-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheks.m
261 lines (233 loc) · 9.03 KB
/
eks.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
%{
Filename: iEKF_solution.m
by, Shivam Soni - 06/05/2021
1) EKF - EKS Implementation
2) Run after "kalman_filtering.m"
%}
%% iEKF
clc;
% R and Q parameters:
r = .1;
q = 30;
% Initial State:
mu = [prob_sort(1).x0; 0; 0; 0; 0; 0; 0; 0];
clear prob_tight
tic
prob_tight = tightly_coupled(prob_sort, q, r, mu);
t = toc;
t/length(prob_tight)
%%
prob_tight(499).x0_kf_s = prob_tight(498).x0_kf_s;
prob_tight(500).x0_kf_s = prob_tight(498).x0_kf_s;
prob_tight(501).x0_kf_s = prob_tight(503).x0_kf_s;
prob_tight(502).x0_kf_s = prob_tight(503).x0_kf_s;
prob_tight(966).x0_kf_s = prob_tight(965).x0_kf_s;
prob_tight(967).x0_kf_s = prob_tight(968).x0_kf_s;
%% Plot LLA
x_lla = zeros(length(prob_tight),3); cmat = parula(length(prob_tight));
for ind=1:length(prob_tight)
x_lla(ind,:) = ecef2lla(prob_tight(ind).x0_kf_s','WGS84');
end
figure;
for i=1:length(prob_tight)
geoplot(x_lla(i,1), x_lla(i,2),'.','Color',cmat(i,:));hold on;
end
title('Receiver position in LLA frame using WGS84 datum');
colorbar('southoutside','TickLabelInterpreter','latex','FontSize',24,...
'TicksMode','manual','Ticks',[0, 1], 'TickLabels',{'$t = 0$', '$t = t_{end}$'})
%% Save LLA
disp('Saving...')
writematrix(x_lla, 'LLA_EKS.csv')
disp('Saved!')
%% Functions:
function prob_out = tightly_coupled(prob_sort, q, r, mu)
% Output Problem:
prob_out = struct();
% Initialize Covariance:
P = diag(rand(10,1));
% Process Noise:
Q = q*diag(ones(10,1));
% State:
prob_out(1).x0_kf = mu(1:3);
prob_out(1).bu_kf = mu(4);
prob_out(1).v0_kf = mu(5:6);
prob_out(1).ang_kf = mu(7:9);
T_tot = length(prob_sort); T_tot = 1295;
for ind_t = 1:T_tot
if isempty(prob_sort(ind_t).sat_pos_calc) || isempty(prob_sort(ind_t).a_cal) % No IMU or GNSS data
% Use WLS previous position
prob_out(ind_t).x0_kf = prob_sort(ind_t).x0;
prob_out(ind_t).bu_kf = prob_sort(ind_t).bu;
% Use previous timestep's values for the rest of the state variables
prob_out(ind_t).v0_kf = prob_out(ind_t-1).v0_kf;
prob_out(ind_t).ang_kf = prob_out(ind_t-1).ang_kf;
continue
end
if ind_t == T_tot
dt = abs(prob_sort(ind_t).utcTimeMillis(1) - prob_sort(ind_t-1).utcTimeMillis(1))/1e6;
else
dt = abs(prob_sort(ind_t+1).utcTimeMillis(1) - prob_sort(ind_t).utcTimeMillis(1))/1e6;
end
% Control Matrices:
A = diag(ones(10,1)) + diag([dt*ones(3,1); 0; 0; 0], 4);
B = [zeros(4,6); diag(dt*ones(6,1))];
% Measurement noise
meas_len = length(prob_sort(ind_t).rho_meas);
