4 System Bugs .. 22

5 Functional Evaluation .. 23

6 Comparison to Similar Work ... 23

7 Conclusion & Future Works .. 24

7.1 Future Works ... 24

7.2 Conclusion .. 25

5

Appendix A hello_world_asm.s ... 27

References ... 28

Table of Figures

Figure 1: A VM / hypervisor stack showing a traditional VM alongside a traditional

unikernel and a binary-compatible unikernel. ... 8

Figure 2: Graphical overview of the system ... 10

Figure 3: Guest address space. Showing separation of application and kernel. 14

Figure 4: The initialised stack ... 16

6

1 Introduction

1.1 Motivation

The explosion of cloud computing usage has resulted in an expansion in multi-tenancy

servers from large cloud service providers such as Amazon, Google, and Microsoft

[11]. Multi-tenancy allows many applications, such as Infrastructure as a Service

(IaaS), Function as a Service (FaaS), Software as a Service (SaaS) products and

microservices, from multiple users to run on a single physical server [3]. Container

technology is an increasingly common choice for running applications due to their low

start-up overheads and minimal memory footprint when compared to virtual machines

(VMs) [3, 11].

Despite the advantages that containers provide they have less isolation than VMs and

are therefore inherently less secure. This constitutes a risk of information leakage [3,

11, 15]. Unikernels are a minimal operating system (OS) suitable for cloud applications

and could provide both the performance and disk size advantages of a container and

the security and safety of a VM. Unikernels can provide a minimal, lightweight kernel

with only the system calls required to run the application and which terminates when

the application finishes execution [11, 15]. They are short-lived so inherently more

secure, due to the reduced attack surface, and more efficient than a long-lived VM,

yet still have isolation for safety and security.

There are two distinct categories of unikernel. Firstly, there are unikernels which

support legacy applications and are language agnostic. They are written in a memory

unsafe language such as C. Secondly are the unikernels written in a memory safe

language providing greater security and safety but which only support applications

written in a high-level language [19].

Unikernels are designed to run only a single application, this is usually compiled as

part of the unikernel code [11]. This can limit the uptake of unikernels for running

existing applications due to the effort required to create them. The desired application

must be rewritten for the unikernel. This causes a significant amount of work for the

programmer to port existing applications. It may even be impossible for applications

where the source code is not available [15].

7

A unikernel which can run existing applications without any porting effort could help

with the uptake of unikernels as an alternative to containers. Such research projects

exist in legacy languages such as C [15]. However, memory safety in C is difficult to

enforce and prone to errors from the programmer [8]. It is also a significant source of

vulnerabilities [8]. Although unikernels written in a memory safe language exist they

still require the effort of porting the application to the unikernel [8]. A binary compatible

unikernel written in a memory safe language would remove the burden on the

programmer to port applications whilst also providing a safe and secure runtime

environment.

1.2 Aims

The primary aim of the project is to modify a unikernel written in the memory safe

language Rust so that it can execute a single Linux binary application passed to it at

run-time. The ultimate target is the ability to run simple pre-compiled static C programs

using this Rust unikernel which would allow the execution of NPB benchmarks and

therefore measure the performance of the unikernel.

1.3 Summary

The project took the RustyHermit unikernel project and adapted it to run Linux binary

applications using the work done with HermiTux on the HermitCore project as a

reference. The exploratory nature of the project meant there were many unknowns

about what was ultimately possible, and the potential challenges involved. Although

we were not able to reach the goal of providing full binary compatibility with C

programs, the ability to run compiled Linux applications written in assembly was

demonstrated. The project was able to provide a proof of concept that it is possible to

write a unikernel in Rust that can run statically compiled Linux binary applications and

has laid much of the groundwork for compatibility with static C applications.

2 Background & Related Works

2.1 Background

VMs running standard operating systems are very useful. They allow users to run

unmodified application code as though directly on a physical machine [10]. The guest

VM itself is an application running on a host, providing transparent access to system

8

calls through a hypervisor layer [6]. This is particularly useful in cloud computing where

compute time is leased to a user and therefore a physical server can have many users

running many different VMs. VMs provide a means of separating the running systems

securely and safely [10].

Figure 1: A VM / hypervisor stack showing a traditional VM alongside a traditional unikernel and a binary-compatible

unikernel.

VMs are typically large, running full OSs which contain legacy code for supporting

many years of software and hardware as well as adding an additional layer to the

existing software layers [10]. The increasing need for an efficient way of running many

applications on multi-tenancy servers has led to a widespread adoption of containers

[3]. Like containers, unikernels are a form of lightweight virtualization but unlike

containers they are still VMs so can benefit from isolation and therefore the security

that comes with that [10].

Even though unikernels may solve some of the issues related to containers they are

still immature, mostly existing as research projects, and their security has not been

proven [13]. Whilst they do provide better isolation than containers, the application and

kernel code run together in the same address space in privileged mode. Security

mechanisms to protect against exploits have yet to be reliably developed [13, 16].

In addition to the security problems yet to be solved for unikernels another barrier to

adoption is the requirement for applications to be rewritten and compiled as part of the

unikernel. This can range from being reasonably straight-forward, for instance Lankes

9

et al. claim that porting a Rust application for RustyHermit is “almost trivial” [8], to being

impossible in the case of proprietary software where the source code is unavailable

[15]. Increasing compatibility of applications with unikernels is therefore an important

area of research. If a unikernel can run existing binary applications, then one of the

important hurdles to unikernels becoming production ready is overcome.

Unikernels can be written in either legacy languages such as C or in a memory safe

language such as Rust. Unikernels run on the hypervisor layer and need to replicate

the interface between the OS and the application. Legacy languages such as C are

commonly used for system-level development as it provides unchecked access to

memory and allows for greater performance for certain tasks [8]. Avoiding errors when

writing C can be difficult even for experienced programmers [8] and memory-related

bugs contribute to a significant number of vulnerabilities [4, 14]. Writing a unikernel in

a memory safe language such as Rust would help to reduce bugs and therefore

vulnerabilities resulting from incorrect use of memory.

Rust is a memory safe language; it uses the concept of ownership to manage memory

instead of garbage collection or manually allocating and freeing memory as in other

languages. This allows Rust to be safe as well as high performance [7]. These

properties of Rust make it a good choice for developing system software such as a

unikernel.

On the one hand there are unikernels written in legacy languages which are unsafe

but provide easy porting of applications. Whilst on the other hand there are unikernels

written in memory safe languages, but which require costly application porting. The

objectives of the project are to explore the possibility of creating a unikernel which can

port applications with minimal effort in addition to providing memory safety. If this can

be shown to be possible then we will be able to demonstrate the best features of both

legacy and memory safe unikernels.

2.2 Related Works

Research projects exist which use unikernels to run a Linux binary application for

instance HermiTux1 [15]. HermiTux is based on HermitCore2, a unikernel operating

system written in C and therefore suffers from the security issues inherent in memory

1 https://ssrg-vt.github.io/hermitux/
2 https://github.com/hermitcore/libhermit

https://ssrg-vt.github.io/hermitux/
https://github.com/hermitcore/libhermit

10

unsafe languages, such as memory leaks and vulnerabilities [15]. It is adapted to run

native Linux binary applications written in several languages such as C, C++, Fortran,

and Python [15].

RustyHermit3 is a project that has rewritten HermitCore in Rust for memory safety [8].

Rust provides a memory safety guarantee which it implements using the concept of

ownership, the rules for which are checked at compile time [7], thus ensuring that

memory leaks do not occur. RustyHermit is a lightweight kernel which runs on top of

a hypervisor layer. In this case a KVM-based hypervisor called Uhyve. Adapting

RustyHermit to load and run binary applications will provide both safety and

compatibility.

The Linux Application Binary Interface (ABI) determines the interface between two

binary applications, for example between a library and a user program. It consists of

a load-time element and a runtime element [15]. The load-time ABI determines what

binary formats are supported, how an application is loaded, and how the stack and the

registers should be initialised when the application is started. The runtime ABI defines

how to make system calls; the instructions and registers to use [12]. The ABI

conventions will need to be applied in the project to load and run the binary application.

3 Design

Figure 2: Graphical overview of the system

The binary compatible RustyHermit project consists of a hypervisor layer and a guest

layer. Within the guest layer the kernel is loaded in a separate area of memory from

3 https://github.com/hermitcore/rusty-hermit

https://github.com/hermitcore/rusty-hermit

11

the binary application code and data. The loading of both the application and the kernel

is performed by the hypervisor. The hypervisor then passes control to the kernel. The

kernel initialises the stack and registers ready for the application to execute and finally

hands over control to the binary application. These stages constitute the load-time

ABI. The development work to achieve this was completed by Christopher Densham.

When the application is running it requires the use of system calls. Unikernels always

run in supervisor mode, therefore in the unikernel the system calls are simply function

calls. For binary compatibility, the system calls need to be implemented as functions

within the kernel. The runtime ABI determines how these system calls are

implemented. Laurent Pool developed the system calls for the project.

As RustyHermit is a rewrite of HermitCore written in Rust, and HermiTux is a binary

compatible version of HermitCore it makes sense to study both the HermiTux and the

RustyHermit projects. HermiTux provides the functionality and RustyHermit the base

from which we can adapt.

The RustyHermit binaries run on top of a hypervisor layer. There are two supported

hypervisors for use with RustyHermit: Qemu and Uhyve. For this project Uhyve was

selected as the hypervisor as the load process is much simpler and it would need to

be amended. In addition, this is the same hypervisor used by HermiTux which was

used as the example project. HermiTux uses a version of Uhyve written in C, whilst

this project uses a version written in Rust, in keeping with the rest of the project. Uhyve

was developed by the authors of HermitCore as a minimal hypervisor for running the

unikernel on a Linux system using KVM [9, 15].