R = r*diag(ones(meas_len,1));
% Measurement:
z = [prob_sort(ind_t).rho_meas]';
% Disturbances or Acceleration Inputs:
acc = prob_sort(ind_t).a_cal;
gyr = prob_sort(ind_t).w_cal;
mag = prob_sort(ind_t).mag_cal;
[u_bod, mag] = kf_meas_vec(acc, gyr, mag);
if ind_t == 1
u_ecef = body2ecef(u_bod, mag, prob_out(ind_t).x0_kf);
else
u_ecef = body2ecef(u_bod, mag, prob_out(ind_t-1).x0_kf);
end
% Call Kalman Filter
[mu, P] = ekf_forward(A, B, Q, R, P, mu, z, u_ecef', prob_sort(ind_t));
% [mu, P] = kalman_filter_ekf(A, B, H, R, Q, P, mu, z, u_ecef', h);
prob_out(ind_t).S = P;
prob_out(ind_t).mu = mu;
% Save updated states:
if ind_t == 1
prob_out(ind_t).x0_kf = mu(1:3);
prob_out(ind_t).bu_kf = mu(4);
prob_out(ind_t).v0_kf = mu(5:7);
prob_out(ind_t).ang_kf = mu(8:10);
elseif norm(prob_out(ind_t-1).x0_kf - mu(1:3)) > 1000 % 1km
sprintf('AAAA')
prob_out(ind_t).x0_kf = prob_sort(ind_t).x0; % Use WLS previous position
prob_out(ind_t).bu_kf = prob_sort(ind_t).bu;
prob_out(ind_t).v0_kf = prob_out(ind_t-1).v0_kf; % Use previous timestep's values for the rest of the state variables
prob_out(ind_t).ang_kf = prob_out(ind_t-1).ang_kf;
else
prob_out(ind_t).x0_kf = mu(1:3);
prob_out(ind_t).bu_kf = mu(4);
prob_out(ind_t).v0_kf = mu(5:7);
prob_out(ind_t).ang_kf = mu(8:10);
end
end
% Backward Pass:
% Initialize:
mu_s = prob_out(T_tot).mu;
S_s = prob_out(T_tot).S;
for ind_t = T_tot:-1:1
if isempty(prob_sort(ind_t).sat_pos_calc) || isempty(prob_sort(ind_t).a_cal) % No IMU or GNSS data
% Use WLS previous position
prob_out(ind_t).x0_kf = prob_sort(ind_t).x0;
prob_out(ind_t).bu_kf = prob_sort(ind_t).bu;
% Use previous timestep's values for the rest of the state variables
prob_out(ind_t).v0_kf = prob_out(ind_t-1).v0_kf;
prob_out(ind_t).ang_kf = prob_out(ind_t-1).ang_kf;
continue
end
if ind_t == T_tot
dt = abs(prob_sort(ind_t).utcTimeMillis(1) - prob_sort(ind_t-1).utcTimeMillis(1))/1e6;
else
dt = abs(prob_sort(ind_t+1).utcTimeMillis(1) - prob_sort(ind_t).utcTimeMillis(1))/1e6;
end
% Disturbances or Acceleration Inputs:
acc = prob_sort(ind_t).a_cal;
gyr = prob_sort(ind_t).w_cal;
mag = prob_sort(ind_t).mag_cal;
[u_bod, mag] = kf_meas_vec(acc, gyr, mag);
if ind_t == 1
u_ecef = body2ecef(u_bod, mag, prob_out(ind_t).x0_kf);
else
u_ecef = body2ecef(u_bod, mag, prob_out(ind_t-1).x0_kf);
end
% Control Matrices:
A = diag(ones(10,1)) + diag([dt*ones(3,1); 0; 0; 0], 4);
B = [zeros(4,6); diag(dt*ones(6,1))];
% Backward Pass:
[mu_s, S_s] = eks_backward(A, B, prob_out(ind_t).mu, prob_out(ind_t).S,...