The hypervisor needs to initialise, allocate memory, and load the guest kernel into

memory. In a traditional unikernel the kernel and application are compiled into a single

binary. However, for binary compatibility, the application code and data are loaded

separately from the kernel, although the kernel and the application will run in the same

address space. For the project, the hypervisor will need to be adapted to load the

application into a separate area of the address space, ensuring that the two binaries’

areas do not overlap.

Once the hypervisor has initialised the system it can pass control to the kernel. The

kernel then initialises, enabling system call support by setting a control register. The

kernel can then set up a heap and a stack in memory and execute the application

12

code. For a binary compatible unikernel additional steps are required. The kernel

needs to initialise the stack with the information expected by libraries to execute the

application code. This can include command line arguments, environment variables,

and the OS auxiliary variables that are expected by the early initialisation code that

runs first in most modern application’s binaries. Once this has been initialised the

kernel can pass control to the application to execute its code.

The work to create a binary compatible unikernel in Rust was divided into two sections.

The work to implement the runtime part of the ABI, and therefore the required system

calls written in Rust was completed by Laurent Pool. A subset of all available system

calls was chosen to be implemented. The choice was based on the most common

system calls used in the kernel. Writing to stdout, file operations such as opening,

closing and writing to files, and memory allocation. Implementing these common and

basic system calls enables a wide range of binary applications to run. One of the

focuses was on implementing the system calls required to run NPB benchmarks so

that we could compare the performance of the binary compatible Rust unikernel with

the performance of a standard Linux kernel.

The application loader, implementing the load-time ABI, was completed by Christopher

Densham. This required first ensuring that the kernel and application were loaded into

separate areas of the same address space. It is important to ensure that the kernel

and application are loaded far enough apart that they do not overlap. As the project

focused on static binaries the application and kernel locations were hardcoded. Once

the application and the kernel are loaded into memory then the stack must be initialised

with the required variables expected by libc. Once these are loaded then the kernel

can start execution of the application.

4 Implementation

This section will discuss the details of the implementation of the loader in the unikernel

and the reasons for the decisions which were made. It will also discuss some of the

challenges faced when implementing this. For details on the implementation of the

system calls please refer to the project report by Laurent Pool.

13

4.1 RustyHermit

There are two stages to initialising and loading a binary application in the unikernel,

comprising of four main tasks.

1. First stage

a. Relocate the kernel from the original location in RustyHermit.

b. Load the application alongside the kernel code in the same address

space, ensuring that there is no overlap within the memory.

c. Pass the application point and other metadata to the kernel.

2. Second stage

a. Craft the stack required for the application to execute and hand control

to the application.

In between the two stages the kernel initialises, writing to a control register to enable

system call support.

4.2 First-stage Loader

The first stage requires three main tasks to be completed. First the start point of the

kernel needs to be relocated. Secondly, the binary application needs to be loaded into

memory. Finally, metadata about the application needs to be passed to the kernel,

most crucially the application entry point.

4.2.1 Relocate the Kernel

In the original version of RustyHermit, the kernel, which also contains the application

code, is loaded by Uhyve at the address 0x400000. This is at the start of the traditional

user space for standard Linux static binaries. For simplicity, the project focused on

static binaries, so we wanted to load the application at this address. The kernel space

would usually occupy the second half of the virtual address space which is usually 48

bits in modern x86-64 CPUs. In HermiTux it was noted that it was possible to fit the

entire kernel into the address space below 0x400000 starting at 0x200000 [15]. This

allowed the application code to be loaded at 0x400000 without any conflicts and gave

the maximum amount of space for the application to use. As the project was studying

HermiTux it was attempted to replicate this approach and load the kernel at the same

location. The RustyHermit kernel already supports relocation so the option to move

the kernel was explored. Unfortunately, the size of the kernel was 2.4 MB and therefore

14

larger than the available 2 MB of space, so it would not fit in the same location as in

HermiTux. It is unclear if the kernel code can be refactored to fit in the 2 MB of available

space. This is a potential area for future exploration.

Figure 3: Guest address space. Showing separation of application and kernel.

As it was still desired to load the application at 0x400000, and it was not possible to

locate the kernel below this the decision was made to load the kernel higher up in the

address space. The kernel would not have a separate address space to the application

code so it was important that there would be no interference. The upper limit to the

address space is dependent on the size of the guest memory. This can be declared at

load time by setting the HEMIT_MEM environment variable before invoking the

hypervisor, if this is not set it defaults to 64 MB. If it were attempted to load the kernel

too high in the address space Uhyve would crash with an error that the size of the

guest memory was not large enough. The final decision was to locate the kernel start

at 0x1000000 leaving enough room for small applications to be tested and to also fit

into the default memory. The option to load the application first and then locate the

kernel based on the size of the application was explored. However, structures

containing boot info are created at kernel load time and these need to be updated with

information about the application when it is loaded so it was not possible to load the

application first and then load the kernel.

The hypervisor also allocates the remainder of the memory space above the kernel

for the heap. It was felt that it was not necessary for the remainder of the memory to

be allocated for the heap. Therefore, the heap space was initially reduced during the

project. A subsequent change in the original RustyHermit project refactored the way

heap allocation was performed. This change was incorporated into the project code

base late in the project. As the reduction in the heap size was not essential for

functionality the upstream changes were not rewritten. Future research could look at

reducing the heap size.

15

4.2.2 Load the Application

The hypervisor must load the application into memory. To begin, the hypervisor needs

to know where to find the application code. The way this is provided is to pass the path

of the application binary to Uhyve as a command line argument when it is invoked.

When the hypervisor creates a new VM it needs to do several things. It first checks

the relevant ELF headers to make sure it is a compatible executable for the specified

architecture and that it does not require any additional libraries. Uhyve identifies the

application’s loadable ELF segments and loads them into memory at the desired

location. The application was loaded at 0x400000 for this project, leaving enough

space to the start of the kernel. For dynamic position independent executables (PIE)

the application code can be located anywhere in the guest memory. A future extension

could be to place the application code at a random address. This would help with

security through address space layout randomization (ASLR). This random layout

would have to be coordinated with the kernel location to ensure that one does not

corrupt the memory of the other.

4.2.3 Pass Application Metadata to the Kernel

Uhyve also reads values from the ELF metadata relating to the application and sets

these values in the boot info structure in the kernel. The boot info structure is created

when the kernel is loaded and is a struct containing variables shared between the host

and the guest which are required by the kernel. The additional values required for the

application are used to initialise the stack and jump to the application entry point. The

structure was amended to accommodate the required values from the application. This

includes the application start point, its size in memory, the entry point i.e. the first

instruction in the application, as well as information about the program header tables.

4.3 Second-stage Loader

The second stage of the binary loader is run in the kernel itself. Once the hypervisor

has finished initialising and loading the kernel and the application it hands control over

to the kernel. The guest kernel first initialises and then it can run the second stage

loader. The kernel needs to initialise the stack with certain values which include ELF

auxiliary vectors, environment variables, and the command line arguments vectors

and count argv and argc. ELF auxiliary vectors are a mechanism to transfer kernel

information to the user application. The values need to be pushed to the stack in the

16

reverse order that they are to be read during execution. The ELF auxiliary vectors are

pushed first, followed by the pointers to the environment variables, then the command

line argument vectors argv, and finally the command line argument count argc.

The initial approach was to create the second stage loader as a Rust application which

would be compiled and bundled as part of the unikernel, in the same way that user

code would be compiled with the unikernel in a traditional RustyHermit unikernel. This

Rust application would define the constant variables to be pushed to the stack, define

the value of argc, and create vectors of pointers to the environment variables and

argument vectors. Rust provides access to the environment variables and the

command line arguments through the std::env module. It would then use inline

assembly code to push the values to the stack and jump to the entry point of the binary

application.

Figure 4: The initialised stack

This approach had to be changed though as some of the system calls that were to be

implemented required building with a feature called Newlib. Newlib is a C library

17

intended for embedded systems [20]. Building with Newlib required support for

networking via lwIP. After consulting with one of the key developers of the RustyHermit

project they advised that we could build and run in an environment called Hermit

Playground4. This environment provided support for lwIP and was already configured

to build with Newlib. lwIP is a small, lightweight implementation of the TCP/IP stack

[1]. For further details on the reasons for building with Newlib and wishing to support

lwIP please refer to the report by Laurent Pool.

Unfortunately, Hermit Playground was not configured to run Rust applications with the

unikernel, it is configured to run C, C++, Go and Fortran applications that can be

compiled against Rust code in a traditional RustyHermit unikernel. Instead of creating

a Rust application to load the binary application it was decided to move the initialisation

of the stack to the kernel boot process. This provided the advantage that it was easier

to access the application values in the boot info using helper functions created in the

kernel during the development of the first stage. These helper functions were not

accessible outside the kernel so were not available using the traditional Rust unikernel

application method.

The disadvantage of this was that the kernel uses a no_std Rust environment. This is

a way of ensuring that the Rust library used is platform agnostic and is used for kernels

and similar bootstrapping code [2]. This meant that there was no access to the

std::env module which provides iterators over the environment variables and the

command line arguments. The iterators were required to create the vectors of values

which are subsequently pushed to the stack. No access to std also meant that it was

not possible to use certain non-primitive types like CStrings which allows a

representation of strings in a C-like format. These are required as they provide the

expected format for the environment variables, command line arguments and auxv on

the stack. The environ, argc and argv variables are available in the kernel through

functions. These values can then be passed to the application-loading function. Due

to the inability to use CStrings vectors had to be created manually with C-like strings

by adding the characters to the vector as bytes and terminating with a null value. A

pointer to the vector containing the string can then be created and passed as required.

4 https://github.com/hermitcore/hermit-playground

https://github.com/hermitcore/hermit-playground

18

To push the values to the stack in the required order, a vector containing the pointers

to environment variables and the command line arguments was created in the order

that they would eventually be read. The ELF auxiliary vectors need to be pushed to

the stack as a tuple containing a key (or type) and a value. The type is represented by

a numerical value which is stored as a constant in the kernel code. A lot of the ELF

auxiliary vector values are hardcoded as they are specific to the Linux system or can

otherwise be stubbed. Other values are dynamic, for instance the ELF program header

table values and the application entry point. The ELF auxiliary vectors are read last so

they must be pushed to the stack first in reverse order. The environment variable

pointers and command line argument pointers are pushed next, again in reverse order.