mu_s, S_s, u_ecef', Q);
prob_out(ind_t).mu_s = mu_s;
prob_out(ind_t).S_s = S_s;
if ind_t == 1
prob_out(ind_t).x0_kf_s = mu_s(1:3);
prob_out(ind_t).bu_kf_s = mu_s(4);
prob_out(ind_t).v0_kf_s = mu_s(5:7);
prob_out(ind_t).ang_kf_s = mu_s(8:10);
elseif norm(prob_out(ind_t-1).x0_kf - mu_s(1:3)) > 1000 % 1km
sprintf('AAAA')
prob_out(ind_t).x0_kf_s = prob_sort(ind_t).x0; % Use WLS previous position
prob_out(ind_t).bu_kf_s = prob_sort(ind_t).bu;
prob_out(ind_t).v0_kf_s = prob_out(ind_t-1).mu(5:7); % Use previous timestep's values for the rest of the state variables
prob_out(ind_t).ang_kf_s = prob_out(ind_t-1).mu(8:10);
else
prob_out(ind_t).x0_kf_s = mu_s(1:3);
prob_out(ind_t).bu_kf_s = mu_s(4);
prob_out(ind_t).v0_kf_s = mu_s(5:7);
prob_out(ind_t).ang_kf_s = mu_s(8:10);
end
end
end
function [mu_t_t, S_t_t] = ekf_forward(A, B, Q, R, S_tm_tm, mu_tm_tm, y, u, prob_sort)
% Predict:
mu_t_tm = A*mu_tm_tm + B*u; % Mean
S_t_tm = A*S_tm_tm*A' + Q; % Covariance
% Measurement Jacobian:
C = meas_J(mu_t_tm, prob_sort);
% Update:
K_t = S_t_tm*C'/(C*S_t_tm*C'+R);
mu_t_t = mu_t_tm + K_t*(y - meas_fn(mu_t_tm, prob_sort));
S_t_t = S_t_tm - K_t*C*S_t_tm;
end
function [mu_t_T, S_t_T] = eks_backward(A, B, mu_t_t, S_t_t, mu_tp_T, S_tp_T, u, Q)
% Predict:
mu_tp_t = A*mu_t_t + B*u; % Mean
S_tp_t = A*S_t_t*A' + Q; % Covariance
% Smooth:
K_t_s = S_t_t*A'/S_tp_t;
mu_t_T = mu_t_t + K_t_s*(mu_tp_T - mu_tp_t);
S_t_T = S_t_t + K_t_s*(S_tp_T - S_tp_t)*K_t_s';
end
function C = meas_J(mu, prob_sort)
meas_len = length(prob_sort.rho_meas);
C = zeros(meas_len, 10);
for ind_sat = 1:meas_len
X = prob_sort.sat_pos_calc(1,ind_sat) - mu(1);
Y = prob_sort.sat_pos_calc(2,ind_sat) - mu(2);
Z = prob_sort.sat_pos_calc(3,ind_sat) - mu(3);
eta = sqrt(X^2 + Y^2 + Z^2);
C(ind_sat,:) = [-X/eta, -Y/eta, -Z/eta, 1, 0, 0, 0, 0, 0, 0];
end
end
function h = meas_fn(mu, prob_sort)
meas_len = length(prob_sort.rho_meas);
h = zeros(meas_len, 1);
for ind_sat = 1:meas_len
X = prob_sort.sat_pos_calc(1,ind_sat) - mu(1);
Y = prob_sort.sat_pos_calc(2,ind_sat) - mu(2);
Z = prob_sort.sat_pos_calc(3,ind_sat) - mu(3);
eta = sqrt(X^2 + Y^2 + Z^2);
h(ind_sat,1) = eta + mu(4) - prob_sort.B(ind_sat);
end
end
function [u_vec, m_sm] = kf_meas_vec(a, w, m)
a_sm = smooth_mean(a);
w_sm = smooth_mean(w);
m_sm = smooth_mean(m);
u_vec = [reshape(a_sm, 1, 3), reshape(w_sm, 1, 3)];
end
function vec_out = smooth_mean(mat)
vec_out = mean(smoothdata(mat, 1, "gaussian", [4,4]), 1);
end
function u_ecef = body2ecef(acc_gyr, mag, pos)
acc = acc_gyr(1:3);
gyr = acc_gyr(4:6);
pos = reshape(pos, 1, 3);
gvec_ned = [0, 0, 9.81];
orientation = ecompass(acc, mag); % a_ned_d = acos(9.81/a_y)
avec_ned = rotatepoint(orientation, acc);
avec_ned_no_g = avec_ned - gvec_ned;
lla = ecef2lla(pos, 'WGS84');
R_ecef2ned = RotEcef2Ned(lla(1), lla(2));
avec_ecef = R_ecef2ned'*avec_ned_no_g';
wvec_ecef = R_ecef2ned'*gyr';
u_ecef = [reshape(avec_ecef, 1, 3), reshape(wvec_ecef, 1, 3)];
end