The final value to be pushed is the command line argument count, argc.

A separate function was created to push the ELF auxiliary vectors to the stack, as this

required pushing the type-value tuple in reverse order. However, even though this was

marked as inline assembly the local variables were becoming corrupted once the stack

push began. It was attempted to write the assembly instructions directly into the loader

code, but this did not resolve the problem either. The problem was found to be that

the stack pointer was obviously being changed as we pushed values to the stack. This

meant that the references to the local variables were now pointing to the incorrect

location as they were addressed with an offset relative to the stack pointer. The

solution was to force frame pointers by setting the environment variable

RUSTFLAGS="-C force-frame-pointers=yes". Frame pointers use a separate

register to store the beginning of the stack frame for each function. The location of

local variables and arguments are addressed relative to the frame pointer and are no

longer dependent on the stack pointer. The frame pointer is only updated on a function

call or return and therefore is not affected by the stack crafting process. This problem

was therefore not related to the use of the separate function so this could be used.

Unfortunately, forcing frame pointers causes the Rust build process to recompile all

its dependencies every time it is rebuilt. This became quite a bottleneck when

developing. Every change, even if it was small, required several minutes to rebuild

and run to test it. This is exacerbated when working with kernel code as even changing

a print statement, which is often required for debugging due to the inability to run higher

level debugging software, can cause a bug to appear or disappear. Further to this all

19

development and testing was done on a nested VM, which is slower than a traditional

VM, which are themselves slower than native systems.

Once the ELF auxiliary vectors are pushed to the stack successfully the environment

variables and command line arguments can be pushed. These are stored as pointers

in a single vector. As vectors can return an iterator it is possible iterate over the vector

in reverse order and push the pointers to the stack. After this the only remaining value

to push to the stack is argc. The stack is now initialised, and we can hand execution

over to the application. This is simply a case of using an assembly instruction to jump

to the application entry point.

The program that was being used to test the success of the binary loading was a Hello

World application, written in C and compiled using GCC with glibc. The program

simply prints “Hello World!” to stdout and execution ends. As was mentioned earlier

even seemingly unrelated changes could lead to undefined behaviour. Sometimes

some parts of the code would work, and others fail, while a print statement placed after

a failing block for debugging could cause it to work, but the previously working block

would now fail. This made it very difficult to locate the causes of bugs or find successful

solutions. Successful execution of a compiled binary version of Hello World written in

assembly was achieved. When loading and executing the glibc version of the binary

application the unikernel was crashing with the following error:

thread '<unnamed>' panicked at 'called `Option::unwrap()` on a
`None` value', /root/.rustup/toolchains/nightly-x86_64-
unknown-linux-
gnu/lib/rustlib/src/rust/library/std/src/sys/hermit/os.rs:143:
28

stack backtrace:

thread panicked while panicking. aborting.

The error references code in the Rust std library which is not being called by the

function. The stack was printed out for debugging and was determined to be initialised

correctly. The error appears to happen after the final jump instruction to the application

code. The output after an error provides limited details about why the application

crashed but it does provide the exception type and the instruction pointer at the time

of the crash.

Using objdump it was possible to disassemble the code and examine the instruction

which caused the error. In this case the exception was an invalid opcode exception,

20

and the instruction was a ud2 assembly instruction. The ud2 instruction simply

generates an invalid opcode exception and is provided solely to supply this exception

for software testing where an invalid opcode is needed [5]. It was not possible to

determine why this instruction was being executed as the backtrace was unable to

display the call stack. The std library referenced in the error message points to a

function to get environment variables but was not part of the code that is called. The

environment variables are acquired successfully and passed to the loading function

before the jump to the application code.

To eliminate any possible corruption from amending the stack a version of Hello World

was tested which was compiled using MuslC LibC instead of GLibC. The advantage

of this is that it is simpler and requires fewer elements of the stack to be set up to run.

It was tested using a very basic stack initialisation using HermiTux and was shown to

work. The same stack initialisation was tried in the project code. Only four of the ELF

auxiliary vectors needed to be pushed to the stack and the values for command line

arguments and environment variables were stubbed as though there were none. This

meant simply pushing null to the stack twice to simulate two empty vectors, and then

pushing zero for argc to simulate no command line arguments. This would provide

the simplest possible stack alteration and avoid using functions to iterate over the

vectors in reverse order.

The MuslC-compiled version of Hello World also crashed, with a general-protection

exception. Again, objdump was used to examine the instruction which had caused the

exception and it was found to be a movaps instruction using the stack pointer as its

source operand. The movaps instruction is used to move aligned floating-point

numbers. It causes a general-protection exception if the memory operand is not

aligned on a boundary [5]. It was still not providing a call stack to trace back the source

of the error. The code in the objdump referenced functions from a module in the std

Rust library related to backtraces std::backtrace. To try to prevent code related to

this library from running as per the documentation backtracing was turned off by

setting the environment variable RUST_LIB_BACKTRACE to zero. This did not solve the

problem; the same instruction was causing the exception. In the end it was not possible

to determine the cause of the problem with the C versions of the binaries before the

project deadline. The reasons for the exceptions would be a good exploration for a

future work.

21

Although it was not possible to get a version of RustyHermit working with C binaries it

was possible to demonstrate the successful loading and execution of compiled

assembly versions of programs. Testing with a Hello World program and a program

which manipulates files were both successful. As a proof-of-concept the project was

successful in demonstrating that it is indeed possible to use a Rust unikernel to load

and execute a binary application passed to it at load time without the need to compile

it as part of the unikernel.

Whilst not being able to run C code means that it is not possible to run the NPB

benchmark tests and evaluate the performance of the unikernel compared to a

standard Linux system, we have created a starting point for future research.

4.4 Challenges

There were many challenges faced on this project. Not least the impact of Covid-19

which has denied access to university equipment and resources and prevented face-

to-face contact with my supervisor and co-worker.

4.4.1 Remote Access

The first challenge that we faced was having an accessible machine with KVM enabled

to run the hypervisor. The CS Linux appliance VM provided by the university does not

allow nested virtualization so it was not possible to run the unikernel on that. As we

had no access to university resources, we had to look at alternative approaches. One

approach was to use cloud computing resources such as Amazon AWS EC2

instances. After looking into this option, it became clear that the only cloud compute

instances which supported KVM were the metal instances. This involves renting the

entire physical server and was prohibitively expensive and inefficient in resource use.

An ad hoc approach which was initially used to get started was to provide remote

access to a VM on the project supervisor’s computer. This VM supported nested

virtualization meaning that it was possible to create another VM inside of it. However,

this comes at a performance cost and can cause problems when there is a lot of

compilation to do. All development and testing had to be carried out over SSH on the

remote machine. This solution worked and was used for the rest of the project. It did

mean that we had no access to an IDE but as we were working on systems software

this was less of a hindrance than it might have been for a higher-level software

engineering project.

22

4.4.2 Learning a New Language

Most of the code for the project was written in Rust with a small amount in x86

assembly. Neither of which I had any experience in before. Rust uses a different

paradigm to other programming languages I had written in before. It uses the concept

of ownership to manage memory instead of garbage collection like in other memory

safe languages. It also uses a different syntax to other languages I am familiar with

which are generally all very similar to C. There was very little time to learn the

fundamentals of Rust from scratch, so this had to be learned as I went along.

4.4.3 Dependencies

Another challenge that we faced was the dependencies on other repositories. At the

start of the project RustyHermit was broken due to a change in Rust libstd. The code

changes had been made in the RustyHermit repository but were awaiting a code

review and acceptance into the main Rust repository. This meant we were not able to

start experimenting with RustyHermit for a couple of weeks at the beginning of the

project.

In February 2021, a change to a dependency of Uhyve prevented it from installing. A

significant amount of time was spent trying to locate the source of the error. It was not

possible to simply lock the dependency to a working version in Uhyve due to a further

dependency chain. An issue was raised by us on the Uhyve GitHub repository whose

contributors then in turn raised an issue with the maintainers of the dependent

repository for a change to lock the upstream dependency. A related issue occurred

shortly after with another dependency but as the fix to lock the version was previously

implemented it just required a code change at our end.

This provided an opportunity to learn how to raise issues with an external project and

communicate technically with repository maintainers.

4.4.4 System Bugs

Working with system software can produce unintended effects which are hard to

determine why they happen. Changes to seemingly unrelated code can cause parts

of the program to start or stop working unexpectedly. In part this seems to be related

to the fact that some of the implementation of Rust code is not well defined in the way

it needed to be used in the project. The Rust documentation is very good and makes

23

it clear when this may be the case. It is also partly related to performing changes to

memory directly using assembly code.

5 Functional Evaluation

As explained in the previous chapter it was not possible to run NPB benchmarks

against the unikernel to compare its performance to a standard Linux kernel or to other

unikernels. This is due to the inability to support C code. In terms of functionality the

project was successful in its aim of running pre-compiled binary applications written in

assembly code.

The implementation of system calls, the loading of the application into memory and

the ability to transfer control from the hypervisor to the kernel and finally to the

application were all demonstrated to work. Given further time and resources it should

be possible to find the cause of the bug which prevents C code from executing

properly. Much of the groundwork has already been laid to make this work.

The project can successfully demonstrate the running of a Hello World application (see

Appendix A). Printing a pre-programmed message to stdout. Operations on files has

also been demonstrated using a simple application which can read the contents of a

text file and print it to stdout whilst changing the last word in the file. Many more system

calls have been implemented which binary applications can use.

6 Comparison to Similar Work

A similar project which looked at binary compatibility in a unikernel, albeit in a legacy

language, is HermiTux. Although the HermiTux project was more sophisticated, using

binary rewriting techniques and analysis of dynamic code it was often used as a

comparison and a source of study for the project. In fact, the course of this project

started off by studying both the HermiTux and RustyHermit projects. An understanding

of how HermiTux loads the application and sets up the stack was crucial to

understanding the steps required to run a binary application in a unikernel. Several

unfamiliar, low level concepts of system software were illustrated through HermiTux,

which were subsequently applied in the project. These include the ELF format, position

independent code, the initialisation of kernels and applications in memory, the

difference between kernel and user space, how the stack is arranged for execution

and the workings of hypervisors.

24

The other project which required study was RustyHermit as this was the basis of the

project. Being unfamiliar with Rust code, its package manager Crate and its build

environments presented a steep learning curve. Using RustyHermit as a starting point,

running the provided examples then extending and modifying them to run our own

programs before learning the code base and making modifications was immensely

useful. A lot of the development in Rust was quite advanced and this made it difficult

for someone new to the language. The fundamentals of the language had to be

learned on the fly and it often required using the language in esoteric and uncommon

ways. Having existing code which could be studied and used as a guide was useful in

a lot of situations, but a large amount of creativity and further research was still

required.

Although the project would have been easier in C, which is not only more familiar but

provides much more unchecked access to low level functions, the advantages of

writing in a memory safe language are clear. For an inexperienced developer writing

system software in C, especially when handling memory, there are numerous pitfalls.

Many of which would not be caught at compile-time, some of which may only occur

occasionally at run-time and others which may never affect the functionality but could

leave the software vulnerable to exploits and data leaks. Rust prevents many of these

issues by checking and enforcing rules at compile-time. Given the same functionality

as HermiTux the additional challenge of writing in Rust would be worth the extra effort.

7 Conclusion & Future Works

7.1 Future Works

There are numerous opportunities to expand this project and take this research further.

The first would be to investigate in more detail the bug which prevented the running of

C code. If this could be identified, then the ability to run C code would not only easily

expand the type of applications that could be run but also allow the running of NPB

benchmarks and allow the assessment of the unikernel performance.

Certain system calls require a feature called Newlib as well as lwIP. Providing support

for lwIP would enable networking which would be a desirable feature. Support for lwIP

and Newlib is available in Hermit Playground. Currently Hermit Playground does not

support Rust applications and requires the C version of Uhyve, not the Rust version

25

which we amended. It should be possible to change Hermit Playground to support

these which would give access to more system calls and networking.

Another area for future research would be the ability to support even more

applications. Develop more system calls, provide support for dynamic applications

instead of just static binaries. It would also be possible to support more languages

including interpreted languages such as Python.

Security of unikernels is important if they are to be used in production. There are

several different areas that could be investigated in future work. Some of these

problems will be more challenging than others. A simple improvement would be

implementing Address Space Layout Randomization (ASLR). Both the kernel and

application can be easily relocated in the available address space. Care would have

to be taken to keep them well separated as there is no separate kernel and user space.

A more challenging security improvement related to the above would be preventing an

adversary running code which could access protected memory space. All code in the

unikernel runs in privileged mode, a mechanism is required to prevent exploitation of

this fact. Recent attempts at intra-unikernel protection technologies include Intel

Memory Protection Keys [16, 18].

7.2 Conclusion

At the start of the project, I knew very little about many of the concepts we would be

working with. I knew hardly anything about unikernels, I knew only the basics about

hypervisors and VMs, I had no experience with Rust and had no knowledge of ELF. I

had also not done any significant development work using an existing open code base.

There was a lot to learn in a limited amount of time and it was at times challenging.

The nature of the project was highly exploratory and was successful in achieving a

proof of concept demonstrating the ability to build a binary compatible unikernel written

in Rust. Even though the project may not have achieved all its aims of being able to

run a binary application written in C and hence acquire benchmarks against the

unikernel we have provided a starting point for further research and completed much

of the groundwork towards this goal.

The applications of unikernels are still relatively immature and this is an active area of

research as an alternative to containers in the rapidly expanding cloud computing

26

sector. I am thankful to have been able to contribute to this research and will monitor

the progress of unikernels and, in particular, those based on HermitCore.

27

Appendix A hello_world_asm.s

 .global _start

 .text
_start:
 # write(1, message, 14)
 mov $1, %rax # system call 1 is write
 mov $1, %rdi # file handle 1 is stdout
 mov $message, %rsi # address of string to output
 mov $14, %rdx # number of bytes
 syscall # invoke operating system to do the write

 # exit(0)
 mov $60, %rax # system call 60 is exit
 xor %rdi, %rdi # we want return code 0
 syscall # invoke operating system to exit
message:
 .ascii "Hello, World!\n"

28

References

[1] Adam Dunkels and Leon Woestenberg. 2018. lwIP: Overview. Retrieved April 22,

2021 from https://www.nongnu.org/lwip/2_1_x/index.html

[2] Embedded devices Working Group. 2019. The embedded Rust book. Retrieved

April 19, 2021 from https://docs.rust-embedded.org/book/intro/no-std.html

[3] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios Pendarakis and Haining

Wang. 2017. ContainerLeaks: Emerging Security Threats of Information Leakages in

Container Clouds. In Proceedings of 2017 47th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), Denver, CO, USA. 237-

248, DOI: https://doi.org/10.1109/DSN.2017.49

[4] Diane Hosfelt. 2019. Implications of Rewriting a Browser Component in Rust.

Retrieved April 18, 2021 from https://hacks.mozilla.org/2019/02/rewriting-a-browser-

component-in-rust/

[5] Intel Corporation. 2016. Intel 64 and IA-32 Architectures Software Developer’s

Manual Volume 2 (2A, 2B, 2C & 2D): Instruction Set Reference, A-Z. (September

2016). Retrieved April, 22 2021 from

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-

architectures-software-developer-instruction-set-reference-manual-325383.pdf

[6] Shashank M. Jain. 2020. Virtualization Basics. In Linux Containers and

Virtualization. Apress, Berkeley, CA. DOI: https://doi.org/10.1007/978-1-4842-6283-

2_1

[7] Steve Klabnik and Carol Nichols. 2018. The Rust Programming Language. No

Starch Press, USA. Retrieved April 18, 2021 from https://doc.rust-lang.org/book/

[8] Stefan Lankes, Jens Breitbart, and Simon Pickartz. 2019. Exploring Rust for

Unikernel Development. In Proceedings of the 10th Workshop on Programming

Languages and Operating Systems (PLOS'19). Association for Computing Machinery,

New York, NY, USA, 8–15. DOI: https://doi.org/10.1145/3365137.3365395

[9] Stefan Lankes, Simon Pickartz, and Jens Breibart. 2019. HermitCore. In Gerofi B.,

Ishikawa Y., Riesen R., Wisniewski R.W. (eds) Operating Systems for

Supercomputers and High Performance Computing. High-Performance Computing

https://www.nongnu.org/lwip/2_1_x/index.html
https://docs.rust-embedded.org/book/intro/no-std.html
https://doi.org/10.1109/DSN.2017.49
https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust/
https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://doi.org/10.1007/978-1-4842-6283-2_1
https://doi.org/10.1007/978-1-4842-6283-2_1
https://doc.rust-lang.org/book/
https://doi.org/10.1145/3365137.3365395

29

Series, vol 1. Springer, Singapore. DOI: https://doi.org/10.1007/978-981-13-6624-

6_20

[10] Anil Madhavapeddy and David J. Scott. 2014. Unikernels: the rise of the virtual

library operating system. Commun. ACM 57, 1 (January 2014), 61–69. DOI:

https://doi.org/10.1145/2541883.2541895

[11] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit

Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My VM is Lighter (and

Safer) than your Container. In Proceedings of SOSP ’17: ACM SIGOPS 26th

Symposium on Operating Systems Principles, Shanghai, China, October 28, 2017

(SOSP ’17), 16 pages. DOI: https://doi.org/10.1145/3132747.3132763

[12] Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. 2013. System V

Application Binary Interface. AMD64 Architecture Processor Supplement, Draft v0 99

(2013).

[13] Spencer Michaels, and Jeff Dileo. 2019. Assessing unikernel security. Technical

report. NCC group.

[14] Microsoft Security Response Center. 2019. Why Rust for safe systems

programming. Retrieved April 18, 2021 from https://msrc-

blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/

[15] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy Ravindran.

2019. A Binary-Compatible Unikernel. In Proceedings of the 15th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE

’19), April 13–14, 2019, Providence, RI, USA. ACM, New York, NY, USA, 15 pages.

DOI: https://doi.org/10.1145/3313808.3313817

[16] Pierre Olivier, Antonio Barbalace, and Binoy Ravindran. 2020. The Case for Intra-

Unikernel Isolation. In Proceedings of the 10th Workshop on Systems for Post-Moore

Architectures (SPMA).

[17] James E. Smith and Ravi Nair. 2005. The architecture of virtual machines. In

Computer 38, 5 (May 2005), 32-38. DOI: 10.1109/MC.2005.173.

[18] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran. 2020. Intra-

Unikernel Isolation with Intel Memory Protection Keys. In 16th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE

https://doi.org/10.1007/978-981-13-6624-6_20
https://doi.org/10.1007/978-981-13-6624-6_20
https://doi.org/10.1145/2541883.2541895
https://doi.org/10.1145/3132747.3132763
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/
https://doi.org/10.1145/3313808.3313817

30

’20), March 17, 2020, Lausanne, Switzerland. ACM, New York, NY, USA, 14 pages.

DOI: https://doi.org/10.1145/3381052.3381326

[19] Unikernel. 2018. Projects. Retrieved April 22, 2021 from

http://unikernel.org/projects/

[20] Corinna Vinschen and Jeff Johnston. 2020. The Newlib Homepage. Retrieved

April 22, 2021 from https://sourceware.org/newlib/

https://doi.org/10.1145/3381052.3381326
http://unikernel.org/projects/
https://sourceware.org/newlib/

